Skip to main content

Ecological significance of sterols in aquatic food webs

  • Chapter
  • First Online:
Book cover Lipids in Aquatic Ecosystems

Abstract

Sterols are indispensable for a multitude of physiological processes in all eukaryotic organisms. In most eukaryotes, sterols are synthesized de novo from low molecular weight precursors. Some invertebrates (e.g., all arthropods examined to date), however, are incapable of synthesizing sterols de novo, and therefore have to acquire sterols from their diet. Here, we aim to demonstrate that such nutritional requirements not only affect the performance of an individual in its environment but may also have major consequences for the function of aquatic ecosystems. Starting from general patterns of occurrence and biosynthesis of sterols, we next explore the physiological properties and nutritional requirements of sterols. These aspects are then integrated into a more ecological perspective. We emphasize their effects on aquatic food webs in general and on herbivorous zooplankton in particular with the major aim to outline how the interplay of physiological capabilities of individual herbivores and trophic interactions in the food web will determine the effect of low dietary provision of sterols on structure and function of aquatic ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ballantine, J.A., Lavis, A., and Morris, R.J. 1979. Sterols of the phytoplankton – effects of illumination and growth stage. Phytochemistry 18:1459–1466.

    Article  CAS  Google Scholar 

  • Barrett, S.M., Volkman, J.K., Dunstan, G.A., and Leroi, J.M. 1995. Sterols of 14 species of marine diatoms (bacillariophyta). J. Phycol. 31:360–369.

    Article  CAS  Google Scholar 

  • Bec, A., Martin-Creuzburg, D., and Von Elert, E. 2006. Trophic upgrading of autotrophic picoplankton by the heterotrophic nanoflagellate Paraphysomonas sp. Limnol. Oceanogr. 51:1699–1707.

    Article  Google Scholar 

  • Behmer, S.T., and Elias, D.O. 1999. The nutritional significance of sterol metabolic constraints in the generalist grasshopper Schistocerca americana. J. Insect Physiol. 45:339–348.

    Article  PubMed  CAS  Google Scholar 

  • Behmer, S.T., and Elias, D.O. 2000. Sterol metabolic constraints as a factor contributing to the maintenance of diet mixing in grasshoppers (Orthoptera:Acrididae). Physiol. Biochem. Zool. 73:219–230.

    Article  PubMed  CAS  Google Scholar 

  • Behmer, S.T., and Nes, W.D. 2003. Insect sterol nutrition and physiology: a global overview. Adv. Insect Physiol. 31:1–72.

    Article  CAS  Google Scholar 

  • Behmer, S.T., Elias, D.O., and Bernays, E.A. 1999a. Post-ingestive feedbacks and associative learning regulate the intake of unsuitable sterols in a generalist grasshopper. J. Exp. Biol. 202:739–748.

    CAS  Google Scholar 

  • Behmer, S.T., Elias, D.O., and Grebenok, R.J. 1999b. Phytosterol metabolism and absorption in the generalist grasshopper, Schistocerca americana (Orthoptera: Acrididae). Arch. Insect Biochem. Physiol. 42:13–25.

    Article  CAS  Google Scholar 

  • Boëchat, I.G., and Adrian, R. 2006. Evidence for biochemical limitation of population growth and reproduction of the rotifer Keratella quadrata fed with freshwater protists. J. Plankton Res. 28:1027–1038.

    Article  Google Scholar 

  • Boëchat, I.G., Krüger, A., and Adrian, R. 2007. Sterol composition of freshwater algivorous ciliates does not resemble dietary composition. Microb. Ecol. 53:74–81.

    Article  PubMed  Google Scholar 

  • Champagne, D.E., and Bernays, E.A. 1991. Phytosterol unsuitability as a factor mediating food aversion learning in the grasshopper Schistocerca americana. Physiol. Entomol. 16:391–400.

    Article  CAS  Google Scholar 

  • Conklin, D.E., and Provasoli, L. 1977. Nutritional requirements of the water flea Moina macrocopa. Biol. Bull. 152:337–350.

    Article  CAS  Google Scholar 

  • Conner, R.L., Landrey, J.R., Burns, C.H., and Mallory, F.B. 1968. Cholesterol inhibition of pentacyclic triterpenoid biosynthesis in Tetrahymena pyriformis. J. Protozool. 15:600–605.

    PubMed  CAS  Google Scholar 

  • Crockett, E.L., and Hassett, R.P. 2005. A cholesterol-enriched diet enhances egg production and egg viability without altering cholesterol content of biological membranes in the copepod Acartia hudsonica. Physiol. Biochem. Zool. 78:424–433.

    Article  PubMed  CAS  Google Scholar 

  • Dahl, C.E., Dahl, J.S., and Bloch, K. 1980. Effect of alkyl-substituted precursors of cholesterol on artificial and natural membranes and on the viability of Mycoplasma capricolum. Biochemistry 19:1462–1467.

    Article  PubMed  CAS  Google Scholar 

  • Dembitsky, V.M., Rezanka, T., and Srebnik, M. 2003. Lipid compounds of freshwater sponges: family Spongillidae, class Demospongiae. Chem. Phys. Lipids 123:117–155.

    Article  PubMed  CAS  Google Scholar 

  • Ederington, M., McManus, G.B., and Harvey, H.R. 1995. Trophic transfer of fatty acids, sterols, and a triterpenoid alcohol between bacteria, a ciliate, and the copepod Acartia tonsa. Limnol. Oceanogr. 40:860–867.

    Article  CAS  Google Scholar 

  • Frolov, A.V., Pankov, S.L., Geradz, K.N., Pankova, S.A., and Spektrova, L.V. 1991. Influence of the biochemical composition of food on the biochemical composition of the rotifer Brachionus plicatilis. Aquaculture 97:181–202.

    Article  CAS  Google Scholar 

  • Gessner, M.O., and Chauvet, E. 1993. Ergosterol-to-biomass conversion factors for aquatic hyphomycetes. Appl. Environ. Microb. 59:502–507.

    CAS  Google Scholar 

  • Gilbert, L.I., Rybczynski, R., and Warren, J.T. 2002. Control and biochemical nature of the ecdysteroidogenic pathway. Annu. Rev. Entomol. 47:883–916.

    Article  PubMed  CAS  Google Scholar 

  • Giner, J.-L., Faraldos, J.A., and Boyer, G.L. 2003. Novel sterols of the toxic dinoflagellate Karenia brevis (Dinophyceae): a defensive function for unusual marine sterols? J. Phycol. 39:315–319.

    Article  CAS  Google Scholar 

  • Goad, L.J. 1981. Sterol biosynthesis and metabolism in marine invertebrates. Pure Appl. Chem. 51:837–852.

    Article  Google Scholar 

  • Grieneisen, M.L. 1994. Recent advances in our knowledge of ecdysteroid biosynthesis in insects and crustaceans. Insect Biochem. Mol. Biol. 24:115–132.

    Article  CAS  Google Scholar 

  • Guisande, C., Riverio, I., and Maneiro, I. 2000. Comparisons among the amino acid composition of females, eggs and food to determine the relative importance of the food quantity and food quality to copepod reproduction. Mar. Ecol. Prog. Ser. 202:135–142.

    Article  CAS  Google Scholar 

  • Haines, T.H. 2001. Do sterols reduce proton and sodium leaks through lipid bilayers? Prog. Lipid Res. 40:299–324.

    Article  CAS  Google Scholar 

  • Harvey, H.R., and McManus, G.B. 1991. Marine ciliates as a widespread source of tetrahymanol and hopan-3β-ol in sediments. Geochim. Cosmochim. Acta 55:3387–3390.

    Article  CAS  Google Scholar 

  • Harvey, H.R., Eglinton, G., O’Hara, S.C.M., and Corner, E.D.S. 1987. Biotransformation and assimilation of dietary lipids by Calanus feeding on a dinoflagellate. Geochim. Cosmochim. Acta 51:3031–3040.

    Article  Google Scholar 

  • Harvey, H.R., O’Hara, S.C.M., Eglinton, G., and Corner, E.D.S. 1989. The comparative fate of dinosterol and cholesterol in copepod feeding: implications for a conservative molecular biomarker in the marine water column. Org. Geochem. 14:635–641.

    Article  CAS  Google Scholar 

  • Harvey, H.R., Ederington, M.C., and McManus, G.B. 1997. Lipid composition of the marine ciliates Pleuronema sp. and Fabrea salina: shifts in response to changes in diets. J. Eukaryot. Microbiol. 44:189–193.

    CAS  Google Scholar 

  • Hassett, R.P. 2004. Supplementation of a diatom diet with cholesterol can enhance copepod egg-production rates. Limnol. Oceanogr. 49:488–494.

    Article  CAS  Google Scholar 

  • Kanazawa, A. 2001. Sterols in marine invertebrates. Fish. Sci. 67:997–1007.

    Article  Google Scholar 

  • Klein Breteler, W.C.M., Schogt, N., Baas, M., Schouten, S., and Kraay, G.W. 1999. Trophic upgrading of food quality by protozoans enhancing copepod growth: the role of essential lipids. Mar. Biol. 135:191–198.

    Article  Google Scholar 

  • Klein Breteler, W.C.M., Koski, M., and Rampen, S. 2004. Role of essential lipids in copepod nutrition: no evidence for trophic upgrading of food quality by a marine ciliate. Mar. Ecol. Prog. Ser. 274:199–208.

    Article  Google Scholar 

  • Klein Breteler, W.C.M., Schogt, N., and Rampen, S. 2005. Effect of diatom nutrient limitation on copepod development: role of essential lipids. Mar. Ecol. Prog. Ser. 291:125–133.

    Article  Google Scholar 

  • Lampert, W., and Trubetskova, I. 1996. Juvenile growth rate as a measure of fitness in Daphnia. Funct. Ecol. 10:631–635.

    Article  Google Scholar 

  • Leblond, J.D., and Chapman, P.J. 2002. A survey of the sterol composition of the marine dinoflagellates Karenia brevis, Karenia mikimotoi, and Karlodinium micrum: distribution of sterols within other members of the class dinophyceae. J. Phycol. 38:670–682.

    Article  CAS  Google Scholar 

  • Leppimäki, P, Mattinen, J., and Slotte, P. 2000. Sterol-induced upregulation of phosphatidylcholine synthesis in cultured fibroblasts is affected by the double-bond position in the sterol tetracyclic ring structure. Eur. J. Biochem. 267:6385–6394.

    Article  PubMed  Google Scholar 

  • Lozano, R., Salt, T.A., Chitwood, D.J., Lusby, W.R., and Thompson, M.J. 1987. Metabolism of sterols of varying ring unsaturation and methylation by Caenorhabditis elegans. Lipids 22:84–87.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, M., Weider, L.J., and Lampert, W. 1986. Measurement of the carbon balance in Daphnia. Limnol. Oceanogr. 31:17–33.

    Article  Google Scholar 

  • MacLatchy, D.L., and Van der Kraak, G. 1995. The phytoestrogen β-sitosterol alters the reproductive endocrine status of goldfish. Toxicol. Appl. Pharmacol. 134:305–312.

    Article  PubMed  CAS  Google Scholar 

  • Martin-Creuzburg, D., and Von Elert, E. 2004. Impact of 10 dietary sterols on growth and reproduction of Daphnia galeata. J. Chem. Ecol. 30:483–500.

    Article  PubMed  CAS  Google Scholar 

  • Martin-Creuzburg, D., Wacker, A., and Von Elert, E. 2005a. Life history consequences of sterol availability in the aquatic keystone species Daphnia. Oecologia 144:362–372.

    Article  Google Scholar 

  • Martin-Creuzburg, D., Bec, A., and Von Elert, E. 2005b. Trophic upgrading of picocyanobacterial carbon by ciliates for nutrition of Daphnia magna. Aquat. Microb. Ecol. 41:271–280.

    Article  Google Scholar 

  • Martin-Creuzburg, D., Bec, A., and Von Elert, E. 2006. Supplementation with sterols improves food quality of a ciliate for Daphnia magna. Protist 157:477–486.

    Article  PubMed  CAS  Google Scholar 

  • Martin-Creuzburg, D., Westerlund, S.A., and Hoffmann, K.H. 2007. Ecdysteroid levels in Daphnia magna during a molt cycle: determination by radioimmunoassay (RIA) and liquid chromatography-mass spectrometry (LC-MS). Gen. Comp. Endocrinol. 151:66–71.

    Article  PubMed  CAS  Google Scholar 

  • Merris, M., Kraeft, J., Tint, G.S., and Lenard, J. 2004. Long-term effects of sterol depletion in C. elegans: sterol content of synchronized wild-type and mutant populations. J. Lipid Res. 45:2044–2051.

    Article  PubMed  CAS  Google Scholar 

  • Moreau, R.A., Whitaker, B.D., and Hicks, K.B. 2002. Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses. Prog. Lipid Res. 41:457–500.

    Article  PubMed  CAS  Google Scholar 

  • Müller-Navarra, D.C., Brett, M., Liston, A.M., and Goldman, C.R. 2000. A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature 403:74–77.

    Article  PubMed  Google Scholar 

  • Nes, W.R., and McKean, M.L. 1977. Biochemistry of steroids and other isopentenoids. University Park Press, Baltimore, MD.

    Google Scholar 

  • Normén, L., Shaw, C.A., Fink, C.S., and Awad, A.B. 2004. Combination of phytosterols and omega-3 fatty acids: A potential strategy to promote cardiovascular health. Curr. Med. Chem. Cardiovasc. Hematol. Agents 2:1–12.

    Article  PubMed  Google Scholar 

  • Ohvo-Rekilä, H., Ramstedt, B., Leppimäki, P., and Slotte, P. 2002. Cholesterol interactions with phospholipids in membranes. Prog. Lipid Res. 41:66–97.

    Article  PubMed  Google Scholar 

  • Oliver, R.L., and Ganf, G.G. 2000. Freshwater blooms, pp. 149–194. In B.A. Whitton (ed.), The ecology of cyanobacteria: their diversity in time and space. Kluwer, Dordrecht.

    Google Scholar 

  • Ourisson, G., Rohmer, M., and Poralla, K. 1987. Prokaryotic hopanoids and other polyterpenoid sterol surrogates. Ann. Rev. Microbiol. 41:301–333.

    Article  CAS  Google Scholar 

  • Patterson, G.W. 1991. Sterols of algae, pp. 118–157. In G.W. Patterson, and W.D. Nes (eds.), Physiology and biochemistry of sterols. American Oil Chemists’ Society, Champaign, IL.

    Google Scholar 

  • Patterson, G.W., Tsitsa-Tzardis, E., Wikfors, G.H., Ghosh, P., Smith, B. C., and Gladu, P.K. 1994. Sterols of eustigmatophytes. Lipids 29:661–664.

    Article  PubMed  CAS  Google Scholar 

  • Piironen, V., Lindsay, D., Miettinen, T., Toivo, J., and Lampi, A.M. 2000. Plant sterols: biosynthesis, biological function and their importance to human nutrition. J. Sci. Food Agric. 80:939–966.

    Article  CAS  Google Scholar 

  • Popov, S., Stoilov, I., Marekov, N., Kovachev, G., and Andreev, S. 1981. Sterols and their biosynthesis in some freshwater bivalves. Lipids 16:663–669.

    Article  CAS  Google Scholar 

  • Porter, J.A., Young, K.E., and Beachy, P.A. 1996. Cholesterol modification of hedgehog signaling proteins in animal development. Science 274:255–259.

    Article  PubMed  CAS  Google Scholar 

  • Prahl, F.G., Eglinton, G., Corner, E.D.S., O’Hara, S.C.M., and Forsberg, T.E.V. 1984. Changes in plant lipids during passage through the gut of Calanus. J. Mar. Biol. Ass. U. K. 64:317–334.

    Article  CAS  Google Scholar 

  • Raederstorff, D., and Rohmer, M. 1987. Sterol biosynthesis via cycloartenol and other biochemical features related to photosynthetic phyla in the amoebae Naegleria lovaniensis and Naegleria gruberi. Eur. J. Biochem. 164:427–434.

    Article  PubMed  CAS  Google Scholar 

  • Raederstorff, D., and Rohmer, M. 1988. Polyterpenoids as cholesterol and tetrahymanol surrogates in the ciliate Tetrahymena pyriformis. Biochim. Biophys. Acta 960:190–199.

    PubMed  CAS  Google Scholar 

  • Rohmer, M., Knani, M., Simonin, P., Sutter, B., and Sahm, H. 1993. Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem. J. 295:517–524.

    PubMed  CAS  Google Scholar 

  • Schaller, H. 2003. The role of sterols in plant growth and development. Prog. Lipid Res. 42:163–175.

    Article  PubMed  CAS  Google Scholar 

  • Shim, Y.-H., Chun, J.H., Lee, E.-Y., and Paik, Y.-K. 2002. Role of cholesterol in germ-line development of Caenorhabditis elegans. Mol. Reprod. Dev. 61:358–366.

    Article  PubMed  CAS  Google Scholar 

  • Silva, C.J., Wünsche, L., and Djierassi, C. 1991. Biosynthetic studies of marine lipids 35. The demonstration of de novo sterol biosynthesis in sponges using radiolabeled isoprenoid precursors. Comp. Biochem. Physiol. 99B:763–773.

    CAS  Google Scholar 

  • Soudant, P., Le Coz, J.-R., Marty, Y., Moal, J., Robert, R., and Samain, J.-F. 1998. Incorporation of microalgae sterols by scallop Pecten maximus (L.) larvae. Comp. Biochem. Physiol. A. 119:451–457.

    CAS  Google Scholar 

  • Stoecker, D.K., and Capuzzo, J.M. 1990. Predation on Protozoa: its importance to zooplankton. J. Plankton Res. 12:891–908.

    Article  Google Scholar 

  • Summons, R.E., Bradley, A.S., Jahnke, L.L., and Waldbauer, J.R. 2006. Steroids, triterpenoids and molecular oxygen. Phil. Trans. R. Soc. B 361:951–968.

    Article  PubMed  CAS  Google Scholar 

  • Svoboda, J.A., and Thompson, M.J. 1985. Steroids, pp. 137–175. In G.A. Kerkut, and L.I. Gilbert (eds.). Comprehensive insect physiology, biochemistry and pharmacology. Pergamon, New York.

    Google Scholar 

  • Teshima, S.-I. 1971. Bioconversion of β-sitosterol and 24-methylcholesterol to cholesterol in marine crustacea. Comp. Biochem. Physiol. 39B:815–822.

    Google Scholar 

  • Teshima, S.-I. 1991. Sterols of crustaceans, molluscs and fish, pp. 229–256. In G.W. Patterson, and W.D. Nes (eds.), Physiology and biochemistry of sterols. American Oil Chemists’ Society, Champaign, IL.

    Google Scholar 

  • Thompson Jr., G.A. 1996. Lipids and membrane function in green algae. Biochim. Biophys. Acta 1302:17–45.

    PubMed  Google Scholar 

  • Trautwein, E.A., Duchateau, G.S.M.J.E., Lin, Y., Mel’nikov, S., Molhuizen, H.O.F., and Ntanios, F.Y. 2003. Proposed mechanisms of cholesterol-lowering action of plant sterols. Eur. J. Lipid Sci. Technol. 105:171–185.

    Article  CAS  Google Scholar 

  • Trider, D.J., and Castell, J.D. 1980. Effect of dietary lipids on growth tissue composition and metabolism of the oyster (Crassostrea virginica). J. Nutr. 110:1303–1309.

    PubMed  CAS  Google Scholar 

  • Tsitsa-Tzardis, S.E., Patterson, G.W., Wikfors, G.H., Gladu, P.K., and Harrison, D. 1993. Sterols of Chaetoceros and Skeletonema. Lipids 28:465–467.

    Article  CAS  Google Scholar 

  • VanWagtendonk, W.J. 1974. Nutrition of Paramecium, pp. 339–376. In W.J. VanWagtendonk (ed.), Paramecium, a current survey. Elsevier, Amsterdam.

    Google Scholar 

  • Véron, B., Dauguet, J.-C., and Billard, C. 1998. Sterolic biomarkers in marine phytoplankton. II. Free and conjugated sterols of seven species used in mariculture. J. Phycol. 34:273–279.

    Article  Google Scholar 

  • Volkman, J.K. 2003. Sterols in microorganisms. Appl. Microbiol. Biotech. 60:495–506.

    CAS  Google Scholar 

  • Volkman, J.K. 2005. Sterols and other triterpenoids: source specificity and evolution of biosynthetic pathways. Org. Geochem. 36:139–159.

    Article  CAS  Google Scholar 

  • Volkman, J.K., Barrett, S.M., Blackburn, S.I., Mansour, M.P., Sikes, E.L., and Gelin, F. 1998. Microalgal biomarkers: a review of recent research developments. Org. Geochem. 29:1163–1179.

    Article  CAS  Google Scholar 

  • Von Elert, E. 2002. Determination of limiting polyunsaturated fatty acids in Daphnia galeata using a new method to enrich food algae with single fatty acids. Limnol. Oceanogr. 47:1764–1773.

    Article  CAS  Google Scholar 

  • Von Elert, E., Martin-Creuzburg, D., and Le Coz, J.R. 2003. Absence of sterols constrains carbon transfer between cyanobacteria and a freshwater herbivore (Daphnia galeata). Proc. R. Soc. Lond. B Bio. 270:1209–1214.

    Article  CAS  Google Scholar 

  • Voogt, P.A. 1975. Investigations of the capacity of synthesizing 3β-sterols in Mollusca-XIII. Biosynthesis and composition of sterols in some bivalves (Anisomyaria). Comp. Biochem. Physiol. 50B:499–504.

    Google Scholar 

  • Wacker, A., and Martin-Creuzburg, D. 2007. Allocation of essential lipids in Daphnia magna during exposure to poor food quality. Funct. Ecol. 21:738–747.

    Article  Google Scholar 

  • Williams, B.L., Goodwin, T.W., and Ryley, J.F. 1966. The sterols of some protozoa. J. Protozool. 13:227–230.

    PubMed  CAS  Google Scholar 

  • Wright, D.C., Berg, L.R., and Patterson, G.W. 1980. Effect of culture conditions on the sterols and fatty acids of green algae. Phytochemistry 19:783–785.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Martin-Creuzburg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Martin-Creuzburg, D., Elert, E.v. (2009). Ecological significance of sterols in aquatic food webs. In: Kainz, M., Brett, M., Arts, M. (eds) Lipids in Aquatic Ecosystems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89366-2_3

Download citation

Publish with us

Policies and ethics