Skip to main content

Collection, Processing, and Analysis of Three-Dimensional EBSD Data Sets

  • Chapter
  • First Online:
Electron Backscatter Diffraction in Materials Science

Three-dimensional (3D) characterization methods are required to completely determine microstructural descriptors such as the true shape and size of features, the number of features, and the connectivity between these features. Experimental methods to characterize microstructure in 3D have undergone dramatic improvements in the past decade, and there now exists a host of methodologies that are capable of determining 3D microstructural information, ranging from counting individual atoms to imaging macro-scale volumes. The state of the art for this field has been reviewed recently in a Viewpoint Set for Scripta Materialia (Spanos 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barton NR, Dawson PR (2001) A methodology for determining average lattice orientation and its application to the characterization of grain substructure. Metall Trans A 32: 1967–1975

    Google Scholar 

  • Bhandari Y, Sarkar S, Groeber M, Uchic M, Dimiduk D, Ghosh S et al (2007) 3D polycrystalline microstructure reconstruction from FIB generated serial sections for FE analysis. Comp Mater Sci 41:222–235

    Article  CAS  Google Scholar 

  • Brahme A, Alvi MH, Saylor D, Fridy J, Rollett AD et al (2006) 3D reconstruction of microstructure in a commercial purity aluminum. Scr Mater 55:75–80

    Article  CAS  Google Scholar 

  • Budai JD, Yang W, Larson BC, Tischler JZ, Liu W, Weiland H, Ice GE et al (2004) Three-dimensional micron-resolution x-ray laue diffraction measurement of thermal grain-evolution in aluminum. Mater Sci Forum 467–470: 1373–1378

    Article  Google Scholar 

  • Budai JD, Liu W, Tischler JZ, Pan ZW, Norton DP, Larson BC, Yang W, Ice GE et al (2008) Polychromatic x-ray micro- and nanodiffraction for spatially-resolved structural studies. Thin Solid Films 576:8013–8021

    Article  ADS  CAS  Google Scholar 

  • Feltham P (1957) Grain growth in metals. Acta Metall 5:97–105

    Article  CAS  Google Scholar 

  • Groeber MA, Haley B, Uchic MD, Ghosh S et al (2004) Microstructural characterization using 3-D orientation data collected by an automated FIB-EBSD system. In: Ghosh S, Castro J, Lee JK (eds) Proceedings of NUMIFORM 2004, AIP Publishers Melville, New York

    Google Scholar 

  • Groeber MA, Haley BK, Uchic MD, Dimiduk DM, Ghosh S et al (2006) 3D reconstruction and characterization of polycrystalline microstructures using a FIB-SEM system. Mater Charact 57:259–273

    Article  CAS  Google Scholar 

  • Groeber MA, Uchic MD, Dimiduk DM, Ghosh S et al (2008) A framework for automated analysis and simulation of polycrystalline microstructures, part 1: statistical characterization. Acta Mater 56:1257–1273

    Article  CAS  Google Scholar 

  • Hillert M (1965) On the theory of normal and abnormal grain growth. Acta Metall 13:227–238

    Article  CAS  Google Scholar 

  • Humphreys FJ (1999) Quantitative metallography by electron backscattered diffraction. J Microsc 195:170–185

    Article  CAS  PubMed  Google Scholar 

  • Kenney JF, Keeping ES (1947) Mathematics of statistics. Van Nostrand, Princeton, NJ

    MATH  Google Scholar 

  • Kim C-S, Rollett AD, Rohrer GS et al (2006) Grain boundary planes: new dimensions in the grain boundary character distribution. Scr Mater 54:1005–1009

    Article  CAS  Google Scholar 

  • Kral MV, Mangan MA, Spanos G, Rosenberg RO et al (2000) Three-dimensional analysis of microstructures. Mater Charact 45:17–23

    Article  CAS  Google Scholar 

  • Kammer D, Mendoza R, Voorhees PW et al (2006) Cylindrical domain formation in topologically complex structures. Scr Mater 55:17–22

    Article  CAS  Google Scholar 

  • Lund AC, Voorhees PW (2002) The effects of elastic stress on coarsening in the Ni-Al system. Acta Mater 50:2085--2098

    Article  CAS  Google Scholar 

  • Lauridsen EM, Schmidt S, Nielsen SF, Margulies L, Poulsen HF, Juul Jensen D et al (2006) Non-destructive characterization of recrystallization kinetics using three-dimensional x-ray diffraction microscopy. Scr Mater 55:51–56

    Article  CAS  Google Scholar 

  • Lewis AC, Bingert JF, Rowenhorst DJ, Gupta A, Geltmacher AB, Spanos G et al (2006) Two- and three-dimensional microstructural characterization of a super-austenitic stainless steel. Mater Sci Eng A 418:11–18

    Article  CAS  Google Scholar 

  • Li M, Ghosh S, Richmond O, Weiland H, Rouns TN et al (1999) Three dimensional characterization and modeling of particle reinforced metal matrix composites, part 1: quantitative description of microstructure morphology. Mater Sci Eng A A265:153–173

    CAS  Google Scholar 

  • Lienert U, Almer J, Jakobsen B, Pantleon W, Poulsen HF, Hennessey D, Xiao C, Suter RM et al (2007) 3-dimensional characterization of polycrystalline bulk materials using high-energy synchrotron radiation. Mater Sci Forum 539–543:2353–2358

    Article  Google Scholar 

  • Lorenson WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. Comput Graphics 21:163–169

    Article  Google Scholar 

  • Louat NP (1974) On the theory of normal grain growth. Acta Metall 22:721–724

    Article  CAS  Google Scholar 

  • Ralph B, Kurzylowski KJ (1997) The philosophy of microscopic quantification. Mater Charact 38:217–227

    Article  CAS  Google Scholar 

  • Randle V, Hu Y, Rohrer GS, Kim C-S et al (2005) The distribution of misorientations and grain boundary planes in grain boundary engineered brass. Mater Sci Technol 21: 1287–1292

    Article  CAS  Google Scholar 

  • Randle V, Rohrer GS, Hu Y et al (2008a) Five-parameter grain boundary analysis of a titanium alloy before and after low-temperature annealing. Scr Mater 58:183–186

    Article  CAS  Google Scholar 

  • Randle V, Rohrer GS, Miller H, Coleman M, Owen G et al (2008b) Five-parameter grain boundary distribution of commercially grain boundary engineered nickel and copper. Acta Mater 56:2363–2373

    Article  CAS  Google Scholar 

  • Rowenhorst DJ, Gupta A, Feng CR, Spanos G et al (2006) 3D crystallographic and morphological analysis of coarse martensite: combining EBSD and serial sectioning. Scr Mater 55:11–16

    Article  CAS  Google Scholar 

  • Russ JC, DeHoff RT (1986) Practical stereology. Springer, New York

    Google Scholar 

  • Russ JC (1998) The Image processing handbook. CRC Press, Boca Raton, FL

    Google Scholar 

  • Saylor DM, Morawiec A, Cherry KW, Rogan FH, Rohrer GS, Mahadevan S, Casasent D et al (2001) Crystallographic distribution of grain boundaries in magnesium oxide. In: Gottstein G and Molodov DA (eds) Proceedings of the first joint international conference on grain growth. Springer Verlag, Aachen, Germany 449--454

    Google Scholar 

  • Saylor DM, El-Dasher BS, Rollett AD, Rohrer GS et al (2004a) Distribution of grain boundaries in aluminum as a function of five macroscopic parameters. Acta Mater 52:3649–3655

    Article  CAS  Google Scholar 

  • Saylor DM, Fridy J, El-Dasher BS, Jung KY, Rollett AD et al (2004b) Statistically representative three-dimensional microstructures based on orthogonal observation sections. Metall Trans A 35A:1969–1979

    Article  CAS  Google Scholar 

  • Schmidt S, Nielsen SF, Gundlach C, Margulies L, Huang X, Juul Jensen D et al (2004) Watching the growth of bulk grains during recrystallization in deformed metals. Science 305: 229–232

    Article  CAS  PubMed  ADS  Google Scholar 

  • Spanos G (2006) Foreword: scripta materialia viewpoint set on 3D characterization and analysis of materials. Scr Mater 55:3

    Article  CAS  Google Scholar 

  • Wall MA, Schwartz AJ, Nguyen L (2001) A high-resolution serial sectioning specimen preparation technique for application to electron backscatter diffraction. Ultramicroscopy 88:73–83

    Article  Google Scholar 

  • Zaafarani N, Raabe D, Singh RN, Zaefferer S et al (2006) Three-dimensional investigation of the texture and microtexture below a nanoindent in a Cu single crystal using 3D EBSD and crystal plasticity finite element simulations. Acta Mater 54:1863–1876

    Article  CAS  Google Scholar 

  • Zhang C, Suzuki A, Ishimaru T, Enomoto M et al (2004) Characterization of three-dimensional grain structure in polycrystalline iron by serial sectioning. Metall Trans A35A: 1927–1932

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Groeber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Groeber, M.A., Rowenhorst, D.J., Uchic, M.D. (2009). Collection, Processing, and Analysis of Three-Dimensional EBSD Data Sets. In: Schwartz, A., Kumar, M., Adams, B., Field, D. (eds) Electron Backscatter Diffraction in Materials Science. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-88136-2_9

Download citation

Publish with us

Policies and ethics