Skip to main content

Enhancing Anomaly Detection Using Temporal Pattern Discovery

  • Chapter
  • First Online:
Advanced Intelligent Environments

Abstract

Technological enhancements aid development and research in smart homes and . The temporal nature of data collected in a smart environment provides us with a better understanding of patterns that occur over time. Predicting events and detecting anomalies in such data sets is a complex and challenging task. To solve this problem, we suggest a solution using temporal relations . Our temporal pattern discovery algorithm, based on Allen’s temporal relations , has helped discover interesting patterns and relations from data sets. We hypothesize that machine learning algorithms can be designed to automatically learn models of resident behavior in a and, when these are incorporated with temporal information , the results can be used to detect anomalies. We describe a method of discovering temporal relations in data sets and applying them to perform anomaly detection on the frequently occurring events by incorporating information shared by the activity. We validate our hypothesis using empirical studies based on the data collected from real resident and virtual resident (synthetic) data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal, R. and Srikant, R. (1995). Mining Sequential Patterns. In Proceedings of the International Conference on Data Engineering, pages 3–14.

    Google Scholar 

  • Allen, J. F. and Ferguson, G. (1994). Actions and Events in Interval Temporal Logic. Journal of Logic and Computation, 4(5):531–579.

    Article  MATH  MathSciNet  Google Scholar 

  • Dekhtyar, A., Ross, R., and Subrahmanian, V. S. (2001). Probabilistic Temporal Databases, I: Algebra. ACM Transactions on Database Systems, 26(1):41–95.

    Article  MATH  Google Scholar 

  • Gottfried, B., Guesgen, H. W., and Hubner, S. (2006). Spatiotemporal Reasoning for Smart Homes. In Designing Smart Homes, pages 16–34. Springer, Berlin / Heidelberg.

    Google Scholar 

  • Gross, J. (August 14, 2007). A Grass-Roots Effort to Grow Old at Home. In The New York Times.

    Google Scholar 

  • Jakkula, V., Crandall, A., and Cook, D. J. (2007). Knowledge Discovery in Entity Based Smart Environment Resident Data Using Temporal Relations Based Data Mining. In Proceedings of the ICDM Workshop on Spatial and Spatio-Temporal Data Mining.

    Google Scholar 

  • Lanspery, S., Callahan, Jr., J. J., Miller, J. R., and Hyde, J. (1997). Introduction: Staying Put. In Staying Put: Adapting the Places Instead of the People, pages 1–22. Baywood Publishing Company, Amityville, NY.

    Google Scholar 

  • Morchen, F. (2006). Algorithms for Time Series Mining. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 668–673.

    Google Scholar 

  • Noble, C. and Cook, D. J. (2003). Graph-Based Anomaly Detection. In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

    Google Scholar 

  • Pollack, M., Brown, L., Colbry, D., McCarthy, C., Orosz, C., Peintner, B., Ramakrishnan, S., and Tsamardinos, I. (2003). Autominder: An Intelligent Cognitive Orthotic System for People with Memory Impairment. Robotics and Autonomous Systems, 44(3-4):273–282.

    Article  Google Scholar 

  • Ryabov, V. and Puuronen, S. (2001). Probabilistic Reasoning about Uncertain Relations Between Temporal Points. In Proceedings of the 8th International Symposium on Temporal Representation and Reasoning, pages 35–40.

    Google Scholar 

  • Wang, H. (2006). Digital Home Health – A Primer. In Parks Associates.

    Google Scholar 

  • Worboys, M. F. and Duckham, M. (2002). Integrating Spatio-Thematic Information. In Proceedings of the International Conference on Geographic Information Science, pages 346–361.

    Google Scholar 

  • Youngblood, G. M. and Cook, D. J. (2007). Data Mining for Hierarchical Model Creation. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 37(4):1–12.

    Article  Google Scholar 

  • Youngblood, G. M., Holder, L. B., and Cook, D. J. (2005). Managing Adaptive Versatile Environments. Journal of Pervasive and Mobile Computing, 1(4):373–403.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikramaditya R. Jakkula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag US

About this chapter

Cite this chapter

Jakkula, V.R., Crandall, A.S., Cook, D.J. (2009). Enhancing Anomaly Detection Using Temporal Pattern Discovery. In: Kameas, A., Callagan, V., Hagras, H., Weber, M., Minker, W. (eds) Advanced Intelligent Environments. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-76485-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-76485-6_8

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-76484-9

  • Online ISBN: 978-0-387-76485-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics