Skip to main content

Films Based on Biopolymer from Conventional and Non-Conventional Sources

  • Conference paper
Food Engineering: Integrated Approaches

Edible films are thin materials based on biopolymers. These films are also biodegradable and because of that, these materials have attracted the attention of the food science academic community in the last decades. The main biopolymers used in the edible films production are polysaccharides (Nisperos-Carriedo, 1994) and proteins (Gennadios et al., 1996).

The polysaccharide most used in edible film technology is starch, because it is produced abundantly and is inexpensive. But other polysaccharides, such as chitosan and some cellulose derivates, have been also studied. Normally, proteins produced industrially, such as soja and gelatin from mammals, are largely applied in film production. However, some proteins from less conventional sources, such as muscle proteins, gelatin from fish, and feather keratins, have also been studied in the last several years. Thus, this work will present and discuss some aspects of edible and/or biodegradable film technology based on biopolymers from conventional or less conventional resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almeida, A.V., and Arancibia M.Y., 2005, Desarrollo de Una Tecnología para la Obtención de Quitina y Quitosano a Partir del Caparazón de Camarón (Penaeus Vannamei). Thesis, Universidad Técnica de Ambato-Facultad de Ciencia e Ingeniería en Alimentos, Ambato. p110.

    Google Scholar 

  • Alvarado, J. de D., Almeida, A.V., and Arancibia M.Y., 2005, Permeabilidad al Vapor de Agua de Películas Biodegradables de Quitosano Obtenido de Caparazones de Camarón, Ciencia y Tecnología 4(2):39–47.

    Google Scholar 

  • Alvarado, J. de D., Almeida, A., Arancibia, M., Aparecida de Carvalho, R., Sobral, P.J. A., Quinta Barbosa Habitante, A.M., Monterrey-Quintero, E.S., and Sereno A., 2006, Método Directo para la Obtención le Quitosano de Desperdicios de Camarón para la Elaboración de Películas Biodegradables, Pesquisa Agropecuária Brasileira (submitted).

    Google Scholar 

  • Arai, K.M., Takahashi, R., Yokote, Y., and Akahane K., 1983, Amino-Acid Sequence of Feather Keratin from Fowl, Eur. J. Biochem. 32:501–510.

    Google Scholar 

  • Argukelles, W., Monal, F., Goycoolea, C., Peniche, I., and Higuera C., 1998, Rheological Study of The Chitosan/Glutaraldehyde Chemical Gel System, Polymer Gels Netw. 6:429–440.

    Google Scholar 

  • Arvanitoyannis I.S., 2002, Formation and Properties of Collagen and Gelatin Films and Coatings, in: Protein-Based Films and Coatings. A. Gennadios (ed.), CRC Press, Boca Ratón, pp. 275–304.

    Google Scholar 

  • Arvanitoyannis I., and Biliaderis C.G., 1998, Physical Properties of Polyol-Plasticized Edible Films Made from Sodium Caseinate and Soluble Starch Blends, Food Chem. 6(3):333–342.

    Google Scholar 

  • Arvanitoyannis, I., Psomiadou, E., and Nakayama A., 1996, Edible Films Made from Sodium Caseinate, Starch, Sugars or Glycerol. Part. 1. Carbohydr. Polym. 31:179–192.

    Google Scholar 

  • Arvanitoyannis, I., Psomiadou, E., Nakayama, A., and Yamamoto N., 1997, Edible Films Made from Gelatin, Soluble Starch and Polyols, Part. 3. Food Chem. 60:593–604.

    CAS  Google Scholar 

  • Asghar, A., and Henrickson, R L., 1982, Chemical, Biochemical, Functional, and Nutritional Characteristics of Collagen in Food Systems, in: Advances in Food Research, vol. 28. Academic Press, London, pp. 232–372.

    Google Scholar 

  • ASTM, 1996, Standard Test Methods for Water Vapor Transmission of Material, E96–95. Annual book of ASTM. Philadelphia.

    Google Scholar 

  • ASTM, D584–96, 1997, Standard Test Methods for Wool Content of Raw Wool, in: Annual Book of ASTM Standards, (1–5), ASTM, Philadelphia.

    Google Scholar 

  • ASTM, D4092, (1996), Standard Terminology: Plastics: Dynamic Mechanical Properties, ASTM, Philadelphia.

    Google Scholar 

  • Bertan, L.C., Tanada-Palmu, P.S., Sian, A.C., and Grosso C.R.F., 2005, Effect of Fatty Acids and Brazilian elemi on Composite Films Based on Gelatin, Food Hydrocolloid. 19(1):73–82.

    CAS  Google Scholar 

  • Buonocore, G.G., Conte, A., and Del Nobile M.A., 2005, Use of a Mathematical Model to Describe the Barrier Properties of Edible Films, J. Food Sci. 70(2):E142–E147.

    CAS  Google Scholar 

  • Butler, B., Vergano, R., Testin, R., Bunn, J., and Wiles J., 1996, Mechanical and Barrier Properties of Edible Chitosan Films as Affected by Composition and Storage, J. Food Sci. 61(5):953–961.

    CAS  Google Scholar 

  • Caner, C., Vergano, P., and Wiles J., 1998, Chitosan Film Mechanical and Permeation Properties as Affected by Acid, Plasticizer, and Storage, J. Food Sci. 63(6):1049–1053.

    CAS  Google Scholar 

  • Chen, M., Yeh, H., and Chiang B., 1996, Antimicrobial and Physicochemical Properties of Methylcellulose and Chitosan Films Containing a Preservative, J. Food Process. Preserv. 20:379–390.

    CAS  Google Scholar 

  • Chen, R.H., and Lin J.H., 1994, Relationships Between the Chain Flexibilities of Chitosan Molecules and the Physical Properties of Their Casted Films, Carbohydr. Polym. 24:41–46.

    CAS  Google Scholar 

  • Cho, S.M., Gu, Y.S., and Kim S.B., 2005, Extracting Optimization and Physical Properties of Yellowfin Tuna (Thunnus Albacares) Skin Gelatin Compared to Mammalian Gelatins, Food Hydrocoloid. 19(2):221–229.

    CAS  Google Scholar 

  • Cho, S.M., Kwak, K.S., Park, D.C., Gu, Y.S., Ji, C.I., Jang, D.H., Lee, Y.B., and Kim S.B., 2004, Processing Optimization and Functional Properties of Gelatin from Shark (Isurus oxyrinchus) Cartilage. Food Hydrocoloid. 18(4):573–579.

    CAS  Google Scholar 

  • Cho, S.Y., and Rhee C., 2004, Mechanical Properties and Water Vapor Permeability of Edible Films Made from Fractions Soy Proteins with Ultrafiltration, Lebensm.- Wiss. U.-Technol. 37:833–839.

    CAS  Google Scholar 

  • Choi, W., Park, H., Ahn, D.J., Lee, J. and Lee C., 2002, Wettability of Chitosan Coating Solution on “Fuji” Apple Skin, J. Food Sci. 67(7):2668–2672.

    CAS  Google Scholar 

  • Choi, W.S., and Han, J.H., 2002, Film-Forming Mechanism and Heat Desnaturation Effects on the Physical and Chemical Properties of Pea-Protein-Isolate Edible Films, J. Food Sci., 67:1399–1406.

    CAS  Google Scholar 

  • Colla, E., do Amaral Sobral, P.J., and Cecília Menegalli F., 2006, Amaranthus cruentus Flour Edible Films: Influence of Stearic Acid Addition, Plasticizer Concentration, and Emulsion Stirring Speed on Water Vapor Permeability and Mechanical Properties, Agric. Food Chem. 54 (18):6645–6653.

    CAS  Google Scholar 

  • Cunningham, P., Ogale, A., Dawson, P., and Acton J., 2000, Tensile Properties of Soy Protein Isolate Films Produced by a Thermal Compaction Technique, J. Food Sci. 65(4):668–671.

    CAS  Google Scholar 

  • Cuq, B., Aymard, C., Cuq, J.L., and Guilbert S., 1995, Edible Packaging Films Based on Fish Myofibrillar Proteins: Formation and Functional Properties, J. Food Sci. 60:1369–1374.

    CAS  Google Scholar 

  • Cuq, B., Gontard, N., Cuq, J.L., and Guilbert S., 1996a, Stability Of Myofibrillar Protein-Based Biopackagings During Storage, Lebensm.-Wiss.-und-Tech. 29:344–348.

    CAS  Google Scholar 

  • Cuq, B., Gontard, N., Cuq, J.L., and Guilbert S., 1996b, Functional Properties of Myofibrilar Protein-Based Biopackaging as Affected by Film Thickness, J. Food Sci. 61:580–584.

    CAS  Google Scholar 

  • Cuq, B., Gontard, N., Cuq, J.L., and Guilbert S., 1997, Selected Functional Properties of Fish Myofibrillar Protein-Based Films as Affected by Hydrophilic Plasticizers, J. Agric. Food Chem. 45:622–626.

    CAS  Google Scholar 

  • Cuq, B., Gontard, N., and Guilbert S., 1998, Proteins as Agricultural Polymers for Packaging Production, Cereal Chem. 75:1–9.

    CAS  Google Scholar 

  • Debeaufort, F., and Voilley A., 1997, Methylcellulose-Based Edible Films and Coatings: 2. Mechanical and Thermal Properties as a Function of Plasticizer Content, J. Agric. Food Chem. 45:685–689.

    CAS  Google Scholar 

  • Devlieghere, F., Vermeulen, A., and Debevere J., 2004, Chitosan: Antimicrobial Activity, Interactions with Food Components and Applicability as a Coating on Fruit and Vegetables. Food Microbiol. 21:703–714.

    CAS  Google Scholar 

  • Djabourov, M., Lechaire, J. and Gaill F., 1993, Structure and Rheology of Gelatin and Collagen Gels, Biorheology 30:191–205.

    CAS  Google Scholar 

  • Donhowe, I.G., and Fennema O., 1993a, The Effects of Plasticizers on Crystallinity, Permeability and Mechanical Properties of Methylcellulose Films, J. Food Process. Preserv. 17:247–258.

    CAS  Google Scholar 

  • Donhowe, I.G., and Fennema, O., 1993b, The Effects of Solution Composition and Drying Temperature on Crystallinity, Permeability and Mechanical Properties of Methylcellulose Films, J. Food Process. Preserv. 17:231–246.

    CAS  Google Scholar 

  • Fukushima D., 1991, Recent Progress of Soybean Protein Foods: Chemistry, Technology, and Nutrition, Food Rev. Intern. 7:323–351.

    CAS  Google Scholar 

  • Galed, G., Martínez, A. García, C., and Heras A., 2000, Relationship Between Physicochemical Characteristics and Functional Properties of Different Chitosans, in: Memorias del Primer Simposio Latinoamericano de Quitina y Quitosano, La Habana. pp. 400–405.

    Google Scholar 

  • Garcia, F.T., and Sobral P.J.A., 2005, Effect of the Thermal Treatment of the Filmogenic Solution on the Mechanical Properties, Color and Opacity of Films Based on Muscle Proteins of Two Varieties of Tilapia, Lebensm.-Wiss.-und-Tech. 38(3):289–296.

    CAS  Google Scholar 

  • García, M.A., Pinotti, A., Martino, M., and Zaritzky N., 2004, Characterization of Composite Hydrocolloid Films, Carbohydr. Polym. 56(3):339–345.

    Google Scholar 

  • Gennadios A., 2002, Protein Based Films and Coatings, CRC Press., USA.

    Google Scholar 

  • Gennadios, A., Weller, C.L., Hanna, M.A., and Froning G.W., 1996, Mechanical and Barrier Properties of Egg Albumen Films, J. Food Sci. 61(3):585–589.

    CAS  Google Scholar 

  • Giménez, B., Gómez-Guillén, M.C., and Montero, P., 2005a, The Role of Salt Washing of Fish Skins in Gelatin Extraction, Food Hydrocolloid. 19:951–957.

    Google Scholar 

  • Giménez, B., Turnay, J. Gómez-Guillén, M.C., and Montero P., 2005b, Use of Lactic Acid for Extraction of Fish Skin Gelatin, Food Hydrocolloid. 19:941–950.

    Google Scholar 

  • Gómez-Estaca, J., Gómez-Guillén, M.C., and Montero P., 2006, Alta Presión y Películas Protectoras para Mejorar la Calidad del Pescado Ahumado en Frío, CYTALIA. X Congreso Anual de Ciencia y Tecnología de los Alimentos, Madrid.

    Google Scholar 

  • Gómez-Guillén, M.C., Giménez, B., and Montero P., 2005, Extraction of Gelatin from Fish Skins by High Pressure Treatment, Food Hydrocoloidl. 19:923–928.

    Google Scholar 

  • Gómez-Guillén, M.C., and Montero, P., 2001, Extraction Of Gelatin from Megrim (Lepidorhombus boscii) Skins with Several Organic Acids, J. Food Sci. 66(2):213–216.

    Google Scholar 

  • Gómez-Guillén, M.C., and Montero P., 2003, Potencial del Empleo de Gelatinas de Nuevos Orígenes en la Tecnología de Películas Flexibles, IV Iberoamerican Congress on Food Engineering, Valparaíso.

    Google Scholar 

  • Gómez-Guillén, M.C., Turnay, J., Fernández-Díaz, M.D., Olmo, N., Lizarbe, M.A., and Montero P., 2002, Structural and Physical Properties of Gelatin Extracted from Different Marine Species: A Comparative Study, Food Hydrocolloid. 16:25–34.

    Google Scholar 

  • Gontard, N., Duchez, C., Cuq, J.L., and Guilbert S., 1994, Edible Composite Films of Wheat Gluten and Lipids: Water Vapour Permeability and Other Physical Properties, Int. J. Food Sci. Technol. 29:39–50.

    CAS  Google Scholar 

  • Gontard, N., Guilbert, S., and Cuq J.L., 1993, Water and Glycerol as Plasticizers Affect Mechanical and Water Vapor Properties An Edible Wheat Gluten Film, J. Food Sci. 58(1):206–211.

    CAS  Google Scholar 

  • Gontard N., Marchesseau, S., Cuq, J.L., and Guilbert S., 1995, Water Vapour Permeability of Edible Bilayer Films of Wheat Gluten and Lipids, Int. J. Food Sci. Technol. 30: 49–56.

    CAS  Google Scholar 

  • Grossman, S., and Bergman M., 1992, Process for the Production of Gelatin from Fish Skins. U.S. Patent 5, 093, 474.

    Google Scholar 

  • Gudmundsson, M., and Hafsteinsson H., 1997, Gelatin from Cod Skins as Affected by Chemical Treatments, J. Food Sci. 62:37–39.

    CAS  Google Scholar 

  • Habitante, A.M., Montero, P., Gómez-Guillén, M.C., Sobral, P., and Carvalho R., 2005, Desarrollo de Películas Comestibles Basadas en Gelatinas de Piel de Pescados: Atún Y Fletán, V Iberoamerican Congress on Food Engineering, Puerto Vallarta.

    Google Scholar 

  • Han, C., Lederer, C., McDaniel, M., and Zhao Y., 2005, Sensory Evaluation of Fresh Strawberries (Fragaria ananassa) Coated with Chitosan-Based Edible Coatings, J. Food Sci. 70(3):172–178.

    Google Scholar 

  • Issam, S., Martial-Gros, A., Carnet-Pantiez, A., Grelier, S., and Coma V., 2005, Chitosan Polymer as Bioactive Coating and Film Against Aspergillus Niger Contamination, J. Food Sci. 70(2):101–105.

    Google Scholar 

  • Iwata, K., Ishizaki, S., Handa, A., and Tanaka M., 2000, Preparation and Characterization of Edible Films from Fish Water-Soluble Proteins, Fisheries Sci. 66:372–378.

    CAS  Google Scholar 

  • Johnston-Banks F.A., 1990, Gelatin, in: Food Gels. P. Harris, (ed.), Elsevier Applied Science Publishers, London. pp. 233–289.

    Google Scholar 

  • Jongjareonrak, A., Benjakul, S., Visessanguan, W., and Tanaka M., 2005, Isolation and Characterization of Collagen from Bigeye Snapper (Priacanthus macracanthus) Skin, J. Sci. Food Agr. 85(7): 1203–1210.

    CAS  Google Scholar 

  • Jongjareonrak, A., Benjakul, S., Visessanguan, W., and Tanaka, M., 2006a, Effects of Plasticizers on the Properties of Edible Films from Skin Gelatin of Bigeye Snapper and Brownstripe Red Snapper. Eur. Food Res. Technol. 222(3–4):229–235.

    CAS  Google Scholar 

  • Jongjareonrak, A., Benjakul, S., Visessanguan, W., and Tanaka M., 2006b, Characterization of Edible Films from Skin Gelatin of Brownstripe Red Snapper and Bigeye Snapper, Food Hydrocolloid. 20(4):492–501.

    CAS  Google Scholar 

  • Jongjareonrak, A., Benjakul, S., and Visessanguan W., 2006c, Fatty Acids and Their Sucrose Esters Affect the Properties of Fish Skin Gelatin-Based Film, Eur. Food Res. Technol. 222(5–6):650–657.

    CAS  Google Scholar 

  • Kirk, R., and Othmer N., 1970, Enciclopedia de Tecnología Química. Editorial Hispano Americana, México, 13: 423–428.

    Google Scholar 

  • Krochta, J.M., and De Mulder-Johnston C., 1997, Edible and Biodegradable Polymer Films: Challenges and Opportunities, Food Technol. 51(2): 61–77.

    Google Scholar 

  • Kunte, L.A., Gennadios, A., Cuppett, S.L., Hanna, M.A., and Weller C.L., 1997, Cast Films from Soy Protein Isolates and Fractions, Cereal Chem. 74:115–118.

    CAS  Google Scholar 

  • Lawrence, M.C., Izard, T., Beuchat, M., Blagrove, R.J., and Coleman P.M, 1994, Structure of Phaseolin At 2.2 Angstroms Resolution: Implications for a Common Vicilin/Legumin Structure and the Genetic Engineering of Seed Storage Proteins, J. Mol. Biol. 238:748–776.

    CAS  Google Scholar 

  • Ledward, D.A. 1986. Gelation of Gelatin, in: Functional Properties of Food Macromolecules, J.R. Mitchell, and D.A. Ledward (eds.), Elsevier Applied Science Publishers, London. pp: 171–201.

    Google Scholar 

  • Lee, K.Y., Shim, J., and Lee H.G., 2004, Mechanical Properties of Gellan And Gelatin Composite Films, Carbohydr. Polym. 56:251–254.

    CAS  Google Scholar 

  • López-Caballero, M.E., Gómez-Guillén M.C., Pérez-Mateos, M., and Montero P., 2005, A Chitosan-Gelatin Blend As A Coating For Fish Patties, Food Hydrocolloid. 19:303–311.

    Google Scholar 

  • Mali, S., Grossmann, M.V., García, M.A., Martino, M.N., and Zaritzky N.E., 2002, Microstructural Characterization of Yam Starch Films, Carbohydr. Polym. 50(4):379–386.

    CAS  Google Scholar 

  • Mariniello, L., Di Pierro, P., Esposito, C., Sorrentino, A., Masi, P., and Porta R., 2003, Preparation and Mechanical Properties of Edible Pectin-Soy Flour Films Obtained in the Absence or Presence of Transglutaminase, J. Biotechnol. 102(2): 191–8.

    CAS  Google Scholar 

  • Martelli, S.M., Moore, G.P.R., Paes, S.S., Gandolfo, C.A., and Laurindo J.B., 2006, Influence of Plasticizers on the Water Sorption Isotherms and Water Vapor Permeability of Chicken Feather Keratin Film, Lebensm.- Wiss. U.-Technol. - Food Sci.Technol. 39:292–301.

    CAS  Google Scholar 

  • McHugh, T.H., and Krochta J.M., 1994, Sorbitol vs. Glycerol Plasticized Whey Protein Edible Films: Integrated Oxygen Permeability and Tensile Property Evaluation, J. Agric. Food Chem. 42(4):841–845.

    CAS  Google Scholar 

  • Menegalli, F.C., Sobral, P.J.A., Roques, M.A., and Laurent S., 1999, Characteristics of Gelatin Biofilms in Relation to Drying Process Conditions Near Melting, Drying Tech. 17(7–8):1697–1706.

    CAS  Google Scholar 

  • Miranda P., Garnica, S., and Lara-Sagahon O., 2004, Water Vapor Permeability and Mechanical Properties of Chitosan Composite Films, J. Chilean Chem. Soc. 49(2):173–178.

    CAS  Google Scholar 

  • Monahan, F.J., German, J.B., and Kinsella J.E., 1995, Effect of Ph and Temperature on Protein Unfolding and Thiol/Disulfide Interchange Reactions During Heat-Induced Gelation of Whey Proteins, J. Agric. Food Chem. 43:46–52.

    CAS  Google Scholar 

  • Montero, P., and Gómez-Guillén M.C., 2005, Función Protectora de Películas y Coberturas Basadas en Gelatina de Pescado, V Iberoamerican Congress on Food Engineering, Puerto Vallarta.

    Google Scholar 

  • Monterrey-Quintero, E.S., and Sobral P.J.A., 1999, Caracterização de Propriedades Mecânicas E Óticas de Biofilmes À Base de Proteínas Miofibrilares de Tilápia do Nilo Usando Uma Metodologia de Superfície-Resposta. Ciên. e Tecn. de Alim. 19(2):294–301.

    Google Scholar 

  • Monterrey-Quintero, E.S., and Sobral P.J.A., 2000, Preparo E Caracterização de Proteínas Miofibrilares de Tilápia do Nilo (Oreochromis Niloticus) para Elaboração de Biofilmes. Pesq. Agropec. Bras. 35(1):179–189.

    Google Scholar 

  • Moore, G.R.P., Martelli, S., Gandolfo, C.A, Sobral, P.J.A., and Laurindo J.B., 2006, Influence of the Glycerol Concentration on Some Physical Properties of Feather Keratin Films Food Hydrocolloids, J. Food hydrocolloid. 20(7):975–982.

    CAS  Google Scholar 

  • Muyonga, J.H., Cole, C.G.B., and Duodu K.G., 2004, Extraction and Physico-Chemical Characterisation of Nile Perch (Lates niloticus) Skin and Bone Gelatin, Food Hydrocolloid. 18(4):581–592.

    CAS  Google Scholar 

  • Muzzarelli, R., Baldassarre, V, Conti, F., Ferrara, P., Biagini, G., Gazzanelli, G., and Vasi V., 1988, Biological Activity of Chitosan: Ultrastructural Study, Biomaterials, 9(3):247–252.

    CAS  Google Scholar 

  • Nagano, T., Motohiko, H., Mori, H., Kohyama, K., and Nishinari K., 1992, Dynamic Viscoelastic Study on the Gelation of Conglycinin Globulin from Soybeans, J. Agric. Food Chem. 40:941–944.

    CAS  Google Scholar 

  • Nisperos-Carriedo M.O., 1994, Edible Coatings and Films Based on Polysaccharides, in: Edible Coatings and Films to Improve Food Quality, J.M. Krochta, E.A. Baldwin and M.O. Nisperos-Carriedo (eds.), Technomic Pub., Lancaster. pp. 305–330.

    Google Scholar 

  • Norland, R.E., 1990, Fish Gelatin, in: Advances in Fisheries Technology and Biotechnology for Increased Profitability, M.N. Voight, and J.K. Botta (eds.), Technomic Publishing Co., Lancaster. pp: 325–333.

    Google Scholar 

  • Paschoalick, T.M., Garcia, F.T., Sobral, P.J.A., and Habitante A.M.Q.B., 2003, Characterization of Some Functional Properties of Edible Films Based on Muscle Proteins of Nile Tilapia, Food Hydrocolloid. 17(4):419–427.

    CAS  Google Scholar 

  • Park, H, Weller, C., Vergano, P., and Testin R., 1993, Permeability and Mechanical Properties of Cellulose-Based Edible Films, J. Food Sci. 58(6):1361–1364, 1370.

    CAS  Google Scholar 

  • Parris N., Dickey, L., Kurantz, M.J., Moten, R.O., and Craig J.C., 1997, Water Vapor Permeability and Solubility of Zein/Starch Hydrophilic Films Prepared from Dry Milled Corn Extract, J. Food Eng. 32:199–207.

    Google Scholar 

  • Perez-Gago, M.B., and Krochta, J.M., 2001, Denaturation Time and Temperature Effects on Solubility, Tensile Properties, and Oxygen Permeability of Whey Protein Edible Films, J. Food Sci., 66:705–710.

    CAS  Google Scholar 

  • Petruccelli, S., and Añón M. C., 1995, Partial Reduction of Soy Proteins Isolate Disulfide Bonds, J. Agric. Food Chem. 43:2001–6.

    CAS  Google Scholar 

  • Pinelli Saavedra, A., Toledo Guillén, A., Ezquerra Brauer, I., Luviano Silva, A., and Higuera Ciapara I., 1998, Métodos de Extracción de Quitina a Partir de Cáscara de Camarón, Arch. Lat. Nutr. 48(1):58–61.

    CAS  Google Scholar 

  • Ramírez, M., Rodríguez, A., and Cárdenas R., 1998, Preparación de Hidrolizados Bioactivos de Quitosana a Partir de Diferentes Fuentes. Instituto Nacional de Ciencias Agrícolas, San José de las Lajas (April 30, 2004) http://www.inca.edu.cu.

  • Rayas, L.M., Hernández, R.J., and Ng P.K.W., 1997, Development and Characterization of Biodegradable/Edible Wheat Protein Films, J. Food Sci. 62(1):160–162.

    CAS  Google Scholar 

  • Saunders, R.M., and Becker R., 1984, Amaranthus: A Potential Food and Feed Resource, Adv. Cereal Science Technol. 6:357–396.

    CAS  Google Scholar 

  • Schrooyen, P.M.M., Dijkstra, P.J., Oberthür, R., Bantjes, A., and Feijen J., 2000, Partially Carboxymethylated Feather Keratins. 1. Properties in Aqueous Systems, J. Agric. Food Chem. 48:4326–4334.

    CAS  Google Scholar 

  • Schrooyen, P.M.M., Dijkstra, P.J., Oberthür, R., Bantjes, A., and Feijen J., 2001a, Partially Carboxymethylated Feather Keratins. 2. Thermal and Mechanical Properties of Films, J. Agric. Food Chem. 49:221–230.

    CAS  Google Scholar 

  • Schrooyen, P.M.M., Dijkstra, P.J., Oberthür, R., Bantjes, A., and Feijen J., 2001b, Stabilization of Solutions of Feather Keratins by Sodium Dodecyl Sulfate, J. Colloid Interface Sci. 240:30–39.

    CAS  Google Scholar 

  • Shahidi F., 1994, Seafood Processing By-Products, in: Seafoods Chemistry, Processing, Technology and Quality, F. Shahidi and J.R. Botta (eds.), Blackie Academic & Professional, Glasgow. pp. 320–334.

    Google Scholar 

  • Shellhammer, T.H., and Krochta J.M., 1997, Whey Protein Emulsion Film Performance as Affected by Lipid Type Amount, J. Food Sci. 62(2):390–394.

    CAS  Google Scholar 

  • Shepherd, R., Reader, S., and Falshaw A., 1997, Chitosan Functional Properties, Glycoconjugate J. 14:535–542.

    CAS  Google Scholar 

  • Simon-Lukasik, K.V., and Ludescher R.D., 2004, Erythrosin b Phosphorescence as a Probe of Oxygen Diffusion in Amorphous Gelatin Films, Food Hydrocol. 18(14):621–630.

    CAS  Google Scholar 

  • Smith S.A., 1986, Polyethylene, Low Density, in: The Wiley Encyclopedia of Packaging Technology, M. Bakker (ed.), John Wiley & Sons, New York. pp. 514–523.

    Google Scholar 

  • Sobral, P.J.A., 2000, Influência da Espessura Sobre Certas Propriedades de Biofilmes À Base de Proteínas Miofibrilares, Pesq. Agropec. Bras. 35(6):1251–1259.

    Google Scholar 

  • Sobral, P.J.A., 1999, Propriedades Funcionais de Biofilmes de Gelatina em Função da Espesura, Ciên. Eng. 8(1):60–67.

    Google Scholar 

  • Sobral, P.J.A., Garcia, F.T., Habitante, A.M.Q.B., and Monterrey-Quintero E.S., 2004, Propriedades de Filmes Comestíveis Produzidos com Diferentes Concentrações de Plastificantes e de Proteínas do Músculo de Tilápia-do-Nilo, Pesquisa Agropecuária Brasileira 39(3):255–262.

    Google Scholar 

  • Sobral P.J.A., Menegalli, F.C., Hubinguer, M.D. and Roques M.A., 2001, Mechanical, Water Vapor Barrier and Thermal Properties of Gelatin Based Edible Films, Food Hydrocolloid. 15: 423–32.

    CAS  Google Scholar 

  • Sobral, P.J.A., Monterrey-Quintero, E.S. and Habitante A.M.Q.B., 2002, Glass Transition of Nile Tilapia Myofibrillar Protein Films Plasticized by Glycerin and Water, J. Thermal Anal. Calor. 67: 499–504.

    CAS  Google Scholar 

  • Sobral, P.J.A., and Ocuno D., 2000, Permeabilidade ao Vapor de Água de Biofilmes À Base de Proteínas Miofibrilares de Carne, Braz. J. Food Techn. 3:11–16.

    Google Scholar 

  • Sobral, P.J.A, Ocuno, D., and Savastano Jr, H., 1998, Preparo De Proteínas Miofibrilares de Carne E Elaboração de Biofilmes com Dois Tipos ce Ácidos: Propriedades Mecânicas, Braz. J. Food Techn. 1:(1/2) 44–52.

    CAS  Google Scholar 

  • Sobral, P.J.A., Santos, J.S. and Garcia F.T., 2005, Effect of Protein and Plasticizer Concentrations in Film Forming Solutions on Physical Properties of Edible Films Based on Muscle Proteins of a Thai Tilapia, J. Food Eng. 70 (1):93–100.

    Google Scholar 

  • Souza, S.M.A., Sobral, P.J.A., and Menegali F.C., 2004, Extração de Proteínas Miofibrilares de Carne Bovina para Elaboração de Filmes Comestíveis, Ciência e Tecnologia de Alimentos 24(4):619–626.

    Google Scholar 

  • Srinivasa, P.C., Ramesh, M., Kumar, K, Tharanathan, R., 2004, Properties of Chitosan Films Prepared Under Different Drying Conditions, J. Food Eng. 63:79–85.

    Google Scholar 

  • Taboada, E., Cabrera, G. and Cardenas G., 2003, Retention Capacity of Chitosan for Copper and Mercury Ions, J. Chilean Chem. Soc. 48(1):7–12.

    CAS  Google Scholar 

  • Tanaka M., Iwata K., Sanguandeekul R., Handa, A., and Ishizaki S., 2001, Influence of Plasticizers on the Properties of Edible Films Prepared from Fish Water-Soluble Proteins, Fisheries Sci. 67(2):346–351.

    CAS  Google Scholar 

  • Tanveer, A.K., Kok, K.P. and Hung S.C., 2003, Mechanical, Bioadhesive Strength and Biological Evaluations of Chitosan Films for Wound Dressing, J. Pharm. Pharmaceut. Sci. 3(3):303–311.

    Google Scholar 

  • Tapia-Blácido D., 2006, Biofilms Based In Amaranth Flour, PhD. Thesis, School of Food Engineering, Unicamp, Brazil.

    Google Scholar 

  • Tapia-Blacido, D., Sobral, P.J., and Menegalli F.C., 2005a, Development and Characterization of Biofilms Based on Amaranth Flour (Amaranthus caudatus), J. Food Eng. 67:215–223.

    Google Scholar 

  • Tapia-Blacido, D., Sobral, P.J., and Menegalli F. C., 2005b, Effect of Drying Temperature and Relative Humidity on Mechanical Properties of Amaranth Flour Films Plasticized with Glycerol, Braz. J. Chem. Eng. 22:249–256.

    CAS  Google Scholar 

  • Tharanathan, N.R. and Kittur S.F., 2003, Chitin—The Undisputed Biomolecule of Great Potential, Crit. Rev. Food Sci. 43:61–83.

    CAS  Google Scholar 

  • Thomazine, M., Carvalho, R.A., and Sobral P.I.A., 2005a. Physical Properties of Gelatin Films Plasticized by Blends of Glycerol and Sorbitol, J. Food Sci. 70(3):172–176.

    Google Scholar 

  • Thomazhine, M., Carvalho, R., Habitante, A.M., Sobral, P., Montero P., and Gómez-Guillén M.C., 2005a, Desarrollo de Películas Comestibles Basadas en Gelatinas de Piel de Fletán, V Iberoamerican Congress on Food Engineering, Puerto Vallarta.

    Google Scholar 

  • Trezza, T.A., and Krochta J.M., 2000, Color Stability of Edible Coatings During Prolonged Storage, J. Food Sci. 65(7):1166–1169.

    CAS  Google Scholar 

  • Turhan, K.N., and Sahbaz F., 2004, Water Vapor Permeability, Tensile Properties and Solubility of Methylcellulose-Based Edible Films, J. Food Eng. 61:459–466.

    Google Scholar 

  • Vanin, F.M., Sobral, P.J.A., Menegalli, F.C., Carvalho, R.A., and Habitante A.M., 2005, Effects of Plasticizers and Their Concentrations on Thermal and Functional Properties of Gelatin-Based Films, Food Hydrocolloid. 19(5):899–907.

    CAS  Google Scholar 

  • Vermeiren, L., Devlieghere, F., van Beest, M., de Kruijf, N., and Debevere J., 1999, Developments in the Active Packaging of Foods, Trends Food Sci. Technol. 10:77–86.

    CAS  Google Scholar 

  • Wong, D.W.S., Gastineau, F.A., Gregorski, K.S., Tillin, S.J., and Pavlath A.E., 1992, Chitosan Lipid Films: Microstructure and Surface Energy, J. Agric. Food Chem. 40:540–544.

    CAS  Google Scholar 

  • Wu, T., Zivanovic, S., Draughon, F.A., Conway, W.S., and Sams C.E., 2005, Physicochemical Properties and Bioactivity of Fungal Chitin and Chitosan, J. Agric. Food Chem. 53:3888–3894.

    CAS  Google Scholar 

  • Yamauchi, A., and Yamauchi K., 2002, Formation and Properties of Wool Keratin Films and Coatings, in: Protein Based Films and Catings, A. Gennadios (ed.), CRC Press, Boca Raton. pp. 253–274.

    Google Scholar 

  • Yamauchi, K., Yamauchi, A., Kusunoki, T., Kohda, A., and Konishi Y., 1996, Preparation of Stable Aqueous Solution of Keratins, and Physiochemical and Biodegradational Properties of Films, J. Biomed. Mater. Res. 31:439–444.

    CAS  Google Scholar 

  • Zhou, T., and Regenstein J. M., 2005, Effects of Alkaline and Acid Pretreatments on Alaska Pollock Skin Gelatin Extraction, J. Food Sci. 70(6):392–396.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this paper

Cite this paper

Sobral, P. et al. (2008). Films Based on Biopolymer from Conventional and Non-Conventional Sources. In: Gutiérrez-López, G.F., Barbosa-Cánovas, G.V., Welti-Chanes, J., Parada-Arias, E. (eds) Food Engineering: Integrated Approaches. Food Engineering series. Springer, New York, NY. https://doi.org/10.1007/978-0-387-75430-7_11

Download citation

Publish with us

Policies and ethics