Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 628))

Abstract

The optic lobes comprise approximately half of the fly’s brain. In four major synaptic ganglia, or neuropils, the visual input from the compound eyes is received and processed for higher order visual functions like motion detection and color vision. A common characteristic of vertebrate and invertebrate visual systems is the point-to-point mapping of the visual world to synaptic layers in the brain, referred to as visuotopy. Vision requires the parallel extraction of numerous parameters in a visuotopic manner. Consequently, the optic neuropils are arranged in columns and perpendicularly oriented synaptic layers that allow for the selective establishment of synapses between columnar neurons. How this exquisite synaptic specificity is established during approximately 100 hours of brain development is still poorly understood. However, the optic lobe contains one of the best characterized brain structures in any organism—both anatomically and developmentally. Moreover, numerous molecules and their function illuminate some of the basic mechanisms involved in brain wiring. The emerging picture is that the development of the visual system of Drosophila is (epi-)genetically hard-wired; it supplies the emerging fly with vision without requiring neuronal activity for fine tuning of neuronal connectivity. Elucidating the genetic and cellular principles by which gene activity directs the assembly of the optic lobe is therefore a fascinating task and the focus of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Green P, Hartenstein AY, Hartenstein V. The embryonic development of the Drosophila visual system. Cell Tissue Res 1993;273(3):583–598.

    Article  PubMed  CAS  Google Scholar 

  2. Meinertzhagen IA, Hanson TE. The development of the optic lobe. In: Bate M, Martinez-Arias A, eds. The Development of Drosophila melanogaster. Cold Spring Harbor: Cold Spring Harbor Press, 1993:1363–1491.

    Google Scholar 

  3. Nassif C, Noveen A, Hartenstein V. Early development of the Drosophila brain: III. The pattern of neuropile founder tracts during the larval period. J Comp Neurol 2003;455(4):417–434.

    Article  PubMed  Google Scholar 

  4. Clandinin TR, Zipursky SL. Making connections in the fly visual system. Neuron 2002;35(5):827–841.

    Article  PubMed  CAS  Google Scholar 

  5. Mast JD, Prakash S, Chen PL et al. The mechanisms and molecules that connect photoreceptor axons to their targets in Drosophila. Semin Cell Dev Biol 2006;17(1):42–49.

    Article  PubMed  CAS  Google Scholar 

  6. Ting CY, Lee CH. Visual circuit development in Drosophila. Curr Opin Neurobiol 2007;17(1):65–72.

    Article  PubMed  CAS  Google Scholar 

  7. Cajal SR, Sanchez D. Contribucion al concocimiento delos centros nerviosos de llos insectos. Trab Lab Invest Biol 1915;13:1–167.

    Google Scholar 

  8. Strausfeld NJ. Golgi studies on insects. Part II: The optic lobes of Diptera. Philos Trans R Soc Lond B 1970;258:135–223.

    Article  Google Scholar 

  9. Morante J, Desplan C. Building a projection map for photoreceptor neurons in the Drosophila optic lobes. Semin Cell Dev Biol 2004;15(1):137–143.

    Article  PubMed  Google Scholar 

  10. Wernet MF, Mazzoni EO, Celik A et al. Stochastic spineless expression creates the retinal mosaic for colour vision. Nature 2006;440(7081):174–180.

    Article  PubMed  CAS  Google Scholar 

  11. Tomlinson A. Patterning the peripheral retina of the fly: decoding a gradient. Dev Cell 2003;5(5):799–809.

    Article  PubMed  CAS  Google Scholar 

  12. Wernet MF, Labhart T, Baumann F et al. Homothorax switches function of Drosophila photoreceptors from color to polarized light sensors. Cell 2003;115(3):267–279.

    Article  PubMed  CAS  Google Scholar 

  13. Homberg U, Hofer S, Pfeiffer K et al. Organization and neural connections of the anterior optic tubercle in the brain of the locust, Schistocerca gregaria. J Comp Neurol 2003;462(4):415–430.

    Article  PubMed  Google Scholar 

  14. Braitenberg V. Pattern of projections in the visual system of the fly. I. Retina lamina projections. Exp Brain Res 1967;3:271–298.

    Article  PubMed  CAS  Google Scholar 

  15. Kirschfeld K. The projection of the optical environment on the screen of the rhabdomere in the compound eye of Musca. Exp Brain Res 1967;3:248–270.

    Article  PubMed  CAS  Google Scholar 

  16. Trujillo-Cenoz O, Melamed J. Electron microscope observations on the peripheral and intermediate retinas of dipterans. In: Bernhad CG, ed. The Functional Organization of the Compound Eye. New York: Pergamon Press, 1966:339–361.

    Google Scholar 

  17. Clandinin TR, Zipursky SL. Afferent growth cone interactions control synaptic specificity in the Drosophila visual system. Neuron 2000;28(2):427–436.

    Article  PubMed  CAS  Google Scholar 

  18. Fischbach K, Dittrich AP. The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild type structure. Cell Tissue Res 1989;256:441–475.

    Google Scholar 

  19. Bausenwein B, Dittrich AP, Fischbach KF. The optic lobe of Drosophila melanogaster. II. Sorting of retinotopic pathways in the medulla. Cell Tissue Res 1992;267(1):17–28.

    Article  PubMed  CAS  Google Scholar 

  20. Buchner E, Buchner S. Mapping stimulus-induced nervous activity in small brains by [3H]2-deoxy-D-glucose. Cell Tissue Res 1980;211(1):51–64.

    Article  PubMed  CAS  Google Scholar 

  21. Bausenwein B, Fischbach KF. Activity labeling patterns in the medulla of Drosophila melanogaster caused by motion stimuli. Cell Tissue Res 1992;270(1):25–35.

    Article  PubMed  CAS  Google Scholar 

  22. Fischbach K, Ramos RG, Bausenwein B. Der optische Lobus von Drosophila melanogaster: Experimentelle Ansaetze zum Studium von Struktur, Funktion und Entwicklung. Verh Dtsch Zool Ges 1992; 85.2:133–148.

    Google Scholar 

  23. Stocker RF. The organization of the chemosensory system in Drosophila melanogaster: a review. Cell Tissue Res 1994;275(1):3–26.

    Article  PubMed  CAS  Google Scholar 

  24. Stocker RF, Lienhard MC, Borst A et al. Neuronal architecture of the antennal lobe in Drosophila melanogaster. Cell Tissue Res 1990;262(1):9–34.

    Article  PubMed  CAS  Google Scholar 

  25. Campos AR, Fischbach KF, Steller H. Survival of photoreceptor neurons in the compound eye of Drosophila depends on connections with the optic ganglia. Development 1992;114(2):355–366.

    PubMed  CAS  Google Scholar 

  26. Otsuna H, Ito K. Systematic analysis of the visual projection neurons of Drosophila melanogaster. I. Lobula-specific pathways. J Comp Neurol 2006;497(6):928–958.

    Article  PubMed  Google Scholar 

  27. Wolff T, Ready DF. Pattern formation in the Drosophila retina. In: Bate M, Martinez-Arias A, eds. The Development of Drosophila melanogaster. Cold Spring Harbor: Cold Spring Harbor Press, 1993:1363–1491.

    Google Scholar 

  28. Murakami S, Umetsu D, Maeyama Y et al. Focal adhesion kinase controls morphogenesis of the Drosophila optic stalk. Development 2007;134(8):1539–1548.

    Article  PubMed  CAS  Google Scholar 

  29. Hofbauer A, Buchncr E. Does Drosophila have seven eyes? Naturwissenschaften 1989;76:335–336.

    Article  Google Scholar 

  30. Helfrich-Forster C, Edwards T, Yasuyama K et al. The extraretinal eyelet of Drosophila: development, ultrastructure and putative circadian function. J Neurosci 2002;22(21):9255–9266.

    PubMed  Google Scholar 

  31. Song J, Wu L, Chen Z et al. Axons guided by insulin receptor in Drosophila visual system. Science 2003;300(5618):502–505.

    Article  PubMed  CAS  Google Scholar 

  32. Garrity PA, Rao Y, Salecker I et al. Drosophila photoreceptor axon guidance and targeting requires the dreadlocks SH2/SH3 adapter protein. Cell 1996;85(5):639–650.

    Article  PubMed  CAS  Google Scholar 

  33. Hing H, Xiao J, Harden N et al. Pak functions downstream of Dock to regulate photoreceptor axon guidance in Drosophila. Cell 25 1999;97(7):853–863.

    Article  PubMed  CAS  Google Scholar 

  34. Houalla T, Hien Vuong D, Ruan W et al. The Ste20-like kinase misshapen functions together with Bicaudal-D and dynein in driving nuclear migration in the developing drosophila eye. Mech Dev 2005;122(1):97–108.

    Article  PubMed  CAS  Google Scholar 

  35. Newsome TP, Schmidt S, Dietzl G et al. Trio combines with dock to regulate Pak activity during photoreceptor axon pathfinding in Drosophila. Cell 2000;101(3):283–294.

    Article  PubMed  CAS  Google Scholar 

  36. Ruan W, Long H, Vuong DH et al. Bifocal is a downstream target of the Ste20-like serine/threonine kinase misshapen in regulating photoreceptor growth cone targeting in Drosophila. Neuron 2002;36(5):831–842.

    Article  PubMed  CAS  Google Scholar 

  37. Ruan W, Pang P, Rao Y The SH2/SH3 adaptor protein dock interacts with the Ste20-like kinase misshapen in controlling growth cone motility. Neuron 1999;24(3):595–605.

    Article  PubMed  CAS  Google Scholar 

  38. Chevais S. Sur la structure des yeux implantes de Drosophila melanogaster. Archs Anat Microsc 1937;33:107–112.

    Google Scholar 

  39. Haider G, Callaerts P, Gehring WJ. New perspectives on eye evolution. Curr Opin Genet Dev 1995;5(5):602–609.

    Article  Google Scholar 

  40. Steller H, Fischbach KF, Rubin GM. Disconnected: a locus required for neuronal pathway formation in the visual system of Drosophila. Cell 1987;50(7):1139–1153.

    Article  PubMed  CAS  Google Scholar 

  41. Power ME. The effort of reduction in numbers of ommatidia upon the brain of Drosophila melanogaster. J Exp Zool 1943;94:33–71.

    Article  Google Scholar 

  42. Hinke W. Das relative postembryonale Wachstum der Hirnteile von Culex pipiens, Drosophila melanogaster and Drosophila mutanten. Z. Morph Okol Tiere 1961;50:81–118.

    Article  Google Scholar 

  43. Campos-Ortega JA, Hofbauer A. Proliferation pattern and early differentiation of the optic lobes in Drosophila melanogaster. Rouxs Arch Dev Biol 1990;198:264–274.

    Article  Google Scholar 

  44. Selleck SB, Gonzalez C, Glover DM et al. Regulation of the G1-S transition in postembryonic neuronal precursors by axon ingrowth. Nature 1992;355(6357):253–255.

    Article  PubMed  CAS  Google Scholar 

  45. Selleck SB, Steller H. The influence of retinal innervation on neurogenesis in the first optic ganglion of Drosophila. Neuron 1991;6(1):83–99.

    Article  PubMed  CAS  Google Scholar 

  46. Winberg ML, Perez SE, Steller H. Generation and early differentiation of glial cells in the first optic ganglion of Drosophila melanogaster. Development 1992;115(4):903–911.

    PubMed  CAS  Google Scholar 

  47. Huang Z, Shilo BZ, Kunes S. A retinal axon fascicle uses spitz, an EGF receptor ligand, to construct a synaptic cartridge in the brain of Drosophda. Cell 1998;95(5):693–703.

    Article  PubMed  CAS  Google Scholar 

  48. Huang Z, Kunes S. Hedgehog, transmitted along retinal axons, triggers neurogenesis in the developing visual centers of the Drosophda brain. Cell 1996;86(3):411–422.

    Article  PubMed  CAS  Google Scholar 

  49. Huang Z, Kunes S. Signals transmitted along retinal axons in Drosophila: Hedgehog signal reception and the cell circuitry of lamina cartridge assembly. Development 1998;125(19):3753–3764.

    PubMed  CAS  Google Scholar 

  50. Chu T, Chiu M, Zhang E et al. A C-terminal motif targets Hedgehog to axons, coordinating assembly of the Drosophila eye and brain. Dev Cell 2006;10(5):635–646.

    Article  PubMed  CAS  Google Scholar 

  51. Chotard C, Leung W, Salecker I. glial cells missing and gcm2 cell autonomously regulate both glial and neuronal development in the visual system of Drosophila. Neuron 2005;48(2):237–251.

    Article  PubMed  CAS  Google Scholar 

  52. Nakato H, Futch TA, Selleck SB. The division abnormally delayed (dally) gene: a putative integral membrane proteoglycan required for cell division patterning during postembryonic development of the nervous system in Drosophila. Development 1995;121(11):3687–3702.

    PubMed  CAS  Google Scholar 

  53. Takeo S, Akiyama T, Firkus C et al. Expression of a secreted form of Dally, a Drosophila glypican, induces overgrowth phenotype by affecting action range of Hedgehog. Dev Biol 2005;284(1):204–218.

    Article  PubMed  CAS  Google Scholar 

  54. Dickson B, Hafen E. Genetic dissection of eye development in drosophila. In: Bate M, Martinez-Arias A, eds. The Development of Drosophila melanogaster. Cold Spring Harbor: Cold Spring Harbor Press, 1993:1363–1491.

    Google Scholar 

  55. Dearborn R, He Q, Kunes S et al. Eph receptor tyrosine kinase-mediated formation of a topographic map in the Drosophila visual system. J Neurosci 2002;22(4):1338–1349.

    PubMed  CAS  Google Scholar 

  56. Kunes S, Steller H. Topography in the Drosophila visual system. Curr Opin Neurobiol 1993;3(1):53–59.

    Article  PubMed  CAS  Google Scholar 

  57. Sato M, Umetsu D, Murakami S et al. DWnt4 regulates the dorsoventral specificity of retinal projections in the Drosophila melanogaster visual system. Nat Neurosci 2006;9(1):67–75.

    Article  PubMed  CAS  Google Scholar 

  58. Martin KA, Poeck B, Roth H et al. Mutations disrupting neuronal connectivity in the Drosophila visual system. Neuron 1995; 14(2):229–240.

    Article  PubMed  CAS  Google Scholar 

  59. Poeck B, Fischer S, Gunning D et al. Glial cells mediate target layer selection of retinal axons in the developing visual system of Drosophila. Neuron 2001; 29(1):99–113.

    Article  PubMed  CAS  Google Scholar 

  60. Yoshida S, Soustelle L, Giangrande A et al. DPP signaling controls development of the lamina glia required for retinal axon targeting in the visual system of Drosophila. Development 2005; 132(20):4587–4598.

    Article  PubMed  CAS  Google Scholar 

  61. Frohlich A, Meinertzhagen IA. Synaptogenesis in the first optic neuropile of the fly’s visual system. J Neurocytol 1982; 11(1):159–180.

    Article  PubMed  CAS  Google Scholar 

  62. Frohlich A, Meinertzhagen IA. Quantitative features of synapse formation in the fly’s visual system. I. The presynaptic photoreceptor terminal. J Neurosci 1983; 3(11):2336–2349.

    PubMed  CAS  Google Scholar 

  63. Garrity PA, Lee CH, Salecker I et al. Retinal axon target selection in Drosophila is regulated by a receptor protein tyrosine phosphatase. Neuron 1999; 22(4):707–717.

    Article  PubMed  CAS  Google Scholar 

  64. Newsome TP, Asling B, Dickson BJ. Analysis of Drosophila photoreceptor axon guidance in eye-specific mosaics. Development 2000; 127:851–860.

    PubMed  CAS  Google Scholar 

  65. Gibbs SM, Truman JW. Nitric oxide and cyclic GMP regulate retinal patterning in the optic lobe of Drosophila. Neuron 1998; 20(1):83–93.

    Article  PubMed  CAS  Google Scholar 

  66. Rao Y, Pang P, Ruan W et al. brakeless is required for photoreceptor growth-cone targeting in Drosophila. Proc Natl Acad Sci USA 2000; 97(11):5966–5971.

    Article  PubMed  CAS  Google Scholar 

  67. Senti K, Keleman K, Eisenhaber F et al. brakeless is required for lamina targeting of R1–R6 axons in the Drosophila visual system. Development 2000; 127(11):2291–2301.

    PubMed  CAS  Google Scholar 

  68. Kaminker JS, Canon J, Salecker I et al. Control of photoreceptor axon target choice by transcriptional repression of Runt. Nat Neurosci 2002; 5(8):746–750.

    PubMed  CAS  Google Scholar 

  69. Tayler TD, Garrity PA. Axon targeting in the Drosophila visual system. Curr Opin Neurobiol 2003; 13(1):90–95.

    Article  PubMed  CAS  Google Scholar 

  70. Zelhof AC, Hardy RW, Becker A et al. Transforming the architecture of compound eyes. Nature 2006; 443(7112):696–699.

    Article  PubMed  CAS  Google Scholar 

  71. Hiesinger PR, Zhai RG, Zhou Y et al. Activity-independent prespecification of synaptic partners in the visual map of Drosophila. Curr Biol 2006; 16(18):1835–1843.

    Article  PubMed  CAS  Google Scholar 

  72. Lee CH, Herman T, Clandinin TR et al. N-cadherin regulates target specificity in the Drosophila visual system. Neuron 2001; 30(2):437–450.

    Article  PubMed  CAS  Google Scholar 

  73. Lee RC, Clandinin TR, Lee CH et al. The protocadherin Flamingo is required for axon target selection in the Drosophila visual system. Nat Neurosci 2003; 6(6):557–563.

    Article  PubMed  CAS  Google Scholar 

  74. Maurel-Zaffran C, Suzuki T, Gahmon G et al. Cell-autonomous and-nonautonomous functions of LAR in R7 photoreceptor axon targeting. Neuron 2001; 32(2):225–235.

    Article  PubMed  CAS  Google Scholar 

  75. Prakash S, Caldwell JC, Eberl DF et al. Drosophila N-cadherin mediates an attractive interaction between photoreceptor axons and their targets. Nat Neurosci 2005; 8(4):443–450.

    PubMed  CAS  Google Scholar 

  76. Hiesinger PR, Reiter C, Schau H et al. Neuropil pattern formation and regulation of cell adhesion molecules in Drosophila optic lobe development depend on synaptobrevin. J Neurosci 1999; 19(17):7548–7556.

    PubMed  CAS  Google Scholar 

  77. Mehta SQ, Hiesinger PR, Beronja S et al. Mutations in Drosophila sec15 reveal a function in neuronal targeting for a subset of exocyst components. Neuron 2005; 46(2):219–232.

    Article  PubMed  CAS  Google Scholar 

  78. Katz LC, Shatz CJ. Synaptic activity and the construction of cortical circuits. Science 1996; 274(5290):1133–1138.

    Article  PubMed  CAS  Google Scholar 

  79. Shatz CJ. Emergence of order in visual system development. Proc Natl Acad Sci USA 1996; 93(2):602–608.

    Article  PubMed  CAS  Google Scholar 

  80. Barth M, Hirsch HV, Meinertzhagen IA et al. Experience-dependent developmental plasticity in the optic lobe of Drosophila melanogaster. J Neurosci 1997; 17(4):1493–1504.

    PubMed  CAS  Google Scholar 

  81. Bloomquist BT, Shortridge RD, Schneuwly S et al. Isolation of a putative phospholipase C gene of Drosophila, norpA and its role in phototransduction. Cell 1988; 54(5):723–733.

    Article  PubMed  CAS  Google Scholar 

  82. Burg MG, Sarthy PV, Koliantz G et al. Genetic and molecular identification of a Drosophila histidihe decarboxylase gene required in photoreceptor transmitter synthesis. EMBO J 1993; 12(3):911–919.

    PubMed  CAS  Google Scholar 

  83. Hardie RC. Is histamine a neurotransmitter in insect photoreceptors? J Comp Physiol [A] 1987; 161(2):201–213.

    Article  CAS  Google Scholar 

  84. Koh TW, Bellen HJ. Synaptotagmin I, a Ca2+ sensor for neurotransmitter release. Trends Neurosci 2003; 26(8):413–422.

    Article  PubMed  CAS  Google Scholar 

  85. Meinertzhagen IA, Hu X. Evidence for site selection during synaptogenesis: the surface distribution of synaptic sites in photoreceptor terminals of the files Musca and Drosophila. Cell Mol Neurobiol 1996; 16(6):677–698.

    Article  PubMed  CAS  Google Scholar 

  86. Meinertzhagen IA, Sorra KE. Synaptic organization in the fly’s optic lamina: few cells, many synapses and divergent microcircuits. Prog Brain Res 2001; 131:53–69.

    Article  PubMed  CAS  Google Scholar 

  87. Frohlich A, Meinertzhagen IA. Regulation of synaptic frequency: comparison of the effects of hypoinnervation with those of hyperinnervation in the fly’s compound eye. J Neurobiol 1987; 18(4):343–357.

    Article  PubMed  CAS  Google Scholar 

  88. Strausfeld NJ. Atlas of an Insect Brain. Heidelberg: Springer Verlag; 1976.

    Google Scholar 

  89. Strausfeld NJ, Okamura JY. Visual system of calliphorid flies: organization of optic glomeruli and their lobula complex efferents. J Comp Neurol 2007; 500(1):166–188.

    Article  PubMed  Google Scholar 

  90. Fischbach KF, Heisenberg M. Structural brain mutant of Drosophila melanogaster with reduced cell number in the medulla cortex and with normal optomotor yaw response. Proc Natl Acad Sci USA 1981; 78(2):1105–1109.

    Article  PubMed  Google Scholar 

  91. Fischbach KF. Neural cell types surviving congenital sensory deprivation in the optic lobes of Drosophila melanogaster. Dev Biol 1983; 95(1):1–18.

    Article  PubMed  CAS  Google Scholar 

  92. Fischbach KF, Technau G. Cell degeneration in the developing optic lobes of the sine oculis and small-optic-lobes mutants of Drosophila melanogaster. Dev Biol 1984; 104(1):219–239.

    Article  PubMed  CAS  Google Scholar 

  93. Younossi-Hartenstein A, Salvaterra PM, Hartenstein V. Early development of the Drosophila brain: IV. Larval neuropile compartments defined by glial septa. J Comp Neurol 2003; 455(4):435–450.

    Article  PubMed  Google Scholar 

  94. Tayler TD, Robichaux MB, Garrity PA. Compartmentalization of visual centers in the Drosophila brain requires Slit and Robo proteins. Development 2004; 131(23):5935–5945.

    Article  PubMed  CAS  Google Scholar 

  95. Fan Y, Soller M, Flister S et al. The egghead gene is required for compartmentalization in Drosophila optic lobe development. Dev Biol 2005; 287(1):61–73.

    Article  PubMed  CAS  Google Scholar 

  96. Wandall HH, Pizette S, Pedersen JW et al. Egghead and brainiac are essential for glycosphingolipid biosynthesis in vivo. J Biol Chem 2005; 280(6):4858–4863.

    Article  PubMed  CAS  Google Scholar 

  97. Chen YW, Pedersen JW, Wandall HH et al. Glycosphingolipids with extended sugar chain have specialized functions in development and behavior of Drosophila. Dev Biol 2007; 306(2):736–749.

    Article  PubMed  CAS  Google Scholar 

  98. Ting CY, Yonekura S, Chung P et al. Drosophila N-cadherin functions in the first stage of the two-stage layer-selection process of R7 photoreceptor afferents. Development 2005; 132(5):953–963.

    Article  PubMed  CAS  Google Scholar 

  99. Shinza-Kameda M, Takasu E, Sakurai K et al. Regulation of layer-specific targeting by reciprocal expression of a cell adhesion molecule, capricious. Neuron 2006; 49(2):205–213.

    Article  PubMed  CAS  Google Scholar 

  100. Yonekura S, Xu L, Ting CY et al. Adhesive but not signaling activity of Drosophila N-cadherin is essential for target selection of photoreceptor afferents. Dev Biol 2007; 304(2):759–770.

    Article  PubMed  CAS  Google Scholar 

  101. Nern A, Nguyen LV, Herman T et al. An isoform-specific allele of Drosophila N-cadherin disrupts a late step of R7 targeting. Proc Natl Acad Sci USA 2005; 102(36):12944–12949.

    Article  PubMed  CAS  Google Scholar 

  102. Clandinin TR, Lee CH, Herman T et al. Drosophila LAR regulates R1–R6 and R7 target specificity in the visual system. Neuron 2001; 32(2):237–248.

    Article  PubMed  CAS  Google Scholar 

  103. Choe KM, Prakash S, Bright A et al. Liprin-alpha is required for photoreceptor target selection in Drosophila. Proc Natl Acad Sci USA 2006; 103(31):11601–11606.

    Article  PubMed  CAS  Google Scholar 

  104. Hofmeyer K, Maurel-Zaffran C, Sink H et al. Liprin-alpha has LAR-independent functions in R7 photoreceptor axon targeting. Proc Natl Acad Sci USA 2006; 103(31):11595–11600.

    Article  PubMed  CAS  Google Scholar 

  105. Kypta RM, Su H, Reichardt LF. Association between a transmembrane protein tyrosine phosphatase and the cadherin-catenin complex. J Cell Biol 1996; 134(6):1519–1529.

    Article  PubMed  CAS  Google Scholar 

  106. Fox AN, Zinn K. The heparan sulfate proteoglycan syndecan is an in vivo ligand for the Drosophila LAR receptor tyrosine phosphatase. Curr Biol 2005; 15(19):1701–1711.

    Article  PubMed  CAS  Google Scholar 

  107. Rawson JM, Dimitroff B, Johnson KG et al. The heparan sulfate proteoglycans Dally-like and Syndecan have distinct functions in axon guidance and visual-system assembly in Drosophila. Curr Biol 2005; 15(9):833–838.

    Article  PubMed  CAS  Google Scholar 

  108. Johnson KG, Tenney AP, Ghose A et al. The HSPGs Syndecan and Dallylike bind the receptor phosphatase LAR and exert distinct effects on synaptic development. Neuron 2006; 49(4):517–531.

    Article  PubMed  CAS  Google Scholar 

  109. Bao H, Berlanga ML, Xue M et al. The atypical cadherin flamingo regulates synaptogenesis and helps prevent axonal and synaptic degeneration in Drosophila. Mol Cell Neurosci 2007; 34(4):662–678.

    Article  PubMed  CAS  Google Scholar 

  110. Bazigou E, Apitz H, Johansson J et al. Anterograde Jelly belly and Alk receptor tyrosine kinase signaling mediates retinal axon targeting in Drosophila. Cell 2007; 128(5):961–975.

    Article  PubMed  CAS  Google Scholar 

  111. Senti KA, Usui T, Boucke K et al. Flamingo regulates R8 axon-axon and axon-target interactions in the Drosophila visual system. Curr Biol 2003; 13(10):828–832.

    Article  PubMed  CAS  Google Scholar 

  112. Kimura H, Usui T, Tsubouchi A et al. Potential dual molecular interaction of the Drosophila 7-pass transmembrane cadherin Flamingo in dendritic morphogenesis. J Cell Sci 2006; 119 (Pt 6):1118–1129.

    Article  PubMed  CAS  Google Scholar 

  113. Ruiz-Gomez M, Coutts N, Price A et al. Drosophila dumbfounded: a myoblast attractant essential for fusion. Cell 2000; 102(2):189–198.

    Article  PubMed  CAS  Google Scholar 

  114. Strunkelnberg M, Bonengel B, Moda LM et al rst and its paralogue kirre act redundantly during embryonic muscle development in Drosophila. Development 2001; 128(21):4229–4239.

    PubMed  CAS  Google Scholar 

  115. Reiter C, Schimansky T, Nie Z et al. Reorganization of membrane contacts prior to apoptosis in the Drosophila retina: the role of the IrreC-rst protein. Development 1996; 122(6):1931–1940.

    PubMed  CAS  Google Scholar 

  116. Boschert U, Ramos RG, Tix S et al. Genetic and developmental analysis of irreC, a genetic function required for optic chiasm formation in Drosophila. J Neurogenet 1990; 6(3):153–171.

    Article  PubMed  CAS  Google Scholar 

  117. Ramos RG, Igloi GL, Lichte B et al. The irregular chiasm C-roughest locus of Drosophila, which affects axonal projections and programmed cell death, encodes a novel immunoglobulin-like protein. Genes Dev 1993; 7(12B):2533–2547.

    Article  PubMed  CAS  Google Scholar 

  118. Schneider T, Reiter C, Eule E et al. Restricted expression of the irreC-rst protein is required for normal axonal projections of columnar visual neurons. Neuron 1995; 15(2):259–271.

    Article  PubMed  CAS  Google Scholar 

  119. Ashley JA, Katz FN. Competition and position-dependent targeting in the development of the Drosophila R7 visual projections. Development 1994; 120(6):1537–1547.

    PubMed  CAS  Google Scholar 

  120. Hughes ME, Bortnick R, Tsubouchi A et al. Homophilic Dscam interactions control complex dendrite morphogenesis. Neuron 2007; 54(3):417–427.

    Article  PubMed  CAS  Google Scholar 

  121. Millard SS, Flanagan JJ, Pappu KS et al. Dscam2 mediates axonal tiling in the Drosophila visual system. Nature 2007; 447(7145):720–724.

    Article  PubMed  CAS  Google Scholar 

  122. Soba P, Zhu S, Emoto K et al. Drosophila sensory neurons require Dscam for dendritic self-avoidance and proper dendritic field organization. Neuron 2007; 54(3):403–416.

    Article  PubMed  CAS  Google Scholar 

  123. Schmucker D, Clemens JC, Shu H et al. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 2000; 101(6):671–684.

    Article  PubMed  CAS  Google Scholar 

  124. Hassan BA, Bermingham NA, He Y et al. Atonal regulates neurite arborization but does not act as a proneural gene in the Drosophila brain. Neuron 2000; 25(3):549–561.

    Article  PubMed  CAS  Google Scholar 

  125. Srahna M, Leyssen M, Choi CM et al. A signaling network for patterning of neuronal connectivity in the Drosophila brain. PLoS Biol 2006; 4(11):e348.

    Article  PubMed  Google Scholar 

  126. Fischbach KF. Neurogenetik am Beispiel des visuellen Systems von Drosophila melanogaster.: Habilitationsschrift. Bayerische Julius-Maximilians-Universität WÜrzburg; 1983.

    Google Scholar 

  127. Jarvilehto M, Finell N. Development of the function of visual receptor cells during the pupal life of the fly Calliphora. J Comp Physiol [A] 1983; 150:529–536.

    Article  Google Scholar 

  128. Hardie RC, Peretz A, Pollock JA et al. Ca2+ limits the development of the light response in Drosophila photoreceptors. Proc Biol Sci 1993; 252(1335):223–229.

    Article  PubMed  CAS  Google Scholar 

  129. Meinertzhagen IA, Piper ST, Sun XJ et al. Neurite morphogenesis of identified visual interneurons and its relationship to photoreceptor synaptogenesis in the flies, Musca domestica and Drosophila melanogaster. Eur J Neurosci 2000; 12(4):1342–1356.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Fischbach, KF., Hiesinger, P.R. (2008). Optic Lobe Development. In: Technau, G.M. (eds) Brain Development in Drosophila melanogaster . Advances in Experimental Medicine and Biology, vol 628. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78261-4_8

Download citation

Publish with us

Policies and ethics