Skip to main content

Endothelial Apoptosis and Repair in Pulmonary Arterial Hypertension

  • Chapter
  • First Online:
Textbook of Pulmonary Vascular Disease

Abstract

Apoptosis (or programmed cell death) is a mechanism of cellular destruction that is essential for a variety of physiological events, such as tissue sculpturing during develop­ment and the removal of abnormal or damaged cells. However, untimely activation of this process can contribute to the pathogenesis and progression of a variety of human diseases, and pulmonary arterial hypertension is no exception. Recent evidence indicates that endothelial cell (EC) apoptosis is critically involved in the pathophysiological changes in PAH and that increased or decreased levels of apoptosis may contribute to different stages of the disease. The purpose of this chapter is to provide an overview of this rapidly evolving field and try to reconcile some of the apparent conflicts regarding the role of EC apoptosis in the initiation and progression of pulmonary hypertension. Considerable attention has been paid to the role of reduced apoptosis in other vascular cell types, particularly vascular smooth muscle cells (SMCs), which contributes to the massive medial growth and arterial remodeling characteristic of established disease, and this is reviewed in detail in other chapters. In contrast, this chapter will highlight the current concepts and controversies surrounding the role of abnormal EC growth and survival in the pathogenesis of PAH. In particular, the role of endothelial apoptosis as an initiating event in the development of PAH will be reviewed and current concepts pertaining to the emergence of hyperproliferative and ­apoptosis-resistant ECs in later stages of this disease will be discussed. This chapter also attempts to provide a unifying framework reconciling the apparent discrepancies between early apoptosis and EC cell loss which may represent one of the first events in the initiation of PAH, and the angioproliferative lesions that contribute characteristic pathological features of advanced disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Flemming W (1885) Über die Bildung von Richtungsfiguren in Saugethiereiern beim Untergang Graff’scher Follikel. Archive Anatomische Entwicklung Gesch (noe Anatomy and embryology) 221–224

    Google Scholar 

  2. Glücksmann A (1930) Ueber die Bedeutung von Zellvorgangen fur die Formbildung epithelialer Organe. 2. ges. Anat. I. 2. Anat Entw Gesch 93:35

    Article  Google Scholar 

  3. Glücksmann A (1940) Development and differentiation of the tadpole eye. Br J Ophthal 24:153

    Article  Google Scholar 

  4. Glucksmann A (1947) Cell counts in serial biopsies of carcinomata. In Recent Advances in Clinical Pathology, ed. Dyke, S. C. pp. 338–349. Churchill, London

    Google Scholar 

  5. Glücksmann AT, Tansley K (1936) Some effects of gamma radiation on the developing rat retina. Br J Ophthal 20:497

    Article  Google Scholar 

  6. Spear FGG, Glücksmann A (1937) The effect of gamma radiation on cells in vivo. Br J Radiol 11:53

    Google Scholar 

  7. Williams CM (1961) The juvenile hormone. II. Its role in the endocrine control of molting, pupation, and adult development in the Cecropia silkworm. Biol Bull Woods Hole 121:572–585

    Article  Google Scholar 

  8. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  PubMed  CAS  Google Scholar 

  9. O’Rourke MG, Ellem KA (2000) John Kerr and apoptosis. Med J Aust 173:616–617

    PubMed  Google Scholar 

  10. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219

    Article  PubMed  CAS  Google Scholar 

  11. Vannini N, Pfeffer U, Lorusso G, Noonan DM, Albini A (2008) Endothelial cell aging and apoptosis in prevention and disease: E-selectin expression and modulation as a model. Curr Pharm Des 14:221–225

    Article  PubMed  CAS  Google Scholar 

  12. Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9:231–241

    Article  PubMed  CAS  Google Scholar 

  13. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    Article  PubMed  CAS  Google Scholar 

  14. Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308

    Article  PubMed  CAS  Google Scholar 

  15. Li P, Nijhawan D, Budihardjo I et al (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    Article  PubMed  CAS  Google Scholar 

  16. Sperandio S, de Belle I, Bredesen DE (2000) An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci U S A 97:14376–14381

    Article  PubMed  CAS  Google Scholar 

  17. Fishman AP (2004) A century of pulmonary hemodynamics. Am J Respir Crit Care Med 170:109–113

    Article  PubMed  Google Scholar 

  18. Wheeler EC, Brenner ZR (1995) Peripheral vascular anatomy, physiology, and pathophysiology. AACN Clin Issues 6:505–514

    Article  PubMed  CAS  Google Scholar 

  19. Winn RK, Harlan JM (2005) The role of endothelial cell apoptosis in inflammatory and immune diseases. J Thromb Haemost 3:1815–1824

    Article  PubMed  CAS  Google Scholar 

  20. Tuder RM, Cool CD, Geraci MW et al (1999) Prostacyclin synthase expression is decreased in lungs from patients with severe pulmonary hypertension. Am J Respir Crit Care Med 159:1925–1932

    PubMed  CAS  Google Scholar 

  21. Christman BW, McPherson CD, Newman JH et al (1992) An imbalance between the excretion of thromboxane and prostacyclin metabolites in pulmonary hypertension. N Engl J Med 327:70–75

    Article  PubMed  CAS  Google Scholar 

  22. Geraci MW, Gao B, Shepherd DC et al (1999) Pulmonary prostacyclin synthase overexpression in transgenic mice protects against development of hypoxic pulmonary hypertension. J Clin Invest 103:1509–1515

    Article  PubMed  CAS  Google Scholar 

  23. Hoshikawa Y, Voelkel NF, Gesell TL et al (2001) Prostacyclin receptor-dependent modulation of pulmonary vascular remodeling. Am J Respir Crit Care Med 164:314–318

    PubMed  CAS  Google Scholar 

  24. Badesch DB, Orton EC, Zapp LM et al (1989) Decreased arterial wall prostaglandin production in neonatal calves with severe chronic pulmonary hypertension. Am J Respir Cell Mol Biol 1:489–498

    PubMed  CAS  Google Scholar 

  25. Aguilar RV, Farber HW (2000) Epoprostenol (prostacyclin) therapy in HIV-associated pulmonary hypertension. Am J Respir Crit Care Med 162:1846–1850

    PubMed  CAS  Google Scholar 

  26. Barst RJ, McGoon M, McLaughlin V et al (2003) Beraprost therapy for pulmonary arterial hypertension. J Am Coll Cardiol 41:2119–2125

    Article  PubMed  CAS  Google Scholar 

  27. Barst RJ, Rubin LJ, Long WA et al (1996) A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. The Primary Pulmonary Hypertension Study Group. N Engl J Med 334:296–302

    Article  PubMed  CAS  Google Scholar 

  28. Rosenzweig EB, Kerstein D, Barst RJ (1999) Long-term prostacyclin for pulmonary hypertension with associated congenital heart defects. Circulation 99:1858–1865

    PubMed  CAS  Google Scholar 

  29. Szczeklik J, Dubiel JS, Mysik M, Pyzik Z, Krol R, Horzela T (1978) Effects of prostaglandin E1 on pulmonary circulation in patients with pulmonary hypertension. Br Heart J 40:1397–1401

    Article  PubMed  CAS  Google Scholar 

  30. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    Article  PubMed  CAS  Google Scholar 

  31. Fagan KA, Fouty BW, Tyler RC et al (1999) The pulmonary circulation of homozygous or heterozygous eNOS-null mice is hyperresponsive to mild hypoxia. J Clin Invest 103:291–299

    Article  PubMed  CAS  Google Scholar 

  32. Adnot S, Raffestin B, Eddahibi S (1995) NO in the lung. Respir Physiol 101:109–120

    Article  PubMed  CAS  Google Scholar 

  33. Giaid A, Saleh D (1995) Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med 333:214–221

    Article  PubMed  CAS  Google Scholar 

  34. Mason NA, Springall DR, Burke M et al (1998) High expression of endothelial nitric oxide synthase in plexiform lesions of pulmonary hypertension. J Pathol 185:313–318

    Article  PubMed  CAS  Google Scholar 

  35. Balfour-Lynn IM, Laverty A, Dinwiddie R (1996) Reduced upper airway nitric oxide in cystic fibrosis. Arch Dis Child 75:319–322

    Article  PubMed  CAS  Google Scholar 

  36. Kaneko FT, Arroliga AC, Dweik RA et al (1998) Biochemical reaction products of nitric oxide as quantitative markers of primary pulmonary hypertension. Am J Respir Crit Care Med 158:917–923

    PubMed  CAS  Google Scholar 

  37. Channick RN, Newhart JW, Johnson FW et al (1996) Pulsed delivery of inhaled nitric oxide to patients with primary pulmonary hypertension: an ambulatory delivery system and initial clinical tests. Chest 109:1545–1549

    Article  PubMed  CAS  Google Scholar 

  38. Hoeper MM, Schwarze M, Ehlerding S et al (2000) Long-term treatment of primary pulmonary hypertension with aerosolized iloprost, a prostacyclin analogue. N Engl J Med 342:1866–1870

    Article  PubMed  CAS  Google Scholar 

  39. Yanagisawa M, Kurihara H, Kimura S et al (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411–415

    Article  PubMed  CAS  Google Scholar 

  40. Vanhoutte PM, Tang EH (2008) Endothelium-dependent contractions: when a good guy turns bad! J Physiol 586:5295–5304

    Article  PubMed  CAS  Google Scholar 

  41. Humbert M, Montani D, Perros F, Dorfmuller P, Adnot S, Eddahibi S (2008) Endothelial cell dysfunction and cross talk between endothelium and smooth muscle cells in pulmonary arterial hypertension. Vascul Pharmacol 49:113–118

    Article  PubMed  CAS  Google Scholar 

  42. Bohm F, Pernow J (2007) The importance of endothelin-1 for vascular dysfunction in cardiovascular disease. Cardiovasc Res 76:8–18

    Article  PubMed  CAS  Google Scholar 

  43. Coe Y, Haleen SJ, Welch KM, Coceani F (2000) The endothelin-A-receptor antagonist PD 180988 (CI-1034) selectively reverses the pulmonary vasoconstrictor response to hypoxia in the lamb. J Cardiovasc Pharmacol 36:S331–S333

    PubMed  CAS  Google Scholar 

  44. Dupuis J, Prie S (1999) The ETA-receptor antagonist LU 135252 prevents the progression of established pulmonary hypertension induced by monocrotaline in rats. J Cardiovasc Pharmacol Ther 4:33–39

    Article  PubMed  CAS  Google Scholar 

  45. Kim H, Yung GL, Marsh JJ et al (2000) Endothelin mediates pulmonary vascular remodelling in a canine model of chronic embolic pulmonary hypertension. Eur Respir J 15:640–648

    Article  PubMed  CAS  Google Scholar 

  46. Stewart DJ, Levy RD, Cernacek P, Langleben D (1991) Increased plasma endothelin-1 in pulmonary hypertension: marker or mediator of disease? Ann Intern Med 114:464–469

    PubMed  CAS  Google Scholar 

  47. Giaid A, Yanagisawa M, Langleben D et al (1993) Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N Engl J Med 328:1732–1739

    Article  PubMed  CAS  Google Scholar 

  48. Sitbon O, McLaughlin VV, Badesch DB et al (2005) Survival in patients with class III idiopathic pulmonary arterial hypertension treated with first line oral bosentan compared with an historical cohort of patients started on intravenous epoprostenol. Thorax 60:1025–1030

    Article  PubMed  CAS  Google Scholar 

  49. Channick R, Badesch DB, Tapson VF et al (2001) Effects of the dual endothelin receptor antagonist bosentan in patients with pulmonary hypertension: a placebo-controlled study. J Heart Lung Transplant 20:262–263

    Article  PubMed  Google Scholar 

  50. Givertz MM, Colucci WS, LeJemtel TH et al (2000) Acute endothelin A receptor blockade causes selective pulmonary vasodilation in patients with chronic heart failure. Circulation 101:2922–2927

    PubMed  CAS  Google Scholar 

  51. Barst RJ, Langleben D, Badesch D et al (2006) Treatment of pulmonary arterial hypertension with the selective endothelin-A receptor antagonist sitaxsentan. J Am Coll Cardiol 47:2049–2056

    Article  PubMed  CAS  Google Scholar 

  52. Galie N, Badesch D, Oudiz R et al (2005) Ambrisentan therapy for pulmonary arterial hypertension. J Am Coll Cardiol 46:529–535

    Article  PubMed  CAS  Google Scholar 

  53. Loyd JE, Primm RK, Newman JH (1984) Familial primary pulmonary hypertension: clinical patterns. Am Rev Respir Dis 129:194–197

    PubMed  CAS  Google Scholar 

  54. Nichols WC, Koller DL, Slovis B et al (1997) Localization of the gene for familial primary pulmonary hypertension to chromosome 2q31-32. Nat Genet 15:277–280

    Article  PubMed  CAS  Google Scholar 

  55. Deng Z, Haghighi F, Helleby L et al (2000) Fine mapping of PPH1, a gene for familial primary pulmonary hypertension, to a 3-cM region on chromosome 2q33. Am J Respir Crit Care Med 161:1055–1059

    PubMed  CAS  Google Scholar 

  56. Lane KB, Machado RD, Pauciulo MW et al (2000) Heterozygous germline mutations in BMPR2, encoding a TGF-β receptor, cause familial primary pulmonary hypertension. Endothelium-dependent contractions: when a good guy turns bad. The International PPH Consortium. Nat Genet 26:81–84

    Article  PubMed  CAS  Google Scholar 

  57. Morrell NW (2006) Pulmonary hypertension due to BMPR2 mutation: a new paradigm for tissue remodeling? Proc Am Thorac Soc 3:680–686

    Article  PubMed  CAS  Google Scholar 

  58. Davies RJ, Morrell NW (2008) Molecular mechanisms of pulmonary arterial hypertension: role of mutations in the bone morphogenetic protein type II receptor. Chest 134:1271–1277

    Article  PubMed  CAS  Google Scholar 

  59. Deng Z, Morse JH, Slager SL et al (2000) Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am J Hum Genet 67:737–744

    Article  PubMed  CAS  Google Scholar 

  60. Rudarakanchana N, Flanagan JA, Chen H et al (2002) Functional analysis of bone morphogenetic protein type II receptor mutations underlying primary pulmonary hypertension. Hum Mol Genet 11:1517–1525

    Article  PubMed  CAS  Google Scholar 

  61. Gaussin V, Van de Putte T, Mishina Y et al (2002) Endocardial cushion and myocardial defects after cardiac myocyte-specific conditional deletion of the bone morphogenetic protein receptor ALK3. Proc Natl Acad Sci U S A 99:2878–2883

    Article  PubMed  CAS  Google Scholar 

  62. Kaneko H, Arakawa T, Mano H et al (2000) Direct stimulation of osteoclastic bone resorption by bone morphogenetic protein (BMP)-2 and expression of BMP receptors in mature osteoclasts. Bone 27:479–486

    Article  PubMed  CAS  Google Scholar 

  63. Abe E, Yamamoto M, Taguchi Y et al (2000) Essential requirement of BMPs-2/4 for both osteoblast and osteoclast formation in murine bone marrow cultures from adult mice: antagonism by noggin. J Bone Miner Res 15:663–673

    Article  PubMed  CAS  Google Scholar 

  64. Chen D, Zhao M, Mundy GR (2004) Bone morphogenetic proteins. Growth Factors 22:233–241

    Article  PubMed  CAS  Google Scholar 

  65. Atkinson C, Stewart S, Upton PD et al (2002) Primary pulmonary hypertension is associated with reduced pulmonary vascular expression of type II bone morphogenetic protein receptor. Circulation 105:1672–1678

    Article  PubMed  CAS  Google Scholar 

  66. Miyazono K, Maeda S, Imamura T (2005) BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev 16:251–263

    Article  PubMed  CAS  Google Scholar 

  67. Yamamura Y, Hua X, Bergelson S, Lodish HF (2000) Critical role of Smads and AP-1 complex in transforming growth factor-β-dependent apoptosis. J Biol Chem 275:36295–36302

    Article  PubMed  CAS  Google Scholar 

  68. Beppu H, Kawabata M, Hamamoto T et al (2000) BMP type II receptor is required for gastrulation and early development of mouse embryos. Dev Biol 221:249–258

    Article  PubMed  CAS  Google Scholar 

  69. Zhang S, Fantozzi I, Tigno DD et al (2003) Bone morphogenetic proteins induce apoptosis in human pulmonary vascular smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 285:L740–L754

    PubMed  CAS  Google Scholar 

  70. Morrell NW, Yang X, Upton PD et al (2001) Altered growth responses of pulmonary artery smooth muscle cells from patients with primary pulmonary hypertension to transforming growth factor-β1 and bone morphogenetic proteins. Circulation 104:790–795

    Article  PubMed  CAS  Google Scholar 

  71. Yang X, Long L, Southwood M et al (2005) Dysfunctional Smad signaling contributes to abnormal smooth muscle cell proliferation in familial pulmonary arterial hypertension. Circ Res 96:1053–1063

    Article  PubMed  CAS  Google Scholar 

  72. Yang J, Davies RJ, Southwood M et al (2008) Mutations in bone morphogenetic protein type II receptor cause dysregulation of Id gene expression in pulmonary artery smooth muscle cells: implications for familial pulmonary arterial hypertension. Circ Res 102:1212–1221

    Article  PubMed  CAS  Google Scholar 

  73. Teichert-Kuliszewska K, Kutryk MJ, Kuliszewski MA et al (2006) Bone morphogenetic protein receptor-2 signaling promotes pulmonary arterial endothelial cell survival: implications for loss-of-function mutations in the pathogenesis of pulmonary hypertension. Circ Res 98:209–217

    Article  PubMed  CAS  Google Scholar 

  74. Valdimarsdottir G, Goumans MJ, Rosendahl A et al (2002) Stimulation of Id1 expression by bone morphogenetic protein is sufficient and necessary for bone morphogenetic protein-induced activation of endothelial cells. Circulation 106:2263–2270

    Article  PubMed  CAS  Google Scholar 

  75. Southwood M, Jeffery TK, Yang X et al (2008) Regulation of bone morphogenetic protein signalling in human pulmonary vascular development. J Pathol 214:85–95

    Article  PubMed  CAS  Google Scholar 

  76. Taraseviciene-Stewart L, Kasahara Y, Alger L et al (2001) Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension. FASEB J 15:427–438

    Article  PubMed  CAS  Google Scholar 

  77. Kido M, Du L, Sullivan CC, Deutsch R, Jamieson SW, Thistlethwaite PA (2005) Gene transfer of a TIE2 receptor antagonist prevents pulmonary hypertension in rodents. J Thorac Cardiovasc Surg 129:268–276

    Article  PubMed  CAS  Google Scholar 

  78. Austin ED, Loyd JE (2007) Genetics and mediators in pulmonary arterial hypertension. Clin Chest Med 28:43–57

    Article  PubMed  Google Scholar 

  79. Beppu H, Ichinose F, Kawai N et al (2004) BMPR-II heterozygous mice have mild pulmonary hypertension and an impaired pulmonary vascular remodeling response to prolonged hypoxia. Am J Physiol Lung Cell Mol Physiol 287:L1241–L1247

    Article  PubMed  CAS  Google Scholar 

  80. Long L, MacLean MR, Jeffery TK et al (2006) Serotonin increases susceptibility to pulmonary hypertension in BMPR2-deficient mice. Circ Res 98:818–827

    Article  PubMed  CAS  Google Scholar 

  81. Song Y, Jones JE, Beppu H, Keaney JF Jr, Loscalzo J, Zhang YY (2005) Increased susceptibility to pulmonary hypertension in heterozygous BMPR2-mutant mice. Circulation 112:553–562

    Article  PubMed  CAS  Google Scholar 

  82. Cool CD, Stewart JS, Werahera P et al (1999) Three-dimensional reconstruction of pulmonary arteries in plexiform pulmonary hypertension using cell-specific markers. Evidence for a dynamic and heterogeneous process of pulmonary endothelial cell growth. Am J Pathol 155:411–419

    Article  PubMed  CAS  Google Scholar 

  83. Jamison BM, Michel RP (1995) Different distribution of plexiform lesions in primary and secondary pulmonary hypertension. Hum Pathol 26:987–993

    Article  PubMed  CAS  Google Scholar 

  84. Yamaki S, Wagenvoort CA (1981) Plexogenic pulmonary arteriopathy: significance of medial thickness with respect to advanced pulmonary vascular lesions. Am J Pathol 105:70–75

    PubMed  CAS  Google Scholar 

  85. Masri FA, Xu W, Comhair SA et al (2007) Hyperproliferative apoptosis-resistant endothelial cells in idiopathic pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 293:L548–L554

    Article  PubMed  CAS  Google Scholar 

  86. Tuder RM, Flook BE, Voelkel NF (1995) Increased gene expression for VEGF and the VEGF receptors KDR/Flk and Flt in lungs exposed to acute or to chronic hypoxia. Modulation of gene expression by nitric oxide. J Clin Invest 95:1798–1807

    Article  PubMed  CAS  Google Scholar 

  87. Christou H, Yoshida A, Arthur V, Morita T, Kourembanas S (1998) Increased vascular endothelial growth factor production in the lungs of rats with hypoxia-induced pulmonary hypertension. Am J Respir Cell Mol Biol 18:768–776

    PubMed  CAS  Google Scholar 

  88. Tuder RM, Cool CD, Yeager M, Taraseviciene-Stewart L, Bull TM, Voelkel NF (2001) The pathobiology of pulmonary hypertension. Endothelium Clin Chest Med 22:405–418

    Article  CAS  Google Scholar 

  89. Geiger R, Berger RM, Hess J, Bogers AJ, Sharma HS, Mooi WJ (2000) Enhanced expression of vascular endothelial growth factor in pulmonary plexogenic arteriopathy due to congenital heart disease. J Pathol 191:202–207

    Article  PubMed  CAS  Google Scholar 

  90. Yeager ME, Halley GR, Golpon HA, Voelkel NF, Tuder RM (2001) Microsatellite instability of endothelial cell growth and apoptosis genes within plexiform lesions in primary pulmonary hypertension. Circ Res 88:E2–E11

    PubMed  CAS  Google Scholar 

  91. Campbell AI, Zhao Y, Sandhu R, Stewart DJ (2001) Cell-based gene transfer of vascular endothelial growth factor attenuates monocrotaline-induced pulmonary hypertension. Circulation 104:2242–2248

    Article  PubMed  CAS  Google Scholar 

  92. Partovian C, Adnot S, Raffestin B et al (2000) Adenovirus-mediated lung vascular endothelial growth factor overexpression protects against hypoxic pulmonary hypertension in rats. Am J Respir Cell Mol Biol 23:762–771

    PubMed  CAS  Google Scholar 

  93. Zhao YD, Campbell AI, Robb M, Ng D, Stewart DJ (2003) Protective role of angiopoietin-1 in experimental pulmonary hypertension. Circ Res 92:984–991

    Article  PubMed  CAS  Google Scholar 

  94. Kugathasan L, Dutly AE, Zhao YD et al (2005) Role of angiopoietin-1 in experimental and human pulmonary arterial hypertension. Chest 128:633S–642S

    Article  PubMed  CAS  Google Scholar 

  95. Kugathasan L, Ray JB, Deng Y, Rezaei E, Dumont DJ, Stewart DJ (2009) The angiopietin-1-Tie2 pathway prevents rather than promotes pulmonary arterial hypertension in transgenic mice. J Exp Med 206:2221–2234

    Article  PubMed  CAS  Google Scholar 

  96. Dewachter L, Adnot S, Fadel E et al (2006) Angiopoietin/Tie2 pathway influences smooth muscle hyperplasia in idiopathic pulmonary hypertension. Am J Respir Crit Care Med 174:1025–1033

    Article  PubMed  CAS  Google Scholar 

  97. Du L, Sullivan CC, Chu D et al (2003) Signaling molecules in nonfamilial pulmonary hypertension. N Engl J Med 348:500–509

    Article  PubMed  CAS  Google Scholar 

  98. Sullivan CC, Du L, Chu D et al (2003) Induction of pulmonary hypertension by an angiopoietin 1/TIE2/serotonin pathway. Proc Natl Acad Sci U S A 100:12331–12336

    Article  PubMed  CAS  Google Scholar 

  99. Golpon HA, Fadok VA, Taraseviciene-Stewart L et al (2004) Life after corpse engulfment: phagocytosis of apoptotic cells leads to VEGF secretion and cell growth. FASEB J 18:1716–1718

    PubMed  CAS  Google Scholar 

  100. Sakao S, Taraseviciene-Stewart L, Lee JD, Wood K, Cool CD, Voelkel NF (2005) Initial apoptosis is followed by increased ­proliferation of apoptosis-resistant endothelial cells. FASEB J 19:1178–1180

    PubMed  CAS  Google Scholar 

  101. Sakao S, Taraseviciene-Stewart L, Lee JD, Wood K, Cool CD, Voelkel NF (2005) Vascular endothelial growth factor receptor blockade by SU5416 combined with pulsatile shear stress causes apoptosis and subsequent proliferation of apoptosis-resistant endothelial cells. Chest 128:610S–611S

    Article  Google Scholar 

  102. Ingram DA, Caplice NM, Yoder MC (2005) Unresolved questions, changing definitions, and novel paradigms for defining endothelial progenitor cells. Blood 106:1525–1531

    Article  PubMed  CAS  Google Scholar 

  103. Ingram DA, Mead LE, Moore DB, Woodard W, Fenoglio A, Yoder MC (2005) Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood 105:2783–2786

    Article  PubMed  CAS  Google Scholar 

  104. Hur J, Yoon CH, Kim HS et al (2004) Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol 24:288–293

    Article  PubMed  CAS  Google Scholar 

  105. Ingram DA, Mead LE, Tanaka H et al (2004) Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104:2752–2760

    Article  PubMed  CAS  Google Scholar 

  106. Schechner JS, Nath AK, Zheng L et al (2000) In vivo formation of complex microvessels lined by human endothelial cells in an immunodeficient mouse. Proc Natl Acad Sci U S A 97:9191–9196

    Article  PubMed  CAS  Google Scholar 

  107. Yoder MC, Mead LE, Prater D et al (2007) Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109:1801–1809

    Article  PubMed  CAS  Google Scholar 

  108. King J, Hamil T, Creighton J et al (2004) Structural and functional characteristics of lung macro- and microvascular endothelial cell phenotypes. Microvasc Res 67:139–151

    Article  PubMed  CAS  Google Scholar 

  109. Stump MM, Jordan GL Jr, Debakey ME, Halpert B (1963) Endothelium grown from circulating blood on isolated intravascular dacron hub. Am J Pathol 43:361–367

    PubMed  CAS  Google Scholar 

  110. Asahara T, Murohara T, Sullivan A et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  PubMed  CAS  Google Scholar 

  111. Warburton D, Perin L, Defilippo R, Bellusci S, Shi W, Driscoll B (2008) Stem/progenitor cells in lung development, injury repair, and regeneration. Proc Am Thorac Soc 5:703–706

    Article  PubMed  Google Scholar 

  112. Kovacic JC, Moore J, Herbert A, Ma D, Boehm M, Graham RM (2008) Endothelial progenitor cells, angioblasts, and angiogenesis - old terms reconsidered from a current perspective. Trends Cardiovasc Med 18:45–51

    Article  PubMed  CAS  Google Scholar 

  113. Gehling UM, Ergun S, Schumacher U et al (2000) In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood 95:3106–3112

    PubMed  CAS  Google Scholar 

  114. Peichev M, Naiyer AJ, Pereira D et al (2000) Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood 95:952–958

    PubMed  CAS  Google Scholar 

  115. Prater DN, Case J, Ingram DA, Yoder MC (2007) Working hypothesis to redefine endothelial progenitor cells. Leukemia 21:1141–1149

    Article  PubMed  CAS  Google Scholar 

  116. Hristov M, Weber C (2004) Endothelial progenitor cells: characterization, pathophysiology, and possible clinical relevance. J Cell Mol Med 8:498–508

    Article  PubMed  Google Scholar 

  117. Gulati R, Jevremovic D, Peterson TE et al (2003) Diverse origin and function of cells with endothelial phenotype obtained from adult human blood. Circ Res 93:1023–1025

    Article  PubMed  CAS  Google Scholar 

  118. Zhao YD, Courtman DW, Deng Y, Kugathasan L, Zhang Q, Stewart DJ (2005) Rescue of monocrotaline-induced pulmonary arterial hypertension using bone marrow-derived endothelial-like progenitor cells: efficacy of combined cell and eNOS gene therapy in established disease. Circ Res 96:442–450

    Article  PubMed  CAS  Google Scholar 

  119. Michelakis ED, Webster L, Mackey JR (2008) Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br J Cancer 99:989–994

    Article  PubMed  CAS  Google Scholar 

  120. McMurtry MS, Bonnet S, Wu X et al (2004) Dichloroacetate ­prevents and reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis. Circ Res 95:830–840

    Article  PubMed  CAS  Google Scholar 

  121. Barst RJ (2005) PDGF signaling in pulmonary arterial hypertension. J Clin Invest 115:2691–2694

    Article  PubMed  CAS  Google Scholar 

  122. Kerkela R, Grazette L, Yacobi R et al (2006) Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat Med 12:908–916

    Article  PubMed  CAS  Google Scholar 

  123. Klein M, Schermuly RT, Ellinghaus P et al (2008) Combined tyrosine and serine/threonine kinase inhibition by sorafenib prevents progression of experimental pulmonary hypertension and myocardial remodeling. Circulation 118:2081–2090

    Article  PubMed  CAS  Google Scholar 

  124. Moreno-Vinasco L, Gomberg-Maitland M, Maitland ML et al (2008) Genomic assessment of a multikinase inhibitor, sorafenib, in a rodent model of pulmonary hypertension. Physiol Genomics 33:278–291

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duncan J. Stewart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Moudgil, R., Lalu, M.M., Stewart, D.J. (2011). Endothelial Apoptosis and Repair in Pulmonary Arterial Hypertension. In: Yuan, JJ., Garcia, J., West, J., Hales, C., Rich, S., Archer, S. (eds) Textbook of Pulmonary Vascular Disease. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-87429-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-87429-6_28

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-87428-9

  • Online ISBN: 978-0-387-87429-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics