Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 627))

Abstract

Suppression or elimination of vector populations is a tried and tested method for reducing vector-borne disease, and a key component of integrated control programs. Genetic methods have the potential to provide new and improved methods for vector control. The required genetic technology is simpler than that required for strategies based on population replacement and is likely to be available earlier. In particular, genetic methods that enhance the Sterile Insect Technique (e.g., RIDL™) are already available for some species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burt A. Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc Biol Sci 2003; 270:921–928.

    Article  PubMed  CAS  Google Scholar 

  2. Burt A, Trivers R. Genes in conflict: The biology of selfish genetic elements. Cambridge, MA: Harvard University Press, 2006.

    Google Scholar 

  3. In: Dyck V, Hendrichs J, Robinson A, eds. Sterile Insect Technique: Principles and practice in area-wide Integrated Pest Management. Dordrecht: Springer, 2005.

    Google Scholar 

  4. Klassen W, Curtis CF. In: Dyck VA, Hendrichs J, Robinson AS, eds. Sterile Insect Technique. Principles and practice in area-wide integrated pest management. The Netherlands: Springer, 2005:3–36.

    Google Scholar 

  5. Vanderplank FL. Hybridization between Glossina species and suggested new method for control of certain species of Tsetse. Nature 1944; 154:607–608.

    Article  Google Scholar 

  6. Wyss JH. In: Tan KH, ed. Area-Wide Control of Fruit Flies and Other Insect Pests. Penang: Penerbit Universiti Sains Malaysia, 2000:79–86.

    Google Scholar 

  7. In: Keng-Hong T, ed. Area-wide control of fruit flies and other insect pests. Penang: Penerbit Universiti Sains Malaysia, 2000.

    Google Scholar 

  8. Krafsur E. Sterile insect technique for suppressing and eradicating insect populations: 55 years and counting. J Agric Entomol 1998; 15:303–317.

    Google Scholar 

  9. Koyama J, Kakinohana H, Miyatake T. Eradication of the Melon Fly Bactrocera cucurbitae in Japan: Importance of behaviour, ecology, genetics and evolution. Ann Rev Entomol 2004; 49:331–349.

    Article  CAS  Google Scholar 

  10. Msangi AR et al. Current tsetse control operations in Botswana and prospects for the future. In: Tan KH, ed. Area-Wide Control of Fruit Flies and Other Insect Pests. Penang: Penerbit Universiti Sains Malaysia, 2000:57–66.

    Google Scholar 

  11. Vreysen MJ, Saleh KM, Ali MY et al. Glossina austeni (Diptera: Glossinidae) eradicated on the island of Unguja, Zanzibar, using the sterile insect technique. J Econ Entomol 2000; 93:123–135.

    PubMed  CAS  Google Scholar 

  12. Asman S, McDonald P, Prout T. Field studies of genetic control systems for mosquitoes. Ann Rev Entomol 1981; 26:289–343.

    Article  CAS  Google Scholar 

  13. Benedict M, Robinson A. The first releases of transgenic mosquitoes: An argument for the sterile insect technique. Trends Parasitol 2003; 19:349–355.

    Article  PubMed  Google Scholar 

  14. Rendón P, McInnis D, Lance D et al. Medfly (Diptera:Tephritidae) genetic sexing: Large-scale field comparison of males-only and bisexual sterile fly releases in Guatemala. J Econ Entomol 2004; 97:1547–1553.

    PubMed  Google Scholar 

  15. Opiyo E, Luger D, Robinson AS. In: Tan K, ed. Proceedings: Area-wide control of fruitflies and other insect pests. Pulau Pinang, Malaysia: Penerbit Universiti Sains Malaysia, 2000:337–344, (International Conference on area-wide control of insect pests and the 5th International Symposium on fruit flies of economic importance, 28 May-5 June 1998, Penang, Malaysia).

    Google Scholar 

  16. Franz G, Willhoeft U, Kerremans P et al. In: IAEA, ed. Evaluation of genetically altered medflies for use in SIT programmes. Vienna: IAEA, 1997:85–95.

    Google Scholar 

  17. Hendrichs J, Franz G, Rendón P. Increased effectiveness and applicability of the sterile insect technique through male-only release for control of Mediterranean fruit-flies during fruiting seasons. J Appl Entomol 1995; 119:371–377.

    Article  Google Scholar 

  18. Robinson A. In: Robinson A, Hooper G, eds. Fruit Flies. Their Biology, Natural Enemies and Control. Vol. 3A. Amsterdam: Elsevier, 1989:57–65.

    Google Scholar 

  19. Robinson A. Genetic sexing strains in medfly, Ceratitis capitata, sterile insect technique programmes. Genetica 2002; 116:5–13.

    Article  PubMed  CAS  Google Scholar 

  20. Robinson A, Franz G, Fisher K. Genetic sexing strains in the medfly, Ceratitis capitata: Development, Mass Rearing and Field Application. Trends in Entomology 1999; 2:81–104.

    Google Scholar 

  21. Seawright J, Kaiser P, Dame D et al. Genetic method for the preferential elimination of females of Anopheles albimanus. Science 1978; 200:1303–1304.

    Article  PubMed  CAS  Google Scholar 

  22. Whitten M. Automated sexing of pupae and its usefulness in control by sterile insects. J Econ Entomol 1969; 62:272–273.

    Google Scholar 

  23. Whitten M, Foster G. Genetical methods of pest control. Annu Rev Entomol 1975; 20:461–476.

    Article  PubMed  CAS  Google Scholar 

  24. Franz G, Gencheva E, Kerremans P. Improved stability of genetic sex-separation strains for the Mediterranean fruit-fly, Ceratitis capitata. Genome 1994; 37:72–82.

    Article  PubMed  CAS  Google Scholar 

  25. Kerremans P, Franz G. Isolation and cytogenetic analyses of genetic sexing strains for the Medfly, Ceratitis capitata. Theor Appl Gen 1995; 91:255–261.

    Article  Google Scholar 

  26. Fisher K, Caceres C. In: Hong TK, ed. Area-wide management of fruit flies and other major insect pests. Penang, Malaysia: Universiti Sains Malaysia Press, 2000:543–550.

    Google Scholar 

  27. Marec F, Neven LG, Robinson AS et al. Development of genetic sexing strains in Lepidoptera: From traditional to transgenic approaches. J Econ Entomol 2005; 98:248–259.

    PubMed  Google Scholar 

  28. Catteruccia F, Benton J, Crisanti A. An Anopheles transgenic sexing strain for vector control. Nature Biotechnology 2005; 23:1414–1417.

    Article  PubMed  CAS  Google Scholar 

  29. Lukyanov KA, Fradkov AF, Gurskaya NG et al. Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog. J Biol Chem 2000; 275:25879–25882.

    Article  PubMed  CAS  Google Scholar 

  30. Matz MV, Fradkov AF, Labas YA et al. Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 1999; 17:969–973.

    Article  PubMed  CAS  Google Scholar 

  31. Heinrich J, Scott M. A repressible female-specific lethal genetic system for making transgenic insect strains suitable for a sterile-release program. Proc Nat’l Acad Sci (USA) 2000; 97:8229–8232.

    Article  CAS  Google Scholar 

  32. Thomas DD, Donnelly CA, Wood RJ et al. Insect population control using a dominant, repressible, lethal genetic system. Science 2000; 287:2474–2476.

    Article  PubMed  CAS  Google Scholar 

  33. Muñoz D, Jimenez A, Marinotti O et al. The AeAct-4 gene is expressed in the developing flight muscles of females Aedes aegypti. Insect Molecular Biology 2004; 13:563–568.

    Article  PubMed  Google Scholar 

  34. Edwards M, Lemos F, Donelly-Doman M et al. Rapid induction by a blood meal of a carboxypeptidase gene in the gut of the mosquito Anopheles gambiae. Insect Biochem Mol Biol 1997; 27:1063–1072.

    Article  PubMed  CAS  Google Scholar 

  35. Edwards MJ, Moskalyk LA, Donelly-Doman M et al. Characterization of a carboxypeptidase A gene from the mosquito, Aedes aegypti. Insect Molecular Biology 2000; 9:33–38.

    Article  PubMed  CAS  Google Scholar 

  36. Alphey L, Andreasen MH. Dominant lethality and insect population control. Mol Biochem Parasitol 2002; 121:173–178.

    Article  PubMed  CAS  Google Scholar 

  37. Schliekelman P, Gould F. Pest control by the release of insects carrying a female-killing allele on multiple loci. J Econ Entomol 2000; 93:1566–1579.

    PubMed  CAS  Google Scholar 

  38. Gould F, Schliekelman P. Population genetics of autocidal control and strain replacement. Annu Rev Entomol 2004; 49:193–217.

    Article  PubMed  CAS  Google Scholar 

  39. Maynard Smith J, Slatkin M. The stability of predator-prey systems. Ecology 1973; 54:384–391.

    Article  Google Scholar 

  40. Rogers D, Randolph S. From a case study to a theoretical basis for tsetse control. Insect Sci Applic 1984; 5:419–423.

    Google Scholar 

  41. Fryxell K, Miller T. Autocidal biological control: A general strategy for insect control based on genetic transformation with a highly conserved gene. J Econ Entomol 1995; 88:1221–1232.

    Google Scholar 

  42. Horn C, Wimmer E. A transgene-based, embryo-specific lethality system for insect pest management. Nat Biotech 2003; 21:64–70.

    Article  CAS  Google Scholar 

  43. Schliekelman P, Gould F. Pest control by the introduction of a conditional lethal trait on multiple loci: Potential, limitations, and optimal strategies. J Econ Entomol 2000; 93:1543–1565.

    Article  PubMed  CAS  Google Scholar 

  44. Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracyclineresponsive promoters. Proc Natl Acad Sci USA 1992; 89:5547–5551.

    Article  PubMed  CAS  Google Scholar 

  45. Gossen M, Bujard H. Studying gene function in eukaryotes by conditional gene inactivation. Annu Rev Genet 2002; 36:153–173.

    Article  PubMed  CAS  Google Scholar 

  46. Bello B, Resendez-Perez D, Gehring W. Spatial and temporal targeting of gene expression in Drosophila by means of a tetracycline-dependent transactivator system. Development 1998; 125:2193–2202.

    PubMed  CAS  Google Scholar 

  47. Lycett G, Kafatos F, Loukeris T. Conditional expression in the malaria mosquito Anopheles stephensi with Tet-on and Tet-off systems. Genetics 2004; 167:1781–1790.

    Article  PubMed  CAS  Google Scholar 

  48. Gong P, Epton MJ, Fu G et al. A dominant lethal genetic system for autocidal control of the Mediterranean fruitfly. Nat Biotech 2005; 23:453–456.

    Article  CAS  Google Scholar 

  49. Fussenegger M. The impact of mammalian gene regulation concepts on functional genomic research, metabolic engineering, and advanced gene therapies. Biotechnol Prog 2001; 17:1–51.

    Article  PubMed  CAS  Google Scholar 

  50. Brand A, Manoukian A, Perrimon N. Ectopic expression in Drosophila. Meth Cell Biol 1994; 44:635–654.

    Article  CAS  Google Scholar 

  51. Brand A, Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 1993; 118:401–415.

    PubMed  CAS  Google Scholar 

  52. Koukidou M, Klinakis A, Reboulakis C et al. Germ line transformation of the olive fly Bactrocera oleae using a versatile transgenesis marker. Insect Molecular Biology 2006; 15:95–103.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luke Alphey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Alphey, L., Nimmo, D., O’Connell, S., Alphey, N. (2008). Insect Population Suppression Using Engineered Insects. In: Aksoy, S. (eds) Transgenesis and the Management of Vector-Borne Disease. Advances in Experimental Medicine and Biology, vol 627. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78225-6_8

Download citation

Publish with us

Policies and ethics