Skip to main content

Natural and Synthetic Polymeric Scaffolds

  • Chapter
  • First Online:
Biomedical Materials

Clinical therapies have increasingly incorporated polymers as the basis for biomaterials. Polymers are natural or synthetic long chain molecules that are formed by linking repetitive monomer units. In the tissue engineering field, polymeric scaffolds have been widely investigated. A scaffold acts as a temporary support matrix for various cell populations in order to achieve tissue repair or regeneration. Clearly, polymer properties and scaffold design greatly impacts the function of incorporated cells as well as the host tissue. Here we discuss several properties, including scaffold fabrication, assembly, structure, biocompatibility, biodegradability and mechanical properties, which must be considered in order to achieve successful tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee KY and Mooney DJ. Hydrogels for tissue engineering. Chem Rev, 2001a, 101(7): 1869–1879.

    Article  Google Scholar 

  2. Vinall RL, Lo SH, and Reddi AH. Regulation of articular chondrocyte phenotype by bone morphogenetic protein 7, interleukin 1, and cellular context is dependent on the cytoskeleton. Exp Cell Res, 2002, 272(1):32–44.

    Article  Google Scholar 

  3. Hung CT, Lima EG, Mauck RL, Taki E, LeRoux MA, Lu HH, et al. Anatomically shaped osteochondral constructs for articular cartilage repair. J Biomech, 2003, 36(12):1853–1864.

    Article  Google Scholar 

  4. Rahfoth B, Weisser J, Sternkopf F, Aigner T, von der Mark K, and Brauer R. Transplantation of allograft chondrocytes embedded in agarose gel into cartilage defects of rabbits. Osteoarthr Cartil, 1998, 6(1):50–65.

    Article  Google Scholar 

  5. Seal BL, Otero TC, and Panitch A. Polymeric biomaterials for tissue and organ regeneration. Mater Sci Eng R Rep, 2001, 34(4–5):147–230.

    Article  Google Scholar 

  6. Dillon GP, Yu X, Sridharan A, Ranieri JP, and Bellamkonda RV. The influence of physical structure and charge on neurite extension in a 3D hydrogel scaffold. J Biomater Sci Polym Ed, 1998, 9(10):1049–1069.

    Article  Google Scholar 

  7. Wang L, Shelton RM, Cooper PR, Lawson M, Triffitt JT, and Barralet JE. Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials, 2003, 24(20): 3475–3481.

    Article  Google Scholar 

  8. Davis TA, Volesky B, and Mucci A. A review of the biochemistry of heavy metal biosorption by brown algae. Water Res, 2003, 37(18):4311–4330.

    Article  Google Scholar 

  9. Rowley JA, Madlambayan G, and Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials, 1999, 20(1):45–53.

    Article  Google Scholar 

  10. Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev, 2002, 54(1): 3–12.

    Article  Google Scholar 

  11. Shapiro L and Cohen S. Novel alginate sponges for cell culture and transplantation. Biomaterials, 1997, 18(8): 583–590.

    Article  Google Scholar 

  12. Guo JF, Jourdian GW, and MacCallum DK. Culture and growth characteristics of chondrocytes encapsulated in alginate beads. Connect Tissue Res, 1989, 19(2–4):277–297.

    Article  Google Scholar 

  13. Pariente JL, Kim BS, and Atala A. In vitro biocompatibility evaluation of naturally derived and synthetic biomaterials using normal human bladder smooth muscle cells. J Urol, 2002, 167(4):1867–1871.

    Article  Google Scholar 

  14. Shimizu T, Yamato M, Kikuchi A, and Okano T. Cell sheet engineering for myocardial tissue reconstruction. Biomaterials, 2003, 24(13):2309–2316.

    Article  Google Scholar 

  15. Liu H, Lee YW, and Dean MF. Re-expression of differentiated proteoglycan phenotype by dedifferentiated human chondrocytes during culture in alginate beads. Biochim Biophys Acta, 1998, 1425(3):505–515.

    Google Scholar 

  16. Glicklis R, Shapiro L, Agbaria R, Merchuk JC, and Cohen S. Hepatocyte behavior within three-dimensional porous alginate scaffolds. Biotechnol Bioeng, 2000, 67(3):344–353.

    Article  Google Scholar 

  17. Mosahebi A, Simon M, Wiberg M, and Terenghi G. A novel use of alginate hydrogel as Schwann cell matrix. Tissue Eng, 2001, 7(5):525–534.

    Article  Google Scholar 

  18. Leach JB, Bivens KA, Patrick CW, and Schmidt CE. Photocrosslinked hyaluronic acid hydrogels: Natural, biodegradable tissue engineering scaffolds. Biotechnol Bioeng, 2003, 82(5):578–589.

    Article  Google Scholar 

  19. Hayashi T. Biodegradable polymers for biomedical uses. Prog Polym Sci, 1994, 19(4): 663–702.

    Article  Google Scholar 

  20. Aigner J, Tegeler J, Hutzler P, Campoccia D, Pavesio A, Hammer C, et al. Cartilage tissue engineering with novel nonwoven structured biomaterial based on hyaluronic acid benzyl ester. J Biomed Mater Res, 1998, 42(2):172–181.

    Article  Google Scholar 

  21. Halbleib M, Skurk T, de Luca C, von Heimburg D, and Hauner H. Tissue engineering of white adipose tissue using hyaluronic acid-based scaffolds. I: in vitro differentiation of human adipocyte precursor cells on scaffolds. Biomaterials, 2003, 24(18):3125–3132.

    Article  Google Scholar 

  22. VandeVord PJ, Matthew HWT, DeSilva SP, Mayton L, Wu B, and Wooley PH. Evaluation of the biocompatibility of a chitosan scaffold in mice. J Biomed Mater Res, 2002, 59(3): 585–590.

    Article  Google Scholar 

  23. Suh JKF and Matthew HWT. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials, 2000, 21(24):2589–2598.

    Article  Google Scholar 

  24. Li J, Pan J, Zhang L, Guo X, and Yu Y. Culture of primary rat hepatocytes within porous chitosan scaffolds. J Biomed Mater Res, 2003, 67A(3):938–943.

    Article  Google Scholar 

  25. Kawase M, Michibayashi N, Nakashima Y, Kurikawa N, Yagi K, and Mizoguchi T. Application of glutaraldehyde-crosslinked chitosan as a scaffold for hepatocyte attachment. Biol Pharm Bull, 1997, 20(6):708–710.

    Google Scholar 

  26. Seol YJ, Lee JY, Park YJ, Lee YM, Ku Y, Rhyu IC, et al. Chitosan sponges as tissue engineering scaffolds for bone formation. Biotechnol Lett, 2004, 26(13):1037–1041.

    Article  Google Scholar 

  27. Nettles DL, Elder SH, and Gilbert JA. Potential use of chitosan as a cell scaffold material for cartilage tissue engineering. Tissue Eng, 2002, 8(6):1009–1016.

    Article  Google Scholar 

  28. Lee CH, Singla A, and Lee Y. Biomedical applications of collagen. Int J Pharm, 2001b, 221(1–2):1–22.

    Article  Google Scholar 

  29. Drury JL and Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials, 2003, 24(24):4337–4351.

    Article  Google Scholar 

  30. Ma L, Gao C, Mao Z, Shen J, Hu X, and Han C. Thermal dehydration treatment and glutaraldehyde cross-linking to increase the biostability of collagen-chitosan porous scaffolds used as dermal equivalent. J Biomater Sci Polym Ed, 2003, 14(8):861–874.

    Article  Google Scholar 

  31. Langer R and Vacanti JP. Tissue engineering. Science, 1993, 260(5110):920–926.

    Article  Google Scholar 

  32. Falanga V, Margolis D, Alvarez O, Auletta M, Maggiacomo F, Altman M, et al. Rapid healing of venous ulcers and lack of clinical rejection with an allogeneic cultured human skin equivalent. Human Skin Equivalent Investigators Group. Arch Dermatol, 1998, 134(3): 293–300.

    Article  Google Scholar 

  33. Noah EM, Chen J, Jiao X, Heschel I, and Pallua N. Impact of sterilization on the porous design and cell behavior in collagen sponges prepared for tissue engineering. Biomaterials, 2002, 23(14):2855–2861.

    Article  Google Scholar 

  34. Nehrer S, Breinan HA, Ramappa A, Hsu HP, Minas T, Shortkroff S, et al. Chondrocyte-seeded collagen matrices implanted in a chondral defect in a canine model. Biomaterials, 1998, 19(24):2313–2328.

    Article  Google Scholar 

  35. Risbud MV, Karamuk E, Schlosser V, and Mayer J. Hydrogel-coated textile scaffolds as candidate in liver tissue engineering: II. Evaluation of spheroid formation and viability of hepatocytes. J Biomater Sci-Polym Ed, 2003, 14(7):719–731.

    Article  Google Scholar 

  36. Orwin EJ and Hubel A. In vitro culture characteristics of corneal epithelial, endothelial, and keratocyte cells in a native collagen matrix. Tissue Eng, 2000, 6(4):307–319.

    Article  Google Scholar 

  37. Payne RG, Yaszemski MJ, Yasko AW, and Mikos AG. Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 1. Encapsulation of marrow stromal osteoblasts in surface crosslinked gelatin microparticles. Biomaterials, 2002, 23(22):4359–4371.

    Article  Google Scholar 

  38. Awad HA, Wickham MQ, Leddy HA, Gimble JM, and Guilak F. Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials, 2004, 25(16):3211–3222.

    Article  Google Scholar 

  39. Risbud M, Endres M, Ringe J, Bhonde R, and Sittinger M. Biocompatible hydrogel supports the growth of respiratory epithelial cells: possibilities in tracheal tissue engineering. J Biomed Mater Res, 2001, 56(1):120–127.

    Article  Google Scholar 

  40. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, et al. Silk-based biomaterials. Biomaterials, 2003, 24(3):401–416.

    Article  Google Scholar 

  41. Minoura N, Aiba S, Gotoh Y, Tsukada M, and Imai Y. Attachment and growth of cultured fibroblast cells on silk protein matrices. J Biomed Mater Res, 1995, 29(10):1215–1221.

    Article  Google Scholar 

  42. Sofia S, McCarthy MB, Gronowicz G, and Kaplan DL. Functionalized silk-based biomaterials for bone formation. J Biomed Mater Res, 2001, 54(1):139–148.

    Article  Google Scholar 

  43. Middleton JC and Tipton AJ. Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 2000, 21(23):2335–2346.

    Article  Google Scholar 

  44. Thomson RC, Wake MC, Yaszemski MJ, and Mikos AG. Biodegradable polymer scaffolds to regenerate organs. Biopolymers II, 1995,122:245–274.

    Google Scholar 

  45. Gunatillake PA and Adhikari R. Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater, 2003,5:1–16; discussion 16.

    Google Scholar 

  46. Yang S, Leong KF, Du Z, and Chua CK. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng, 2001, 7(6):679–689.

    Article  Google Scholar 

  47. Freed LE, Marquis JC, Nohria A, Emmanual J, Mikos AG, and Langer R. Neocartilage formation invitro and invivo using cells cultured on synthetic biodegradable polymers. J Biomed Mater Res, 1993, 27(1):11–23.

    Article  Google Scholar 

  48. Shinoka T, Ma PX, Shum-Tim D, Breuer CK, Cusick RA, Zund G, et al. Tissue-engineered heart valves. Autologous valve leaflet replacement study in a lamb model. Circulation, 1996, 94(9) Suppl II:164–168.

    Google Scholar 

  49. Kaihara S, Kim S, Kim BS, Mooney DJ, Tanaka K, and Vacanti JP. Survival and function of rat hepatocytes cocultured with nonparenchymal cells or sinusoidal endothelial cells on biodegradable polymers under flow conditions. J Pediatr Surg, 2000, 35(9):1287–1290.

    Article  Google Scholar 

  50. Mooney DJ, Mazzoni CL, Breuer C, McNamara K, Hern D, Vacanti JP, et al. Stabilized polyglycolic acid fibre-based tubes for tissue engineering. Biomaterials, 1996a, 17(2): 115–124.

    Article  Google Scholar 

  51. Agrawal CM and Ray RB. Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res, 2001, 55(2):141–150.

    Article  Google Scholar 

  52. Ishaug-Riley SL, Okun LE, Prado G, Applegate MA, and Ratcliffe A. Human articular chondrocyte adhesion and proliferation on synthetic biodegradable polymer films. Biomaterials, 1999, 20(23–24):2245–56.

    Article  Google Scholar 

  53. Park SS, Jin HR, Chi DH, and Taylor RS. Characteristics of tissue-engineered cartilage from human auricular chondrocytes. Biomaterials, 2004, 25(12):2363–2369.

    Article  Google Scholar 

  54. Yang F, Murugan R, Ramakrishna S, Wang X, Ma YX, and Wang S. Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials, 2004, 25(10):1891–1900.

    Article  Google Scholar 

  55. El-Amin SF, Lu HH, Khan Y, Burems J, Mitchell J, Tuan RS, et al. Extracellular matrix production by human osteoblasts cultured on biodegradable polymers applicable for tissue engineering. Biomaterials, 2003, 24(7):1213–1221.

    Article  Google Scholar 

  56. Mooney DJ, Organ G, Vacanti JP, and Langer R. Design and fabrication of biodegradable polymer devices to engineer tubular tissues. Cell Transplant, 1994, 3(2):203–210.

    Google Scholar 

  57. Kim BS, Nikolovski J, Bonadio J, Smiley E, and Mooney DJ. Engineered smooth muscle tissues: regulating cell phenotype with the scaffold. Exp Cell Res, 1999, 251(2): 318–328.

    Article  Google Scholar 

  58. Teng YD, Lavik EB, Qu X, Park KI, Ourednik J, Zurakowski D, et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci U S A, 2002, 99(5):3024–3029.

    Article  Google Scholar 

  59. Dai NT, Williamson MR, Khammo N, Adams EF, and Coombes AG. Composite cell support membranes based on collagen and polycaprolactone for tissue engineering of skin. Biomaterials, 2004, 25(18):4263–4271.

    Article  Google Scholar 

  60. Barralet JE, Wallace LL, and Strain AJ. Tissue engineering of human biliary epithelial cells on polyglycolic acid/polycaprolactone scaffolds maintains long-term phenotypic stability. Tissue Eng, 2003, 9(5):1037–1045.

    Article  Google Scholar 

  61. Park YJ, Lee JY, Chang YS, Jeong JM, Chung JK, Lee MC, et al. Radioisotope carrying polyethylene oxide-polycaprolactone copolymer micelles for targetable bone imaging. Biomaterials, 2002, 23(3):873–879.

    Article  Google Scholar 

  62. Ciapetti G, Ambrosio L, Savarino L, Granchi D, Cenni E, Baldini N, et al. Osteoblast growth and function in porous poly epsilon-caprolactone matrices for bone repair: a preliminary study. Biomaterials, 2003, 24(21):3815–3824.

    Article  Google Scholar 

  63. Ng KW, Hutmacher DW, Schantz JT, Ng CS, Too HP, Lim TC, et al. Evaluation of ultra-thin poly(epsilon-caprolactone) films for tissue-engineered skin. Tissue Eng, 2001, 7(4): 441–455.

    Article  Google Scholar 

  64. Fisher JP, Vehof JW, Dean D, van der Waerden JP, Holland TA, Mikos AG, et al. Soft and hard tissue response to photocrosslinked poly(propylene fumarate) scaffolds in a rabbit model. J Biomed Mater Res, 2002, 59(3):547–56.

    Article  Google Scholar 

  65. Fisher JP, Holland TA, Dean D, and Mikos AG. Photoinitiated cross-linking of the biodegradable polyester poly(propylene fumarate). Part II. In vitro degradation. Biomacromolecules, 2003, 4(5):1335–1342.

    Article  Google Scholar 

  66. Peter SJ, Miller MJ, Yasko AW, Yaszemski MJ, and Mikos AG. Polymer concepts in tissue engineering. J Biomed Mater Res, 1998, 43(4):422–427.

    Article  Google Scholar 

  67. Suggs LJ and Mikos AG. Development of poly(propylene fumarate-co-ethylene glycol) as an injectable carrier for endothelial cells. Cell Transplant, 1999, 8(4):345–350.

    Google Scholar 

  68. Shung AK, Behravesh E, Jo S, and Mikos AG. Crosslinking characteristics of and cell adhesion to an injectable poly(propylene fumarate-co-ethylene glycol) hydrogel using a water-soluble crosslinking system. Tissue Eng, 2003, 9(2):243–254.

    Article  Google Scholar 

  69. Davis KA and Anseth KS. Controlled release from crosslinked degradable networks. Crit Rev Ther Drug Carrier Syst, 2002, 19(4–5):385–423.

    Article  Google Scholar 

  70. Heller J, Barr J, Ng SY, Abdellauoi KS, and Gurny R. Poly(ortho esters): Synthesis, characterization, properties and uses. Adv Drug Deliv Rev, 2002, 54(7):1039–1039.

    Article  Google Scholar 

  71. Andriano KP, Tabata Y, Ikada Y, Heller J. In vitro and in vivo comparison of bulk and surface hydrolysis in absorbable polymer scaffolds for tissue engineering. J Biomed Mater Res, 1999, 48(5):602–612.

    Article  Google Scholar 

  72. Vacanti JP, Morse MA, Saltzman WM, Domb AJ, Perez-Atayde A, and Langer R. Selective cell transplantation using bioabsorbable artificial polymers as matrices. J Pediatr Surg, 1988, 23(1 Pt 2):3–9.

    Article  Google Scholar 

  73. Langer R. Biomaterials in drug delivery and tissue engineering: one laboratory's experience. Acc Chem Res, 2000, 33(2):94–101.

    Article  Google Scholar 

  74. Kumar N, Langer RS, and Domb AJ. Polyanhydrides: an overview. Adv Drug Deliv Rev, 2002, 54(7):889–910.

    Article  Google Scholar 

  75. Burkoth AK, Burdick J, and Anseth KS. Surface and bulk modifications to photocrosslinked polyanhydrides to control degradation behavior. J Biomed Mater Res, 2000a, 51(3): 352–359.

    Article  Google Scholar 

  76. Burkoth AK and Anseth KS. A review of photocrosslinked polyanhydrides: in situ forming degradable networks. Biomaterials, 2000b, 21(23):2395–2404.

    Article  Google Scholar 

  77. Uhrich KE, Gupta A, Thomas TT, Laurencin CT, and Langer R. Synthesis and characterization of degradable poly(anhydride-co-imides). Macromolecules, 1995, 28(7): 2184–2193.

    Article  Google Scholar 

  78. Muggli DS, Burkoth AK, and Anseth KS. Crosslinked polyanhydrides for use in orthopedic applications: degradation behavior and mechanics. J Biomed Mater Res, 1999, 46(2): 271–278.

    Article  Google Scholar 

  79. Qiu LY and Zhu KJ. Novel biodegradable polyphosphazenes containing glycine ethyl ester and benzyl ester of amino acethydroxamic acid as cosubstituents: syntheses, characterization, and degradation properties. J Appl Polym Sci, 2000, 77(13):2987–2995.

    Article  Google Scholar 

  80. Laurencin CT, Norman ME, Elgendy HM, el-Amin SF, Allcock HR, Pucher SR, et al. Use of polyphosphazenes for skeletal tissue regeneration. J Biomed Mater Res, 1993, 27(7): 963–973.

    Article  Google Scholar 

  81. Laurencin CT, El-Amin SF, Ibim SE, Willoughby DA, Attawia M, Allcock HR, et al. A highly porous 3-dimensional polyphosphazene polymer matrix for skeletal tissue regeneration. J Biomed Mater Res, 1996, 30(2):133–138.

    Article  Google Scholar 

  82. Langone F, Lora S, Veronese FM, Caliceti P, Parnigotto PP, Valenti F, et al. Peripheral nerve repair using a poly(organo)phosphazene tubular prosthesis. Biomaterials, 1995, 16(5): 347–353.

    Article  Google Scholar 

  83. Tangpasuthadol V, Pendharkar SM, and Kohn J. Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part I: Study of model compounds. Biomaterials, 2000, 21(23):2371–2378.

    Article  Google Scholar 

  84. Choueka J, Charvet JL, Koval KJ, Alexander H, James KS, Hooper KA, et al. Canine bone response to tyrosine-derived polycarbonates and poly(L-lactic acid). J Biomed Mater Res, 1996, 31(1):35–41.

    Article  Google Scholar 

  85. Lee SJ, Choi JS, Park KS, Khang G, Lee YM, and Lee HB. Response of MG63 osteoblast-like cells onto polycarbonate membrane surfaces with different micropore sizes. Biomaterials, 2004a, 25(19):4699–4707.

    Article  Google Scholar 

  86. Cai J, Bo S, Cheng R, Jiang L, and Yang Y. Analysis of interfacial phenomena of aqueous solutions of polyethylene oxide and polyethylene glycol flowing in hydrophilic and hydrophobic capillary viscometers. J Colloid Interface Sci, 2004, 276(1):174–181.

    Article  Google Scholar 

  87. Gutowska A, Jeong B, Jasionowski M. Injectable gels for tissue engineering. Anat Rec, 2001, 263(4):342–349.

    Article  Google Scholar 

  88. Bourke SL and Kohn J. Polymers derived from the amino acid L-tyrosine: polycarbonates, polyarylates and copolymers with poly(ethylene glycol). Adv Drug Deliv Rev, 2003;55(4):447–466.

    Article  Google Scholar 

  89. Novikova LN, Novikov LN, and Kellerth JO. Biopolymers and biodegradable smart implants for tissue regeneration after spinal cord injury. Curr Opin Neurol, 2003, 16(6):711–715.

    Article  Google Scholar 

  90. Sawhney AS, Pathak CP, and Hubbell JA. Bioerodible hydrogels nased on photopolymerized poly(ethylene glycol)-co-poly(alpha-hydroxy acid) diacrylate macromers. Macromolecules, 1993, 26(4):581–587.

    Article  Google Scholar 

  91. Sims CD, Butler PE, Casanova R, Lee BT, Randolph MA, Lee WP, et al. Injectable cartilage using polyethylene oxide polymer substrates. Plast Reconstr Surg, 1996, 98(5): 843–850.

    Article  Google Scholar 

  92. Bryant SJ and Anseth KS. Controlling the spatial distribution of ECM components in degradable PEG hydrogels for tissue engineering cartilage. J Biomed Mater Res, 2003, 64A(1): 70–79.

    Article  Google Scholar 

  93. Desai NP, Sojomihardjo A, Yao Z, Ron N, and Soon-Shiong P. Interpenetrating polymer networks of alginate and polyethylene glycol for encapsulation of islets of Langerhans. J Microencapsul, 2000, 17(6):677–690.

    Article  Google Scholar 

  94. Ganta SR, Piesco NP, Long P, Gassner R, Motta LF, Papworth GD, et al. Vascularization and tissue infiltration of a biodegradable polyurethane matrix. J Biomed Mater Res, 2003, 64A(2):242–248.

    Article  Google Scholar 

  95. Gorna K and Gogolewski S. Preparation, degradation, and calcification of biodegradable polyurethane foams for bone graft substitutes. J Biomed Mater Res, 2003, 67A(3): 813–827.

    Article  Google Scholar 

  96. Zhang J, Doll BA, Beckman EJ, and Hollinger JO. A biodegradable polyurethane-ascorbic acid scaffold for bone tissue engineering. J Biomed Mater Res, 2003, 67A(2):389–400.

    Article  Google Scholar 

  97. Grad S, Kupcsik L, Gorna K, Gogolewski S, and Alini M. The use of biodegradable polyurethane scaffolds for cartilage tissue engineering: potential and limitations. Biomaterials, 2003, 24(28):5163–5171.

    Article  Google Scholar 

  98. McDevitt TC, Woodhouse KA, Hauschka SD, Murry CE, and Stayton PS. Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair. J Biomed Mater Res, 2003, 66A(3):586–595.

    Article  Google Scholar 

  99. Sachlos E and Czernuszka JT. Making tissue engineering scaffolds work. Review: The application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater, 2003,5:29–39; discussion 39–40.

    Google Scholar 

  100. Mikos AG, Bao Y, Cima LG, Ingber DE, Vacanti JP, and Langer R. Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation. J Biomed Mater Res, 1993, 27(2):183–189.

    Article  Google Scholar 

  101. Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R, Winslow DN, et al. Preparation and characterization of poly(L-lactic acid) foams. Polymer, 1994, 35(5):1068–1077.

    Article  Google Scholar 

  102. Hua FJ, Kim GE, Lee JD, Son YK, and Lee DS. Macroporous poly(L-lactide) scaffold 1. Preparation of a macroporous scaffold by liquid – liquid phase separation of a PLLA – dioxane – water system. J Biomed Mater Res, 2002, 63(2):161–167.

    Article  Google Scholar 

  103. Ma PX and Zhang R. Synthetic nano-scale fibrous extracellular matrix. J Biomed Mater Res, 1999, 46(1):60–72.

    Article  Google Scholar 

  104. Nam YS and Park TG. Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J Biomed Mater Res, 1999, 47(1):8–17.

    Article  Google Scholar 

  105. Hsu YY, Gresser JD, Trantolo DJ, Lyons CM, Gangadharam PR, and Wise DL. Effect of polymer foam morphology and density on kinetics of in vitro controlled release of isoniazid from compressed foam matrices. J Biomed Mater Res, 1997, 35(1):107–116.

    Article  Google Scholar 

  106. Whang K, Tsai DC, Nam EK, Aitken M, Sprague SM, Patel PK, et al. Ectopic bone formation via rhBMP-2 delivery from porous bioabsorbable polymer scaffolds. J Biomed Mater Res, 1998, 42(4):491–499.

    Article  Google Scholar 

  107. Chen GP, Ushida T, and Tateishi T. Development of biodegradable porous scaffolds for tissue engineering. Mater Sci Eng C-Biomimetic Supramol Syst 2001;17(1–2):63–69.

    Article  Google Scholar 

  108. Nam YS, Yoon JJ, and Park TG. A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive. J Biomed Mater Res, 2000, 53(1):1–7.

    Article  Google Scholar 

  109. Mooney DJ, Baldwin DF, Suh NP, Vacanti JP, and Langer R. Novel approach to fabricate porous sponges of poly(D,L-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials, 1996b, 17(14):1417–1422.

    Article  Google Scholar 

  110. Sheridan MH, Shea LD, Peters MC, and Mooney DJ. Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery. J Control Release, 2000, 64(1–3):91–102.

    Article  Google Scholar 

  111. Yang S, Leong KF, Du Z, and Chua CK. The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng, 2002, 8(1):1–11.

    Article  Google Scholar 

  112. Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues – state of the art and future perspectives. J Biomater Sci Polym Ed, 2001, 12(1):107–124.

    Article  Google Scholar 

  113. Zein I, Hutmacher DW, Tan KC, and Teoh SH. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials, 2002, 23(4): 1169–1185.

    Article  Google Scholar 

  114. Zeltinger J, Landeen LK, Alexander HG, Kidd ID, and Sibanda B. Development and characterization of tissue-engineered aortic valves. Tissue Eng, 2001, 7(1):9–22.

    Article  Google Scholar 

  115. Cima LG, Vacanti JP, Vacanti C, Ingber D, Mooney D, and Langer R. Tissue engineering by cell transplantation using degradable polymer substrates. J Biomech Eng, 1991, 113(2): 143–151.

    Article  Google Scholar 

  116. Cooke MN, Fisher JP, Dean D, Rimnac C, Mikos AG. Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. J Biomed Mater Res, 2003, 64B(2):65–69.

    Article  Google Scholar 

  117. Lu Y and Chen SC. Micro and nano-fabrication of biodegradable polymers for drug delivery. Adv Drug Deliv Rev, 2004, 56(11):1621–1633.

    Article  Google Scholar 

  118. Angelova N and Hunkeler D. Rationalizing the design of polymeric biomaterials. Trends Biotechnol, 1999, 17(10):409–421.

    Article  Google Scholar 

  119. Ma PX and Choi JW. Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Eng, 2001, 7(1):23–33.

    Article  Google Scholar 

  120. Lee SH, Kim BS, Kim SH, Kang SW, and Kim YH. Thermally produced biodegradable scaffolds for cartilage tissue engineering. Macromol Biosci, 2004b, 4(8):802–810.

    Article  Google Scholar 

  121. Lu L and Mikos AG. The importance of new processing techniques in tissue engineering. MRS Bull, 1996, 21(11):28–32.

    Google Scholar 

  122. Shin H, Jo S, and Mikos AG. Biomimetic materials for tissue engineering. Biomaterials, 2003, 24(24):4353–4364.

    Article  Google Scholar 

  123. Holy CE, Fialkov JA, Davies JE, and Shoichet MS. Use of a biomimetic strategy to engineer bone. J Biomed Mater Res A, 2003, 65A(4):447–453.

    Article  Google Scholar 

  124. Cunliffe D, Pennadam S, and Alexander C. Synthetic and biological polymers-merging the interface. Eur Polym J, 2004, 40(1):5–25.

    Article  Google Scholar 

  125. Shive MS and Anderson JM. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev, 1997, 28(1):5–24.

    Article  Google Scholar 

  126. Ziats NP, Miller KM, and Anderson JM. In vitro and in vivo interactions of cells with biomaterials. Biomaterials, 1988, 9(1):5–13.

    Article  Google Scholar 

  127. Anderson JM and Miller KM. Biomaterial biocompatibility and the macrophage. Biomaterials, 1984, 5(1):5–10.

    Article  Google Scholar 

  128. von Burkersroda F, Schedl L, and Gopferich A. Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials, 2002, 23(21):4221–4231.

    Article  Google Scholar 

  129. Temenoff JS, Athanasiou KA, LeBaron RG, and Mikos AG. Effect of poly(ethylene glycol) molecular weight on tensile and swelling properties of oligo(poly(ethylene glycol) fumarate) hydrogels for cartilage tissue engineering. J Biomed Mater Res, 2002, 59(3):429–437.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana M. Yoon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag US

About this chapter

Cite this chapter

Yoon, D.M., Fisher, J.P. (2009). Natural and Synthetic Polymeric Scaffolds. In: Narayan, R. (eds) Biomedical Materials. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-84872-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-84872-3_15

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-84871-6

  • Online ISBN: 978-0-387-84872-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics