Skip to main content

Part of the book series: Ecological Studies ((ECOLSTUD,volume 203))

Information on the carbon cycle comes from a variety of sources. The methods described in this chapter provide a formalism for combining this information. Without such a formalism we are left making ad hoc choices about how to improve our understanding in the light of disagreements among various streams of information. The introduction of such methods into carbon cycle research, principally via the atmospheric studies of Enting et al. (1993, 1995), revolutionised the field and laid the groundwork for most of the subsequent investigations.

The present chapter is concerned with quantitative network design, by which we understand the optimisation of a measurement strategy via minimisation of this posterior uncertainty for target quantities of particular interest. Examples of such target quantities are the long-term global mean terrestrial flux to the atmosphere over a period in the past or in the future. The computational tool that transforms the information provided by an observational network of the carbon cycle into an estimate of posterior uncertainty is a Carbon Cycle Data Assimilation System (CCDAS). Hence, network design is closely linked to assimilation both conceptually and computationally. Much of the work reviewed in this chapter lies in a small subset of possible network design applications for the carbon cycle. In particular, it uses a limited set of types of observations. This is not an inherent limitation of the approach but rather a limitation in modelling approaches that can combine many streams of measurements. This is changing now. Hence, much of the chapter looks forward to applications that combine different measurement approaches. It is useful, therefore, to describe the problem in general even if most cited examples are from simpler cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • D. J. Barrett. Steady state turnover time of carbon in the Australian terrestrial biosphere. Global Biogeochem. Cycles 16(4), 2002. doi:10.1029/2002GB001860.

    Google Scholar 

  • I. G. Enting. Inverse Problems in Atmospheric Constituent Transport, Cambridge University Press, 2002.

    Google Scholar 

  • I. G. Enting, C. M. Trudinger, R. J. Francey, and H. Granek. Synthesis inversion of atmospheric CO2 using the GISS tracer transport model. Tech. Paper No. 29, CSIRO Div. Atmos. Res., 1993.

    Google Scholar 

  • I. G. Enting, C. M. Trudinger, and R. J. Francey. A synthesis inversion of the concentration and δ13C of atmospheric CO2. Tellus, 47B:35-52, 1995.

    CAS  Google Scholar 

  • R. Giering and T. Kaminski Recipes for adjoint code construction. ACM Trans. Math. Software, 24(4):437-474. 1998.

    Article  Google Scholar 

  • P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press, New York, 1981.

    Google Scholar 

  • M. Gloor, S. M. Fan, S. Pacala, and J. Sarmiento. Optimal sampling of the atmosphere for purpose of inverse modeling: A model study. Global Biogeochem. Cycles 14:407-428, 2000.

    Article  CAS  Google Scholar 

  • K. R. Gurney, R. M. Law, A. S. Denning, P. J. Rayner, D. Baker, P. Bousquet, L. Bruhwiler, Y.-H. Chen, P. Ciais, S. Fan, I. Y. Fung, M. Gloor, M. Heimann, K. Higuchi, J. John, T. Maki, S. Maksyutov, K. Masarie, P. Peylin, M. Prather, B. C. Pak, J. Randerson, J. Sarmiento, S. Taguchi, T. Takahashi, and C.-W. Yuen. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature, 415:626-630, 2002.

    Article  Google Scholar 

  • K. R. Gurney, R. M. Law, A. S. Denning, P. J. Rayner, D. Baker, P. Bousquet, L. Bruhwiler, Y.-H. Chen, P. Ciais, S. Fan, I. Y. Fung, M. Gloor, M. Heimann, K. Higuchi, J. John, E. Kowalczyk, T. Maki, S. Maksyutov, P. Peylin, M. Prather, B. C. Pak, J. Sarmiento, S. Taguchi, T. Takahashi, and C.-W. Yuen. TransCom 3 CO2 inversion intercomparison: 1. Annual mean control results and sensitivity to transport and prior flux information. Tellus, 55B(2):555-579, 2003. doi:10.1034/j.1600-0560.2003.00049.x.

    CAS  Google Scholar 

  • M. Hardt and F. Scherbaum. Optimizing the station distributions of seismic networks for after-shock recordings by simulated annealing. In EOS Supplement, Transactions of the Fall Meeting, 1992, page 351. A.G.U., 1992.

    Google Scholar 

  • M. Hardt and F. Scherbaum. The design of optimum networks for after-shock recordings. Geophys. J. Int., 117:716-726, 1994.

    Article  Google Scholar 

  • M. Heimann. The global atmospheric tracer model TM2. Technical Report No. 10, Deutsches Klimarechenzentrum. Hamburg, Germany (ISSN 0940-9327), 1995.

    Google Scholar 

  • S. Houweling, F.-M. Breon, I. Aben, C. Rödenbeck, M. Gloor, M. Heimann, and P. Ciais. Inverse modeling of CO2 sources and sinks using satellite data: A synthetic inter-comparison of meas-urement techniques and their performance as a function of space and time. Atmos. Chem. Phys., 4:523-538, 2004.

    Article  CAS  Google Scholar 

  • T. Kaminski and M. Heimann. Inverse modeling of atmospheric carbon dioxide fluxes. Science, 294:5541, October 2001.

    Article  Google Scholar 

  • T. Kaminski, P. J. Rayner, M. Heimann, and I. G. Enting. On aggregation errors in atmospheric transport inversions. J. Geophys. Res., 106:4703-4715, 2001.

    Article  CAS  Google Scholar 

  • T. Kaminski, W. Knorr, P. Rayner, and M. Heimann. Assimilating atmospheric data into a terres-trial biosphere model: A case study of the seasonal cycle. Global Biogeochem. Cycles, 16:1066, 2002. doi:10.1029/2001GB001463.

    Article  CAS  Google Scholar 

  • T. Kaminski, R. Giering, M. Scholze, P. Rayner, and W. Knorr. An example of an automatic dif-ferentiation-based modelling system. In V. Kumar, L. Gavrilova, C. J. K. Tan, and P. L’Ecuyer, editors, Computational Science—ICCSA 2003, International Conference Montreal, Canada, May 2003, Proceedings, Part II, volume 2668 of Lecture Notes in Computer Science, pages 95-104, Springer, Berlin, 2003.

    Google Scholar 

  • W. Knorr. Satellitengestützte Fernerkundung und Modellierung des globalen CO2-Austauschs der Landvegetation: Eine Synthese. PhD thesis, Max-Planck-Institut für Meteorologie, Hamburg, Germany, 1997.

    Google Scholar 

  • W. Knorr. Annual and interannual CO2 exchanges of the terrestrial biosphere: Process-based simu-lations and uncertainties. Glob. Ecol. Biogeogr., 9:225-252, 2000.

    Article  Google Scholar 

  • W. Knorr and M. Heimann. Impact of drought stress and other factors on seasonal land biosphere CO2 exchange studied through an atmospheric tracer transport model. Tellus, Ser. B, 47 (4):471-489, 1995.

    Article  Google Scholar 

  • W. Knorr and J. Kattge. Inversion of terrestrial biosphere model parameter values against eddy covariance measurements using Monte Carlo sampling. Global Change Biol. 11:1333-1351, 2005.

    Article  Google Scholar 

  • R. M. Law, P. J. Rayner, L. P. Steele, and I. G. Enting. Using high temporal frequency data for CO2 inversions. Global Biogeochem. Cy., 16:1053, 2002. doi:10.1029/2001GB001593.

    Article  CAS  Google Scholar 

  • R. M. Law, P. J. Rayner, L. P. Steele, and I. G. Enting. Data and modelling requirements for CO2 inversions using high frequency data. Tellus, 55B(2):512-521, 2003. doi:10.1034/j.1600-0560. 2003.0029.x.

    CAS  Google Scholar 

  • R. M. Law, P. J. Rayner, and Y. P. Wang. Inversion of diurnally-varying synthetic CO2: Network optimisation for an Australian test case. Global Biogeochem. Cycles 18(1):GB1044, 2004. doi:10.1029/2003GB002136.

    Article  CAS  Google Scholar 

  • N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equation of state calculations for fast computing machines. J. of Chem. Phys., 21:1087-1092, 1953.

    Article  CAS  Google Scholar 

  • B. Pak. Parameter optimization using the adjoint of a biosphere model. Abstract A11F-02. EOS Trans. AGU, 85(47), December 2004.

    Google Scholar 

  • P. K. Patra and S. Maksyutov. Incremental approach to the optimal network design for CO2 surface source inversion. Geophys. Res. Lett., 29(10):1459, 2002. dol:10.1029/2001GL013943.

    Article  CAS  Google Scholar 

  • P. K. Patra, S. Maksyutov, D. Baker, P. Bousquet, L. Bruhwiler, Y-H. Chen, P. Ciais, A. S. Denning, S. Fan, I. Y. Fung, M. Gloor, K. R. Gurney, M. Heimann, K. Higuchi, J. John, R. M. Law, T. Maki, P. Peylin, M. Prather, B. Pak, P. J. Rayner, J. L. Sarmiento, S. Taguchi, T. Takahashi, and C-W. Yuen. Sensitivity of optimal extension of CO2 observation networks to model transport. Tellus B, 55(2):498-511, 2003.

    Article  Google Scholar 

  • P. Peylin, P. J. Rayner, P. Bousquet, C. Carouge, F. Hourdin, P. Ciais, P. Heinrich, and AeroCarb Contributors. Daily CO2 flux estimate over Europe from continuous atmospheric measure-ments: Part 1 inverse methodology. Atmos. Chem. Phys., 5:3173-3186, 2005.

    Google Scholar 

  • J. T. Randerson, C. J. Still, J. J. Balle, I. Y. Fung, S. C. Doney, P. P. Tans, T. J. Conway, J. W. C. White, B. Vaughn, N. Suits, and A. S. Denning. Carbon isotope discrimination of arctic and boreal biomes inferred from remote atmospheric measurements and a biosphere-atmosphere model. Global Biogeochem. Cycles 16(3), 2002. doi:10.1029/2001GB001435.

    Google Scholar 

  • P. J. Rayner. Optimizing CO2 observing networks in the presence of model error: Results from transcom 3. Atmos. Chem. Phys., 4:413-421, 2004.

    CAS  Google Scholar 

  • P. J. Rayner, I. G. Enting, and C. M. Trudinger. Optimizing the CO2 observing network for con-straining sources and sinks. Tellus, 48B:433-444, 1996.

    CAS  Google Scholar 

  • P. J. Rayner and D. M. O’Brien. The utility of remotely sensed CO2 concentration data in surface source inversions. Geophys. Res. Lett, 28:175-178, 2001.

    Article  CAS  Google Scholar 

  • P. Rayner, M. Scholze, W. Knorr, T. Kaminski, R. Giering, and H. Widmann. Two decades of ter-restrial carbon fluxes from a Carbon Cycle Data Assimilation System (CCDAS). Global Biogeochem. Cyc., 19, 2005 doi:10.1029/2004GB002254.

    Google Scholar 

  • D. Santaren, P. Peylin, N. Viovy, and P. Ciais. Parameter estimation in biogeochemical surface model using nonlinear inversion: Optimization with measurements of a pine forest. Geophy. Res. Abs. 5:12020, 2003.

    Google Scholar 

  • M. Scholze. Model Studies on the Response of the Terrestrial Carbon Cycle on Climate Change and Variability. Examensarbeit, Max-Planck-Institut für Meteorologie, Hamburg, Germany, 2003.

    Google Scholar 

  • A. Tarantola. Inverse Problem Theory—Methods for Data Fitting and Model Parameter Estimation. Elsevier Science, New York, 1987.

    Google Scholar 

  • T. Vukićević, B. H. Braswell, and D. Schimel. A diagnostic study of temperature controls on global terrestrial carbon exchange. Tellus, 53B(2):150-170, 2001.

    Google Scholar 

  • Y. P. Wang, R. Leuning, H. Cleugh, and P. A. Coppin. Parameter estimation in surface exchange models using non-linear inversion: How many parameters can we estimate and which meas-urements are most useful? Glob. Change Biol., 7:495-510, 2001.

    Article  Google Scholar 

  • M. Williams, P. A. Schwarz, B. E. Law, J. Irvine, and M. R. Kurpius. An improved analysis of forest carbon dynamics using data assimilation. Glob. Change Biol., 11:89-105, 2005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Kaminski, T., Rayner, P.J. (2008). Assimilation and Network Design. In: Dolman, A.J., Valentini, R., Freibauer, A. (eds) The Continental-Scale Greenhouse Gas Balance of Europe. Ecological Studies, vol 203. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76570-9_3

Download citation

Publish with us

Policies and ethics