Skip to main content

Snap Bean

  • Chapter
Vegetables II

Part of the book series: Handbook of Plant Breeding ((HBPB,volume 2))

The common bean (Phaseolus vulgaris L.; 2n = 2x = 22) is a member of the family Fabaceae, tribe Phaseoleae, subfamily Papilionoideae. Cultivated forms are grown on all continents except Antarctica (Gepts, 1998). Commonly grown species of Phaseolus are: P. acutifolius A. Gray (tepary bean), P. coccineus L. (scarlet or runner bean), P. lunatus L. (Burma, butter or Lima bean), and P. vulgaris L. (baked, canellini, common, dwarf, flageolet, frijoles, French, kidney, navy, pinto, snap, string, wax, haricot or Nunas bean) (Broughton et al., 2003). Beans main products are dry beans (seeds harvested at complete maturity), shell beans (seeds harvested at physiological maturity, i.e. before the desiccation associated with complete maturity sets in), and green or snap beans (pods harvested before the seed development phase) (Gepts, 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Acquaah, G., Adams, M. W., and Kelly, J. D. 1991. Identification of effective indicators of plant architecture in dry bean. Crop Sci. 31:261-264.

    Article  Google Scholar 

  • Adams, M. W. 1967. Basis of yield component compensation in crop plants with special reference to the field beans Phaseolus vulgaris. Crop Sci. 7:505-510.

    Article  Google Scholar 

  • Allard, R. W. 1961. Relationship between genetic diversity and consistency of performance in different environments.bCrop Sci. 1:127-133.

    Article  Google Scholar 

  • Allard, R. W., and Bradshaw, A. D. 1964. Implications of genotype-environmental interactions in applied plant breeding, Crop Sci. 4:503-508.

    Google Scholar 

  • Al-Mukhtar, F. 1981. Genetics of ovule number per pod, flowering, and association of several traits in Phaseolus vulgaris L. crosses, Diss. Abstr. 4:3306B-3307B.

    Google Scholar 

  • Aragao, F. G. L., and Rech, E. L. 1997. Morphological factors influencing recovery of transgenic bean plants (Phaseolus vulgaris L.) of Carioca cultivar, Inter. J. Plant Sci., 158:157-163.

    Google Scholar 

  • Asencios-Manzanera, M. C., Asencio, C., and Singh, S. P. 2006. Gamete selection for resistance to common and halo bacterial blights in dry bean intergene pool populations, Crop Sci. 46:131-135.

    Google Scholar 

  • Atkin, J. D. 1972. Nature of the stringy pod rogue of snap beans, Phaseolus vulgaris, Search Agric., Geneva, N.Y., 2:1-3.

    Google Scholar 

  • Austin, B., and MacLean, M. S. 1972. A method for screening Phaseolus vulgaris genotypes for tolerance to low temperatures, J. Hort. Sci. 47:279-290.

    Google Scholar 

  • Baggett, J. R. 1995. A historical summary of vegetable breeding at Oregon State Univ., Proc. Oregon Hort. Soc. 86:89-99.

    Google Scholar 

  • Bassett, M. J. 1976. The inheritance of the reclining foliage characteristic of beans and its potential value when combined with long racemes, HortScience 11:238-240.

    Google Scholar 

  • Batzios, D. P., and Roupakias, D. G. 1997. HONEY: A microcomputer program for plant selection and analyses of the honeycomb designs, Crop Sci. 37:744-747.

    Article  Google Scholar 

  • Baudoin, J. P. 1993. Lima bean (Phaseolus lunatus L.), in: Genetic Improvement of Vegetable Crops, G. Kallo, and B. O. Bergh (eds.), Pergamon Press Ltd, Oxford, England, pp. 391-404.

    Google Scholar 

  • Bayuelo-Jimenez, J. S., Debouck, D. G., and Lynch, J. P. 2002a. Salinity tolerance in Phaseolus species during early vegetative growth, Crop Sci. 42:2184-2192.

    Article  Google Scholar 

  • Bayuelo-Jimenez, J. S., Graig, R., and Lynch, J. P. 2002b. Salinity tolerance of Phaseolus species during germination and early seedling growth, Crop Sci. 42:1584-1594.

    Article  Google Scholar 

  • Beaver, J. S., and Kelly, J. D. 1994. Comparison of two selection methods for the improvement of dry bean populations derived from crosses between gene pools, Crop Sci. 34:34-37.

    Article  Google Scholar 

  • Beccera-Velasquez, V. L., and Gepts, P. 1994. RFLP diversity of common bean (Phaseolus vulgaris L) in its centres of origin, Genome 37:256-263.

    Google Scholar 

  • Beebe, S., Cardona, C., Diaz, O., Rodriguez, F., Mancia E., and Ajquejay, S. 1993. Development of common bean (Phaseolus vulgaris L.) lines resistant to the bean pod weevil, Apion Godmani Wagner, in Central America, Euphytica 69:83-88.

    Google Scholar 

  • Beltran, G. E., Jung, G. W., Nienhuis, J., and Bassett, M. J. 2002. Identification of RAPD markers linked to five marker genes (blu, dgs, y, arg, and a flat pod mutant) in common bean, J. Am. Soc. Hortic. Sci. 127:685-688.

    CAS  Google Scholar 

  • Binnie, R. C., and Clifford, P. E. 1981. Flower and pod production in Phaseolus vulgaris, J. Agric. Sci. 97:397-402.

    Google Scholar 

  • Blaylock, A. D. 1995. Navy bean yield and maturity response to nitrogen and zinc, J. Plant Nutr. 18:163-178.

    CAS  Google Scholar 

  • Bliss, F. A. 1971. Inheritance of growth habit and time of flowering in beans, Phaseolus vulgaris L., J. Am. Soc. Hortic. Sci. 96:715-717.

    Google Scholar 

  • Blum, A. 1988. Plant Breeding for Stress Environments, Boca Raton, CRC Press, FL, pp. 223.

    Google Scholar 

  • Borojevic, S. 1990. Principles and Methods of Plant Breeding, Elsevier, Amsterdam, pp. 368.

    Google Scholar 

  • Bos, I., 1983, Some remarks on the honeycomb selection, Euphytica 32:329-335.

    Google Scholar 

  • Boutin, S. R., Young, N. D., Olson, T. C., Yu, Z. H., Shoemaker, R. C., and Vallejos, C. E. 1995. Genome conservation among three legume genera detected with DNA markers, Genome 38:928-937.

    PubMed  CAS  Google Scholar 

  • Bouwkamp, J. C., and Summers, W. L. 1982. Inheritance of resistance to temperature-drought stress in the snap bean, J. Hered. 73:385-386.

    Google Scholar 

  • Bravo, A., Wallace, D. C., and Wilkinson, R. E. 1969. Inheritance of resistance to Fusarium root rot of beans, Phytopathology 59:1930-1933.

    Google Scholar 

  • Brim, C. A. 1966. A modified pedigree method of selection in soybeans, Crop Sci. 6:220.

    Google Scholar 

  • Brothers, M. E., and Kelly, J. D. 1993. Interrelationship of plant architecture and yield components in the pinto bean ideotype, Crop Sci. 33:1234-1238.

    Article  Google Scholar 

  • Broughton, W. J., Hernàdez, G., Blair, M., Beebe, S., Gepts, P., and Vanderleyden, J. 2003. Beans (Phaseolus spp.) model food legumes, Plant Soil 252:55-128.

    CAS  Google Scholar 

  • Burkey, K. O., and Eason, G. 2002. Ozone tolerance in snap bean in associated with elevated ascorbic acid in the leaf apoplast, Physiol. Plant. 114:387-394.

    PubMed  CAS  Google Scholar 

  • Carozzi, N. B., and Koziel, M. G. 1997. Advances in Insect Control: The Role of Transgenic Plants, Taylor and Francis Inc., New York, U.K.

    Google Scholar 

  • Carpenter, A. C., and Board, J. E. 1997a. Branch yield components controlling soybean yield stability across plant populations, Crop Sci. 37:885-891.

    Article  Google Scholar 

  • Carpenter, A. C., and Board, J. E. 1997b. Growth dynamic factors controlling soybean yield stability across plant populations, Crop Sci. 37:1520-1526.

    Article  Google Scholar 

  • Cattan-Toupance, I., Michalakis, Y., and Neema, C. 1998. Genetic structure of wild bean populations in their South-Andean centre of origin, Theor. Applied Genet. 96:844-851.

    CAS  Google Scholar 

  • Cerna, J., and Beaver, J. S. 1990. Inheritance of early maturity of indeterminate dry bean, Crop Sci. 30:1215-1218.

    Article  Google Scholar 

  • Chung, W. J., Baggett, J. R., and Rowe, K. E. 1991. Inheritance of pod cross-section in beans (Phaseolus vulgaris L.), Euphytica 53:159-164.

    Google Scholar 

  • CIAT, 1992 (Centro International del Agricultura Tropical), Constraints to and opportunities for improving bean production. A planning document 1993-1998 and an achieving document 1987-1992, CIAT, Cali, Columbia.

    Google Scholar 

  • Cichy, K. A., Foster, S., Grafton, K. F., and Hosfield, G. L. 2005. Inheritance of seed zinc accumulation in navy bean, Crop Sci. 45:864-870.

    CAS  Google Scholar 

  • Cook, D. R. 1999. Medicago truncatula - a model in the making, Current Opinion in Plant Biology 2:301-304.

    PubMed  CAS  Google Scholar 

  • Coyne, D. P. 1966. The genetics of photoperiodism and the effect of temperature on the photoperiodic response for time of flowering in Phaseolus vulgaris L. varieties, Proc. Am. Soc. Hortic. Sci. 89:350-360.

    Google Scholar 

  • Coyne, D. P. 1967. Photoperiodism: Inheritance and lingage studies in Phaseolus vulgaris, J. Hered. 58:313-314.

    Google Scholar 

  • Coyne, D. P., and Mattson, R. H. 1964. Inheritance of time of flowering and length of blooming period in Phaseolus vulgaris L, Proc. Am. Soc. Hortic. Sci. 85:366-373.

    Google Scholar 

  • Coyne, D. P., and Schuster, M. L. 1974. Linkage studies of plant habit, photoperiod response and tolerance to Xanthomonas phaseoli in beans (Phaseolus vulgaris), HortScience 9:292 (Abstr.).

    Google Scholar 

  • Clothers, S. E., and Westermann, D. T. 1976. Plant spacing effects on the seed yield of Phaseolus vulgaris L., Agron. J. 68:958-960.

    Article  Google Scholar 

  • Currence, T. M. 1931. A new pod color in snap beans, J. Hered. 22:21-23.

    Google Scholar 

  • Davis, D. W., and Frazier, W. A. 1966. Inheritance of some growth habit components in certain types of bush lines of Phaseolus vulgaris L., Proc. Am. Soc. Hortic. Sci. 88:384-392.

    Google Scholar 

  • De Clercq, J. M., Zambre, M., Van Montagu, M., Dillen, W., and Angemon, G. 2002. An optimized Agrobacterium-mediated transformation procedure for Phaseolus acutifolius A. Gray, Plant Cell Rep. 2:333-340.

    Google Scholar 

  • Deakin, J. R. 1974. Association of seed color with emergence and seed yield of snap beans, J. Am. Soc. Hortic. Sci. 99:110-114.

    Google Scholar 

  • Debouck, D. G. 1991. Systematics and morphology, in: Common Beans: Research for Crop Improvement, A. van Schoonhoven, and O. Voysest, eds., CAB International, Wallingford, Oxon, U.K., pp. 55-118.

    Google Scholar 

  • Debouck, D. G. 1999. Diversity in Phaseolus species in relation to the common bean, in: Common Bean Improvement in the Twenty-First Century, S. P. Singh, ed., Kluwer Academic Publ., Dordrecht, the Netherlands, pp. 25-52.

    Google Scholar 

  • Debouck, D. G. 2000. Biodiversity, ecology, and genetic resources of Phaseolus beans - Seven answered and unanswered questions, in: Proc. of the 7th MAFE Inter. Workshop on Genetic Resources, Part 1. Wild Legumes, AFFRC and NIAR, Japan, pp. 95-123.

    Google Scholar 

  • Debouck, D. G., and Smartt, J. 1995. Beans, Phaseolus spp. (Leguminosae-Papilionoideae), in: Evolution of Crop Plants, J. Smartt, and N. W. Simmonds, eds., 2nd ed., Longman, London, U.K., pp. 287-294.

    Google Scholar 

  • Dekkers, I. C. M., and Hospital, F. 2002. The use of molecular genetics in the improvement of agricultural populations, Nature Rev. Genetics 3:22-32.

    PubMed  CAS  Google Scholar 

  • Delgado-Salinas, A., Bruneau, A., and Doyle, J. J. 1993. Chloroplast phylogenetic studies in New World Phaseolinae (Leguminosae: Papilionoideae: Phaseoleae), Syst. Bot. 18:6-17.

    Google Scholar 

  • Delgado-Salinas, A., Turley, T., Richman, A., and Lavin, M. 1999. Phylogenetic analysis of the cultivated and wild species of Phaseolus (Fabaceae), Syst. Bot. 24:438-460.

    Google Scholar 

  • Detongon, J., and Baggett, J. R. 1989. Inheritance of stem elongation tendency in determinate forms of common bean, J. Am. Soc. Hortic. Sci. 114:115-117.

    Google Scholar 

  • Dickson, M. H. 1975. Inheritance of transverse cotyledon cracking resistance in snap beans (Phaseolus vulgaris L.), J. Am. Soc. Hortic. Sci. 100:231-233.

    Google Scholar 

  • Dickson, M. H., and Boettger, M. A. 1984a. Emergence growth and blossoming of bean at suboptimal temperatures, J. Am. Soc. Hortic. Sci. 109:257-260.

    Google Scholar 

  • Dickson, M. H., and Boettger, M. A. 1984b. Effects of high and low temperatres on pollen germination and seed set in snap beans, J. Am. Soc. Hortic. Sci. 109:372-374.

    Google Scholar 

  • Dickson, M. H., and Petzoldt, R. 1987. Inheritance of low temeperature tolerance in beans at several growth stages, HortScience 22:481-483.

    Google Scholar 

  • Dickson, M. H., and Petzoldt, R. 1988. Deleterious effects of white seed due to p gene in beans, J. Am. Soc. Hortic. Sci. 113:111-114.

    Google Scholar 

  • Dinneny, J. R., and Yanofsky, M. F. 2004. Drawing lines and borders: how the dehiscent fruit of Arabidopsis is patterned, BioEssays 27:42-49.

    Google Scholar 

  • Donald, C. M., and Hamblin, J. 1976. The biological yield and harvest index of cereals as agronomic and plant breeding criteria, Adv. Agron. 28:361-405.

    Google Scholar 

  • Dubetz, S., and Mahalle, P. S. 1969. Effects of soil water stress on bush beans Phaseolus vulgaris L. at three growth stages, J. Am. Soc. Hortic. Sci. 94:479-481.

    Google Scholar 

  • Dudley, J. W., and Lambert, R. J. 1992. Ninety generations of selection for oil and protein in maize, Maydica 37:81-87.

    Google Scholar 

  • Duvick, D. N. 1992. Genetic contributions to advances in yield of U.S. maize, Maydica 37:69-79.

    Google Scholar 

  • Duvick, D. N. 1996. Plant breeding an evolutionary concept, Crop Sci. 36:539-548.

    Article  Google Scholar 

  • Duvick, D. N. 1997. Genetic rates of gain in hybrid maize yield, during the past 40 years, Maydica 22:187-196.

    Google Scholar 

  • Edmeades, G. O., and Daynard, T. B. 1979. The relationship between final yield and photosynthesis at flowering in individual maize plants, Can. J. Plant Sci. 59:585-601.

    Article  Google Scholar 

  • Elliott, M. L., Des Jardin, E. A., BatsonJr, W. E., Caceres, J., Brannen, P. M., Howell, C. R., Benson, D. M., Conway, K. E., Rothrock, C. S., Schneider, R. N., Ownley, B. H., Canaday, C. H., Keinath, A. P., Huber, D. M., Summer, D. R., Motsenbocker, C. E., Thaxton, M. A., Cubeta, M. A., Adams, P. D., Backman, P. A., Fajardo, J., Newman, M. A., and Pereira, R. M. 2001. Viability and stability of biological control agents on cotton and snap bean seeds, Pest Manag. Sci. 57:695-706.

    CAS  Google Scholar 

  • Ellis, R. H., Hong, T. D., and Roberts, E. H. 1985a. Handbook of Seed Technology for Genebanks, Vol. I. Principles and Methodology, IBPGR, Rome, pp. 210.

    Google Scholar 

  • Ellis, R. H., Hong, T. D., and Roberts, E. H. 1985b. Handbook of Seed Technology for Genebanks, Vol. II. Compendium of Specific Germination, Information and Test Recommendations, IBPGR, Rome, pp. 667.

    Google Scholar 

  • Esquinas-Alcàzar, J. T. 1993. Plant genetic resources, in: Plant Breeding, Principles and Prospects, M. D. Hayward, N. O. Bosemark, and I. Romagosa, eds., Chapman and Hall, London, U.K., pp. 33-51.

    Google Scholar 

  • Evans, A. M. 1976. Beans, Phaseolus spp. (Leguminosae-Papilionacae), in: Evolution of Crop Plants, N. W. Simmonds, ed., Longman Group Limited, London, pp. 168-172.

    Google Scholar 

  • Evans, L. T. 1980. The natural history of crop yield, Am. Sci. 68:388-397.

    Google Scholar 

  • Evans, L. T. 1993. Crop Evolution Adaption and Yield, Cambridge, University Press, U.K., pp. 500.

    Google Scholar 

  • Evans, L. T., and Fischer, R. A. 1999. Yield potential: its definition, measurement and significance, Crop Sci. 39:1544-1551.

    Article  Google Scholar 

  • FAO, 2006. Food and Agricultural Organization, http://apps.fao.org/cgi-bin/nph-db.pl subset = agriculture.

  • Farlas-Rodriguez, R., Melllor, R. B., Arias, C., and Peña Cabriales, J. 1998. The accumulation of trehalose in nodules of several cultivars of common bean (Phaseolus vulgaris L.) with resistance to drought stress, Physiol. Plant. 102:353-359.

    Google Scholar 

  • Farlow, P. J., Dyth, D. E., and Kruger, N. S. 1979. Effect of temperature on seed set and in vitro pollen germination in french bean (Phaseolus vulgaris), Austral. J. Exper. Agr. Anim. Husb. 19:725-731.

    Google Scholar 

  • Fasoula, V. A., and Fasoula, D. A. 2000. Honeycomb breeding: Principles and applications, Plant Breed. Rev. 18:177-250.

    CAS  Google Scholar 

  • Fasoula, V. A., and Fasoula, D. A. 2002. Principles underlying genetic improvement for high and stable crop yield potential, Field Crops Res. 75:191-209.

    Google Scholar 

  • Fasoulas, A. C. 1973. A New Approach to Breeding Superior Yielding Varieties, Publ. 3, Dept. of Genetics and Plant Breeding, Aristotelian Univ. of Thessaloniki, Greece.

    Google Scholar 

  • Fasoulas, A. C. 1977. Field Designs for Genotypic Evaluation and Selection, Publ. 7, Dept. of Genetics and Plant Breeding, Aristotelian Univ. of Thessaloniki, Greece, pp. 61.

    Google Scholar 

  • Fasoulas, A. C. 1988. The Honeycomb Methodology of Plant Breeding, A. C. Fasoulas, ed., Thessaloniki, Greece, pp. 167.

    Google Scholar 

  • Fasoulas, A. C. 1993. Principles of Crop Breeding, A. C. Fasoulas, ed., Thessaloniki, Greece, pp. 127.

    Google Scholar 

  • Fasoulas, A. C. 1997. Overcoming inbred line stagnation for productivity and stability in maize breeding, in: Proc. of the XVIIth Conferecne on Genetics, Biothechnology and Breeding of Maize and Sorghum, A. S. Tsaftaris, ed., The Royal Soc. Chem., Cambridge, U.K., pp. 115-124.

    Google Scholar 

  • Fasoulas, A. C., and Fasoula, V. A. 1995. Honeycomb selection designs, Plant Breed. Rev. 13:87-139.

    Google Scholar 

  • Ferrandiz, C. 2002. Regulation of fruit dehiscence in Arabidopsis, J. Exp. Bot. 53:2031-2038.

    PubMed  CAS  Google Scholar 

  • Fowler, D. B., Limin, A. E., and Richie, I. I. 1999. Low-temperature tolerance to cereals: Model and genetic interpretation, Crop Sci. 39:626-633.

    Article  Google Scholar 

  • Frazier, W. A., Baggett, J. R., and Sistrunk, W. A. 1958. Transfer of certain blue lake pole bean pod characters to bush beans, J. Am. Soc. Hortic. Sci. 71:416-421.

    Google Scholar 

  • Garber, K., Bilic, I., Pusch, O., Tohme, J., Bachmair, A., Schweizer, D., and Jantsch, V. 1999. The Tpv 2 family of retrotransposons of Phaseolus vulgaris: structure, integration characteristics and use of genotype classification, Plant Mol. Biol. 39:797-807.

    CAS  Google Scholar 

  • Gardner, C. O. 1961. An evaluation of effects of mass selection and seed irradiation with the thermal neutrons on yield of corn, Crop Sci. 1:241-245.

    Article  Google Scholar 

  • Gepts, P. 1988. A middle American and an Andean common bean pool, in: Genetic Resources of Phaseolus Beans, P. Gepts, eds., Kluwer Academic Publ., Dordrecht, the Netherlands, pp. 375-390.

    Google Scholar 

  • Gepts, P. 1990. Biochemical evidence bearing on the domestication of Phaseolus (Fabaceae) beans, Econ. Bot. 44:28-38.

    Google Scholar 

  • Gepts, P. 1998. Origin and evolution of common bean: Past events and recent trends, HortScience 33:1124-1130.

    Google Scholar 

  • Gepts, P. 1999. Development of an integrated linkage map, in: Common Bean Improvement in the Twenty-First Century, S. P. Singh, ed., Kluwer Academic Publ., Dordrecht, the Netherlands, pp. 52-92.

    Google Scholar 

  • Gepts, P., and Bliss, F. A. 1985. F1 hybrid weakness in the common bean: Differential geographic origin suggests two gene pools in cultivated bean germplasm, J. Hered. 76:447-450.

    Google Scholar 

  • Gepts, P., and Debouck, D. G. 1991. Origin, domestication and evolution of the common bean, Phaseolus vulgaris L., in: Common Beans: Research for Crop Improvement, A.Van Schoonhoven and O.Voysest, eds., CAB Intern., Wallingford, Oxon, U.K., pp. 7-53.

    Google Scholar 

  • Gepts, P., Kmiecik, K., Pereira, P., and Bliss, F. A. 1988. Dissemination pathways of common bean (Phaseolus vulgaris, L., Fabaceae) deduced from phaseolin electrophoretic variability, I. The Americas, Econ. Bot. 42:73-85.

    Google Scholar 

  • Godwin, I. 2003. Plant germplasm collections as source of useful genes, in: Plant Molecular Breeding, H. J. Newbury, ed., Blackwell Publ., CRC Press, U.K., pp. 134-151.

    Google Scholar 

  • Gonzalez, A. M., Monteagudo, A. B., Casquero, P. A., De Ron, A. M., and Santalla, M. 2006. Genetic variation and environmental effects on agronomical and commercial quality traits in the main European market classes of dry bean, Field Crops Res. 95:336-347.

    Google Scholar 

  • Grafton, K. F., Schneiter, A. A., and Nagle, B. J. 1988. Row spacing population and genotype X row spacing interaction effects on yield and yield components of dry bean, Agron. J. 80:631-634.

    Article  Google Scholar 

  • Graham, P. H., and Ranalli, P. 1997. Common bean (Phaseolus vulgaris L.), Field Crops Res. 53:131-146.

    Google Scholar 

  • Greenway, H., and Munns, R. 1980. Mechanisms of salt tolerance in non-halophytes, Annu. Rev. Plant Physiol. 31:149-190.

    CAS  Google Scholar 

  • Grubben, G. J. H. 1977. Leguminous vegetables, in: Tropical Vegetables and their Genetic Resources, H. D. Tindall , and J. T. Williams, eds., Inter. Board Plant Gen. Res. (IBPGR), Rome, pp. 65-68.

    Google Scholar 

  • Hagedorn, D. J., and Inglis, D. A. 1986. Handbook of Bean Diseases, University of Wisconsin-Extension, Cooperative Extension Publications, Madison, Wisconsin, pp. 25.

    Google Scholar 

  • Hall, A. E. 1992. Breeding for heat tolerance, Plant Breed. Rev. 10:129-168.

    Google Scholar 

  • Hallauer, A. R. 1978. Potential of exotic germplasm for maize improvement, in: Maize Breeding and Genetics, D. B. Walden, eds., John Wiley, New York, pp. 229-247.

    Google Scholar 

  • Hamblin, J., and Evans, A. M. 1976. The estimation of cross yield using early generation and parental yields in dry beans (Phaseolus vulgaris L.), Euphytica 25:515-520.

    Google Scholar 

  • Hardwick, R. C., and Andrews, D. J. 1980. A method or measuring differences between bean varieties in tolerance to sub-optimal temperatures, Ann. Appl. Biol. 95:235-247.

    Google Scholar 

  • Harman, G. E. 1991. Seed treatments for biological control of plant disease, Crop Prot. 10:166-171.

    Google Scholar 

  • Hidalgo, R. 1991. CIAT’s world Phaseolus collection, in: Common Beans: Research for Crop Improvement, A. Van Schoonhoven, and O. Voysest, eds., CAB, Intern., Wallingford, Oxon, U.K., pp. 163-197.

    Google Scholar 

  • Hucl, P., and Scoles, G. J. 1985. Interspecific hybridization in the common bean: a review, HortScience 20:352-357.

    Google Scholar 

  • Humphry, M. E., Konduri, V., and Lambrides, C. J. 2002. Development of a mungbean (Vigna radiata) RFLP linkage map and its comparison with lablab (Lablab purpureus) reveals a high level of colinearity between the two genomes, Theor. Applied Gen. 105:160-166.

    CAS  Google Scholar 

  • Ingram, J., and Bartels, D. 1996. The molecular basis of dehydration tolerance in plants, Annu. Rev. Plant Physiol. Plant Mol. Biol. 47:377-403.

    PubMed  CAS  Google Scholar 

  • Janick, J. 1999. Exploitation of heterosis: Uniformity and stability, in: The Genetics and Exploitation of Heterosis in Crops, ASA-CSSA-SSSA, Madison, pp. 319-333.

    Google Scholar 

  • Jenkins, M. I. 1978. Maize breeding during the development and early years of hybrid maize, in: Breeding and Genetics, D. B. Walden, ed., Proc. Intern. Maize Symp., John Wiley & Sons, New York, pp. 13-28.

    Google Scholar 

  • Jensen, N. F. 1988. Plant Breeding Methodology, Wiley-Interscience, New York, p. 676.

    Google Scholar 

  • Jinks, J. L., and Pooni, H. S. 1976. Predicting the properties of recombinant inbred lines derived by single seed descent, Heredity 36:233-266.

    Google Scholar 

  • Jung, G., Ariyarathne, H. M., Coyne, D. P., and Nienhuis, I. 2003. Mapping QTL for bacterial brown spot resistance under natural infection in field and seedling stem inoculation in growth chamber in common bean, Crop Sci. 43:350-357.

    Article  CAS  Google Scholar 

  • Kaplan, L. 1965. Archaeology and domestication in American Phaseolus beans, Econ. Bot. 19:358-368.

    Google Scholar 

  • Kearsey, M. J., and Luo, Z. W. 2003. Mapping, characterization and development of quantitative trait loci, in: Plant Molecular Breeding, H. J. Newbury, ed., Blackwell Publ. CRC Press, U.K., pp. 1-29.

    Google Scholar 

  • Keinath, A. P., BatsonJr, W. E., Caceres, J., Elliott, M. L., Summer, D. R., Brannen, P. M., Rothrock, C. S., Huber, D. M., Benson, D. M., Conway, K. E., Schneider, R. N., Motsenbocker, C. E., Cubeta, M. A., Ownley, B. H., Canaday, C. H., Adams, P. D., Backman, P. A., and Fajardo, J. 2000. Evaluation of biological and chemical seed treatments to improve stand of snap bean across the southern United States, Crop Prot. 19:501-509.

    CAS  Google Scholar 

  • Kelly, J. D., and Adams, M. W. 1987. Phenotypic recurrent selection in ideotype breeding of pinto beans, Euphytica 36:69-80.

    Google Scholar 

  • Kelly, J. D., Gepts, P., Miklas, P. N., and Coyne, D. P. 2003. Tagging and mapping of genes and QTL and molecular marker-assisted selection for traits of economic importance in bean and cowpea, Field Crops 82:135-154.

    Google Scholar 

  • Klu, J. Y. P. 1997. Induced mutations in winged bean (Phosphocarpus tetragonolobus L. DC) with low tannin content, Euphytica 98:99-107.

    CAS  Google Scholar 

  • Koinange, E. M. K., Singh, S. P., and Gepts, P. 1996. Genetic control of the domestication syndrome in common bean, Crop Sci. 36:1037-1045.

    Article  Google Scholar 

  • Koutsika-Sotiriou, M. 1999. Hybrid seed production in maize, in: Heterosis and Hybrid Seed Production in Agronomic Crops, A. S. Basra, ed., The Haworth press, New York, pp. 25-64.

    Google Scholar 

  • Koutsika-Sotiriou, M., and Karagounis, Ch. 2005. Assessment of maize germplasm, Maydica 50:63-70.

    Google Scholar 

  • Kretchmer, P. J., Laing, D. R., and Wallace, D. H. 1979. Inheritance and morphological traits of a phytochrome-controlled single gene in bean, Crop Sci. 19:605-607.

    Article  Google Scholar 

  • Kretchmer, P. J., Ozbun, J. L., Kaplan, S. L., Laing, D. R., and Wallace, D. H. 1977. Red and far-red light effects on climbing in Phaseolus vulgaris L., Crop Sci. 17:797-799.

    Article  Google Scholar 

  • Kyle, J. H., and Randall, T. E. 1963. A new concept of the hard seed character in Phaseolus vulgaris L. and its use in breeding and inheritance studies, Proc. Am. Soc. Hortic. Sci. 83:461-475.

    Google Scholar 

  • Lamkey, K., and Hallauer, A. R. 1987. Heritability estimated from recurrent selection experiments in maize, Maydica 32:61-78.

    Google Scholar 

  • Lammerts van Bueren, E. T., Struik, P. C., Tiemens-Hulscher, M., and Jacobsen, E. 2003. Concepts of intrinsic value and integrity of plants in organic plant breeding propagation, Crop Sci. 43:1922-1929.

    Article  Google Scholar 

  • Larsen, R. C., and Miklas P. N. 2003. Generation and molecular mapping of the sequence chracterized amplified region marker linked with the Bet gene for resistance to Beet curly top virus in common bean, Phytopathology 94:320-325.

    Google Scholar 

  • Lazcano-Ferrat, I., and Louatt, C. J. 1999. Relationship between relative water content, nitrogen pools, and growth of Phaseolus vulgaris L. and P. acutifolius A. Gray during water deficit, Crop Sci. 39:467-475.

    Article  CAS  Google Scholar 

  • Leakey, C. L. A. 1988. Genotypic and phenotypic markers in coomon bean, in: Genetic Resources of Phaseolus Beans, P. Gepts, ed., Kluwer Academic Publ., Dordrecht, the Netherlands, pp. 245-347.

    Google Scholar 

  • Lee, J. M., Grant, D., Vallejos, C. E., and Shoemaker, R. C. 2001. Genome organization in dicots. II. Arabidopsis as a ‘bridging species’ to resolve genome evolution events among legumes, Theor. Applied Genet. 103:765-773.

    CAS  Google Scholar 

  • Lewis, M. E., and Bliss, F. A. 1994. Tumor formation and glucuronidase expression in Phaseolus vulgaris inoculated with Agrobacterium tumefaciens, J. Am. Soc. Hortic. Sci. 119:361-366.

    CAS  Google Scholar 

  • Leyna, H. K. G., Korban, S. S., and Coyne, D. P. 1982. Changes in patterns of inheritance of flowering time of dry beans in different environments, J. Hered. 73:306-308.

    Google Scholar 

  • Li, Ch., Zhou, A., and Sang, T. 2006. Rice domestication by reducing shattering, Science 311:1036-1039.

    Google Scholar 

  • Lott, J. N. A., Ockenden, I., Raboy, V., and Batten, G. D. 2000. Phytic acid and phosphorous in crop seeds and fruits: a global estimate, Seed Sci. Res. 19:11-33.

    Google Scholar 

  • Mass, E. V., and Hoffman, G. J. 1977. Crop salt tolerance - Current assessment, J. Irrig. Drainage 103:115-134.

    Google Scholar 

  • Mack, H. J., and Hatch, D. L. 1968. Effects of plant arrangement and population density on yield of bush snap beans, Proc. Am. Soc. Hortic. Sci. 92:418-425.

    Google Scholar 

  • Manshardt, R. M., and Bassett, M. J. 1984. Inheritance of stigma position in Phaseolus vulgaris X P. coccineus hybrid populations, J. Hered. 75:45-50.

    Google Scholar 

  • Masaya, P., and White, J. W. 1993. Adaptation to photoperiod and temperature, in: Common Beans: Research for Crop Improvement, A. van Schoonhoven, and O. Voysest, eds., CAB International, Wallingford, Oxon, U.K., pp. 445-500.

    Google Scholar 

  • Mauk, C. S., Breen, P. J., and Mack, H. J. 1983. Yield response of major pod-bearing modes in bush snap beans to irrigation and plant population, J. Am. Soc. Hort. Sci. 108:935-939.

    Google Scholar 

  • Meyer, D. W., and Badaruddin, M. 2001. Frost tolerance of ten seedling legume species at four growth stages, Crop Sci. 41:1838-1842.

    Article  Google Scholar 

  • Miklas, P. N., Delorme, R., and Riley, R. 2003. Identification of QTL conditioning resistance to white mold in snap bean inheritance, J. Am. Soc. Hortic. Sci. 128:567-570.

    Google Scholar 

  • Miklas, P. N., Johnson, W. C., Delorme, R., and Gepts, P. 2001. QTL conditioning physiological resistance and avoidance to white mold in dry bean, Crop Sci. 41:309-315.

    Article  Google Scholar 

  • Moraghan, J. T., and Grafron, K. 1999. Seed-zinc concentration and the zinc-efficiency trait in navy bean, Soil Sci. Soc. Am. J. 63:918-922.

    CAS  Google Scholar 

  • Moreno-Gonzales, J., and Cubero, J. I. 1993. Selection strategies and choice of breeding methods, in: Plant Breeding, Principles and Prospects, M. D. Hayward, N. O. Bosemark, and I. Romagosa, eds., Chapman and Hall, London, U.K., pp. 281-313.

    Google Scholar 

  • Moreno, L. S., Maiti, R. K., Gonzales, A. N., Star, J. V., Froughbakhch, R., and Gonzales, H. G. 2000. Genotypic variability in bean cultivars (Phaseolus vulgaris L.) for resistance to salinity at the seedling stage, Indian Agric. 44:1-12.

    Google Scholar 

  • Motto, M., Sorresi, G. P., and Salamini, F. 1978. Seed size inheritance in a cross between wild and cultivated common beans (Phaseolus vulgaris L.), Genetica 49:31-36.

    Google Scholar 

  • Myers, J. R. 2000. Tomorrow’s snap bean cultivars, in: Bean Rresearch, Production and Utilization, S. P. Singh, ed., Proc. Idaho Bean Workshop, Univ. Idaho, Moscow, ID, pp. 39-51.

    Google Scholar 

  • Myers, J. R., and Baggett, J. R. 1999. Improvement of snap bean, in: Common Bean Improvement in the Twenty-First Century, S. P. Singh, ed., Kluwer Academic Publ., Dordrecht, the Netherlands, pp. 289-329.

    Google Scholar 

  • Newbury, H. J., and Paterson, A. H. 2003. Genomic colinearity and its participation in crop plant improvement, in: Plant Molecular Breeding, H. J. Newbury, ed., Blackwell Publ., CRC Press, U.K., pp. 60-81.

    Google Scholar 

  • Nienhuis, J., and Singh, S. P. 1988. Genetics of seed yield and its components in common bean (Phaseolus vulgaris L.) of Middle American origin, I: General combining ability, Plant Breed. 101:143-154.

    Google Scholar 

  • Ninou, E., and Papakosta, D. 2006. Differentiation among bean cultivars (Phaseolus vulgaris L.) of different use in the agronomic traits and nitrogen and phosphorus use, Master Thesis, Aristotelian University of Thessaloniki, Thessaloniki, Hellas, p. 82.

    Google Scholar 

  • OECD, 2000, OECD Scheme for the control of vegetable seed moving in international trade, in: OECD Seed Schemes ‘2000’, OECD, Paris, pp. 191-215.

    Google Scholar 

  • Olufajo, O. O., Scarisbrick, D. H., and Daniels, R. W. 1981. The effect of pod removal on the reproductive development of Phaseolus vulgaris cv. Provider, J. Agric. Sci. 96:669-676.

    Google Scholar 

  • Omae, H., Kumar, A., Egawa, Y., Kashiwaba, K., and Shono, M. 2005. Midday drop of leaf water content related to drought tolerance in snap bean (Phaseolus vulgaris L.), Plant Prod. Sci. 8:465-467.

    Google Scholar 

  • Otubo, S. T., Ramahlo, M. A. P., de Abreu, A. B., and des Santos, J. B. 1996. Genetic control of low temperature tolerance in germination of the common bean (Phaseolus vulgaris L.), Euphytica 89:313-317.

    Google Scholar 

  • Pandey, S., and Gardner, C. O. 1992. Recurrent selection for population variety, and hybrid improvement in tropical maize, Adv. Agron. 48:2-79.

    Google Scholar 

  • Paredes, O. M., and Gepts, P. 1995. Extensive introgression of Middle American germplasm into Chilean common bean cultivars, Genet. Res. Crop Evol. 42:29:41.

    Google Scholar 

  • Parsons, F. G. 1985. The early history of seed certification, in: The Role of Seed Certification in the Seed Industry, M. B. McDonald, Jr. and W. D. Pardee, eds., Crop Sci. Soc. Am., Spec. Publ. 10., Am. Soc. Agron., Madison, WI., pp. 3-7.

    Google Scholar 

  • Patermiani, E. 1973. Recent studies on heterosis, in: Agricultural Genetics Selected Topics, R. Moav, ed., John Wiley & Sons, New York, pp. 1-22.

    Google Scholar 

  • Patino, H., and Singh, S. P. 1989. Visual selection for seed yield in the F2 and F3 generations of nine common bean crosses, Annu. Rep. Bean Improv. Coop. 32:79-80.

    Google Scholar 

  • Paulitz, T. 1992. Biological control of damping-off diseases with seed treatments, in: Biological Control of Plant Diseases: Progress and Challenges for the Future, E. S. Tjamos, G. C. Papavizas, and R. J. Cook, eds., Plenum Press, New York, pp. 145-156.

    Google Scholar 

  • Pearson, C. 1956. Some aspects of monosomic wheat breeding, Can. J. Bot. 34:60-70.

    Google Scholar 

  • Peirce, L. 1989. Vegetables: Characteristics, Production and Marketing, J. Wiley & Sons, N.Y., pp. 333-343.

    Google Scholar 

  • Poehlman, J. M., and Sleper, D. A. 1995. Breeding Field Crops, 4th ed., Iowa State University Press/Ames, pp. 453-468.

    Google Scholar 

  • Prakken, R. 1934. Inheritance of colors and pod characters in Phaseolus vulgaris L., Genetica 16:177-294.

    Google Scholar 

  • Quinones, F. A. 1969. Relationships between parents and selections in cross of dry beans, Phaseolus vulgaris L, Crop Sci. 9:673-675.

    Google Scholar 

  • Rainey, K. M., and Griffiths, P. D. 2005. Inheritance of heat tolerance during reproductive development in snap bean (Phaseolus vulgaris L.), J. Am. Soc. Hortic. Sci. 130:700-706.

    Google Scholar 

  • Ramalho, M. A. P., dos Santos, J. B., and Pereira Filho, I. 1988. Choice of patterns for dry bean (Phaseolus vulgaris L.) breeding. I. Interaction of mean components by generation and by location, Rev. Bras. Genet. 11:391-400.

    Google Scholar 

  • Rasmusson, D. C., and Phillips, R. I. 1997. Plant breeding progress and genetic diversity from de novo variation and elevated epistasis, Crop Sci. 37:303-310.

    Article  Google Scholar 

  • Robertson, L. D., and Frey, K. J. 1987. Honeycomb design for selection among homozygous oat lines. Crop Sci. 27:1105-1108.

    Article  Google Scholar 

  • Robins, J. S., and Domingo, C. E. 1956. Moisture deficit in ralation to the growth and development of dry beans, Agron. J. 48:67-70.

    Article  Google Scholar 

  • Roman-Avilés, B, Snapp, S. S., and Kelly, J. D. 2004. Assessing root traits associated with root rot resistance in common bean, Field Crops Res. 86:147-156.

    Google Scholar 

  • Romanhernandez, O., and Beaver, J. S. 1996. Optimum stage of development for harvesting green-shelled beans, J. Agric. Univ. Puerto Rico 80:89-94.

    Google Scholar 

  • Rubatzky, V. E., and Yamaguchi, M. 1997. World Vegetables, Principles, Production, and Nutritive Values, Chapman and Hall, ITP, Inter. Thompson Publ. Co., N.Y., pp. 488-498.

    Google Scholar 

  • Schachl, R. 1998. Status of the European Phaseolus database, in: Report of a Working Group IPGRI on Grain Legumes, L. Maggioni, M. Ambrose, R. Schachl, and E. Lipman, (compilers), European Cooperative Program for Crop Genetic Resources Networks (ECP/GR), Norwich, U.K., pp. 31-33.

    Google Scholar 

  • Schoonhoven, Van. A., and Voysest, O. 1991. Common Beans: Research for Crop Improvement, CAB Inter., Wallingford, Oxon, U.K., pp. 979.

    Google Scholar 

  • Seth, A. K., and Wareing, P. F. 1967. Hormone-directed transport of metabolites and its possible role in plant senesence, J. Exp. Bot. 18:65-77.

    CAS  Google Scholar 

  • Shellie-Dessert, K. C., and Bliss, F. A. 1991. Genetic improvement of food quality factors, in: Common Beans: Research for Crop Improvement, A. van Schoonhoven, and O. Voysest, eds., CAB Inter., Wallingford, U.K., pp. 649-671.

    Google Scholar 

  • Sherf, A. F., and Macnab, A. A. 1986. Vegetables diseases and their control, J. Wiley and Sons, 2nd ed., Inc., London, pp. 32-53.

    Google Scholar 

  • Silbernagel, M. J. 1986. Snap bean breeding, in: Breeding Vegetable Crops, M. J. Basset, and J. Mark, eds., AVI Publ. Co., Westport, C.T., pp. 243-282.

    Google Scholar 

  • Silbernagel, M. J. 1987. Fusarium root rot-resistant snap bean breeding line FR-266, HortScience 22:1337-1338.

    Google Scholar 

  • Silbernagel, M. J., and Drake, S. R. 1978. Seed index, an estimate of snap bean quality, J. Am. Soc. Hortic. Sci. 103:257-260.

    Google Scholar 

  • Silbernagel, M. J., and Hannan, R. M. 1988. Utilization of genetic resources in the development of commercial bean cultivars in the U.S.A., in: Genetic Resources of Phaseolus Beans, P. Gepts, eds., Kluwer, Dordrecht, the Netherlands, pp. 561-596.

    Google Scholar 

  • Silbernagel, M. J., and Hannan, R. M. 1992. Use of plant introductions to develop U.S. bean cultivars, in: Use of Plant Introductions in Cultivar Development, H. Shands, and L. E. Weisner, eds., Part 2, CSSA Spec. Publ. 20, CSSA, Madison, WI.

    Google Scholar 

  • Silbernagel, M. J., Janssen, W., Davis, J. H. C., and Mondes de Oca, G. 1991. Snap bean production in the tropics: Implications for genetic improvement, in: Common Beans: Research for Crop Improvement,, A. Van Schoonhoven, and O. Voysest, eds., CAB Intern.,Wallingford, Oxon, U.K., pp. 835-862.

    Google Scholar 

  • Simmonds, N. W. 1979. Principles of Crop Improvement, Longman, London, pp. 408.

    Google Scholar 

  • Singh, S. P. 1989. Patterns of variation in cultivated common bean (Phaseolus vulgaris, Fabaceae), Econ. Bot. 43:39-57.

    Google Scholar 

  • Singh, S. P. 1991. Bean genetics, in: Common Beans: Research for Crop Improvement, A. Van Schoonhoven, and O.Voysest, eds., CAB Intern. Wallingford, Oxon, U.K. pp. 199-286.

    Google Scholar 

  • Singh, S. P. 1992. Common bean improvement in the tropics, Plant Breed. Rev. 10:199-269.

    Google Scholar 

  • Singh, S. P. 1994. Gamete selection for simultaneous improvement of multiple traits in common bean, Crop Sci. 34:352-355.

    Article  Google Scholar 

  • Singh, S. P. 1995. Selection for water stress tolerance in interracial populations of common bean, Crop Sci. 35:118-124.

    Article  Google Scholar 

  • Singh, S. P. 1999. Integrated genetic improvement, in: Common Bean Improvement in the Twenty-First Century, S. P. Singh, ed., Kluwer Academic Publ., Dordrecht, the Netherlands, pp. 133-165.

    Google Scholar 

  • Singh, S. P. 2001. Broadening the genetic base of common bean cultivars: A review, Crop Sci. 41:1659-1675.

    Article  Google Scholar 

  • Singh, S. P., Cajiao, C., GutiÄ—rez, J. A., Garcia, J., Pastor-Corrales, M. A., and Morales F. J. 1989a. Selection for seed yield in inter-gene pool crosses of common bean, Crop Sci. 29:1126-1131.

    Article  Google Scholar 

  • Singh, S. P., Cardona, C., Morales, F. J., Pastor-Corrales, M. A., and Voysest, O. 1998. Gamete selection for upright carioca bean with resistance to five diseases and a leafhopper, Crop Sci. 38:666-672.

    Article  Google Scholar 

  • Singh, S. P., Gepts, P., and Debouck, D. G. 1991a. Races of common bean (Phaseolus vulgaris, Fabaceae), Econ. Bot. 45:379-396.

    Google Scholar 

  • Singh, S. P., GutiÄ—rez, J. A., Molina, A., Urrea, C., and Gepts, P. 1991b. Genetic diversity in cultivated common bean. II. Marker-based analysis of morphological and agronomic traits, Crop Sci. 31:23-29.

    Article  CAS  Google Scholar 

  • Singh, S. P., Lepiz, R., Gutierrez, J. A., Urrea, C., Molina, A., and Teran, H. 1990. Yield testing of early generation populations of common bean, Crop Sci. 30:874-878.

    Article  Google Scholar 

  • Singh, S. P., and Molina, A. 1996. Inheritance of crippled trifoliolate leaves occuring in interracial crosses of common bean and its relationship with hybrid dwarfism, J. Hered. 87:464-469.

    Google Scholar 

  • Singh, S. P., Molina, A., and Gepts, P. 1995. Potential of wild common bean for seed yield improvement of cultivars in the tropics, Can. J. Plant Sci. 75:807-813.

    Google Scholar 

  • Singh, S. P., and Terran, H. 1998. Population bulk versus F1-derived family methods of yield testing in early generations of multiple-parent interracial and inter-gene pool crosses of common bean. Can. J. Plant Sci. 78:417-421.

    Google Scholar 

  • Singh, S. P., Teràn, H., Muñoz, C. G., and Takegami, J. C. 1999. Two cycles of recurrent selection for seed yield in common bean, Crop Sci. 39:391-397.

    Article  Google Scholar 

  • Singh, S. P., and Urrea, C. 1995. Inter-and intra-racial hybridization and selection for seed yield in early generations of common bean, Phaseolus vulgaris L. Euphytica 81:131-137.

    Google Scholar 

  • Singh, S. P., Urrea, C. A., GutiÄ—rez, J. A., and Garcia, J. 1989b. Selection for seed yield at two fertilizer levels in small-seeded common bean, Can. J. Sci. 69:1011-1017.

    Article  Google Scholar 

  • Skroch, P., and Nienhuis, J. 1995. Qualitative and quantitative characterization of RAPD variation among snap bean (Phaseolus vulgaris) genotypes, Theor. Appl. Genet. 91:1078-1085.

    CAS  Google Scholar 

  • Sonnante, G. T., Stockton, T., Nodari, Becerra, R. O., Velásquez, V. L., and Gepts, P. 1994. Evolution of genetic diversity during the domestication of common-bean (Phaseolus vulgaris L.), Theor. Appl. Genet. 89:629-635.

    Google Scholar 

  • Sotiriou, A., Koutsika-Sotiriou, M., and Gouli-Vavdinoudi, E. 1996. The effect of honeycomb selection for grain yield on a maize population, J. Agric. Sci. 127:143-149.

    Google Scholar 

  • Sprague, G. F., and Eberhart, S. A. 1977. Corn breeding, in: Corn and Corn Improvement, G. F. Sprague, ed., American Society of Agronomy, Madison, pp. 305-363.

    Google Scholar 

  • Stavelym, J. R., and Steinke, J. 1985. BABC-rust resistant -2, -3, -4 and -5 snap bean germplasm, HortScience 20:779-780.

    Google Scholar 

  • Subhadrabandhu, S., Adams, M. W., and Reicosky, D. A. 1978. Abscission of flowers and fruits in Phaseolus vulgaris L., I: cultivar differences in flowering pattern and abscission, Crop Sci. 18:893-896.

    Article  Google Scholar 

  • Sullivan, J. G., and Bliss, F. A. 1983. Recurrent mass selection for increased seed yield and seed protein percentage in the common bean (Phaseolus vulgaris L.), using a selection index, J. Am. Soc. Hortic. Sci. 108:42-46.

    Google Scholar 

  • Suzuki, K., Takeda, H., Tsukaguchi, T., and Egawa, Y. 2001. Ultrastructural study on depeneration of tapetum in anther of snap bean (Phaseolus vulgaris L.) under heat stress, Sex. Plant Reprod. 13:293-299.

    Google Scholar 

  • Tar’an, B., Michaels, T. E., and Pauls, K. P. 1998. Stability of the association of molecular markers and common bacterial blight resistance in common bean (Phaseolus vulgaris L.), Plant Breed. 117:553-558.

    Google Scholar 

  • Tar’an, B., Michaels, T. E., and Pauls, K. P. 2002. Genetics maping of agronomic traits in common bean, Crop Sci. 42:544-556.

    Article  Google Scholar 

  • Taylor, A. G., and Dickson, M. H. 1987. Seed coat permeability in semi-hard snap bean seeds: Its influence on imbibitional chilling injury, J. Hort. Sci. 62:183-189.

    Google Scholar 

  • Tertivanidis, K., Koutita, O., Skarakis, G., Traka-Mavrona, E., and Koutsika-Sotiriou, M. 2003. The use of RAPD markers in monitoring molecular changes during a selection process in snap bean, J. New Seeds, 5:87-96.

    Google Scholar 

  • Thomashow, M. F. 2001. So what’s new in the field of plant cold acclimation? Lots!, Plant Physiol. 125:89-93.

    CAS  Google Scholar 

  • Tokatlidis, I., Koutsika-Sotiriou, M., Fasoulas, A. C., and Tsaftaris, A. S. 1998. Improving maize hybrids for potential yield per plant, Maydica 43:123-129.

    Google Scholar 

  • Tokatlidis, I. S., Koutsika-Sotiriou, M., and Tamoutsidis, E. 2005. Benefits from using maize density-independent hybrids, Maydica 50:9-17.

    Google Scholar 

  • Tokuhisa, J., and Browse, J. 1999. Genetic engineering of plant chilling tolerance, in: Genetic Engineering 21, I. K. Setlow, ed., Kluwer Academic/Phenum Publ., N.Y., pp. 79-93.

    Google Scholar 

  • Tollenaar, M., and Wu, J. 1999. Yield improvement in temperate maize is attributable to greater stress tolerance, Crop Sci. 39:1597-1604.

    Article  Google Scholar 

  • Traka-Mavrona, E., Georgakis, D., Koutsika-Sotiriou, M., and Pritsa, Th. 2000. An integrated approach of breeding and maintaining an elite cultivar of snap bean. Agron. J. 92:1020-1026.

    Article  Google Scholar 

  • Traka-Mavrona, E., Georgakis, D., Koutsika-Sotiriou, M., and Pritsa, Th. 2001. The efficiency of a breeding program with progressively advanced targets applied in an elite cultivar of snap bean. J. Agric. Sci. 136:301-308.

    Google Scholar 

  • Traka-Mavrona, E., Georgakis, D., and Koutsika-Sotiriou, M. 2002a. Phenology and quality studies on a snap bean cultivar deviation. J. New Seeds 4:41-56.

    Google Scholar 

  • Traka-Mavrona, E., Georgakis, D., Spanomitsios, G., and Koutsika-Sotiriou, M. 2002b. Pre-breeding manipulations for target pod yield stability in a snap bean cultivar. J. Hortic. Sci. Biotech. 77:641-648.

    Google Scholar 

  • Traka-Mavrona, E., Georgakis, D., and Koutsika-Sotiriou, M. 2003. Improvement in the stability and yield performance of a snap bean cultivar, J. Vegetable Crop Prod. 9:19-30.

    Google Scholar 

  • Tsukaguchi, T., Fukamachi, H., Ozawa, K., Takeda, H., Suzuki, K., and Egawa, Y. 2005.Diurnal change in water balance of heat-tolerant snap bean (Phaseolus vulgaris) cultivar and its association with growth under high temperature, Plant Prod. Sci. 8:375-382.

    Google Scholar 

  • Tsukaguchi, T., Kawamitsu, Y., Tkeda, H., Suzuki, K., and Egawa, Y. 2003. Water status of flower buds and leaves as affected by high temperature in contrasting snap bean (Phaseolus vulgaris L.) varieties in heat tolerance Plant Prod. Sci. 6:24-27.

    Google Scholar 

  • Tucker, C. L., and Harding J. 1974. Effect of the environment on seed yield in bulk populations of lima beans, Euphytica 23:135-139.

    Google Scholar 

  • Tucker, C. L., and Webster, B. D. 1970. Relation of seed yield and fitness in Phaseolus lunatus L. Crop Sci. 10:314-315.

    Article  Google Scholar 

  • UPOV, 1995. Corrigendum to guidelines for the conduct of tests for distinctness uniformity and stability of French bean (Phaseolus vulgaris L.), International Union for the Protection of new Varieties of Plants (UPOV), TG/12/8.

    Google Scholar 

  • Urrea, C. A., and Singh, S. P. 1994. Comparison of mass F2-derived family, and single-seed-descent selection methods in an interracial population of common bean, Can. J. Plant Sci. 74:461-464.

    Google Scholar 

  • Vance, C. P. 1997. Enhanced agricultural sustainability through biological nitrogen fixation, in: Biological Nitrogen Fixation for Ecology and Sustainable Agriculture. NATO ASI Series, A. Legocki, H. Bothe, and A. Puhler, eds., Springer-Verlag, Berlin, pp. 179-186.

    Google Scholar 

  • Veltcheva, M., Svetleva, D., Petkova, Sp., and Perl, A. 2005. In vitro regeneration and genetic transformation of common bean (Phaseolus vulgaris L.) - Problems and progress, Scientia Hort. 107:2-10.

    CAS  Google Scholar 

  • Voysest, O., and Dessert, M. 1991. Bean cultivars: Classes and commercial seed types, in: Common Beans: Research for Crop Improvement, A. Van Schoonhoven, and O. Voysest, eds., CAB Intern., Wallingford, Oxon, U.K., pp. 119-162.

    Google Scholar 

  • Waines, I. G., Manshardt, R. M., and Wells, W. C. 1988. Interspecific hybridization between Phaseolus vulgaris and P. acutifolius, in: Genetic Resources of Phaseolus Beans, P. Gepts, ed., Kluwer, Dordrecht, the Netherlands, pp. 485-502.

    Google Scholar 

  • Wall, J. R. 1970. Experimental introgression in the genus Phaseolus. 1. Effect of mating systems on interspecific gene flow, Evolution 24:356-366.

    Google Scholar 

  • Weaver, M. L., Noj, H., Burke, D. W., Silbernagel, M. J., Foster K., and Timm, H. 1984. Effect of soil moisture tension on pod retention and seed yield of beans, HortScience 19:567-569.

    Google Scholar 

  • Wells, W. C., Isom, W. H., and Waines, J. G. 1988. Outcrossing rates of six common bean lines, Crop Sci. 28:177-178.

    Article  Google Scholar 

  • Westermann, D. T., and Clothers, S. E. 1977. Plant population effects on the seed yield components of beans, Crop Sci. 17:493-496.

    Article  Google Scholar 

  • Westermann, D. T., and Kolar, J. J. 1978. Symbiotic N2(C2H2) fixation by bean, Crop Sci. 18:

    Google Scholar 

  • White, J. W., and Gonzalez, A. 1990. Characterization of the negative association between seed yield and seed size among genotypes of common bean, Field Crops Res. 23:159-175.

    Google Scholar 

  • White, J. W., and Singh, S. P. 1991. Sources and inheritance of earliness in tropically adapted indeterminate common bean, Euphytica 55:15-19.

    Google Scholar 

  • Wiseman, B. R. 1994. Plant resistance to insects in integrated pest management, Plant Dis. 78:927-932.

    Google Scholar 

  • Zaumeyer, W. J. 1972. Dry beans and snap beans, in: Genetic Vulnerability of Major Crops, Nat. Acad. Sci. Washington DC, USA, pp. 224.

    Google Scholar 

  • Zhang, H. B., Woo, S. S., and Wing, R. A. 1996. BAC, YAC and Cosmid library construction, in: Plant Gene Isolation: Principles and Practice, G. D. Foster, and D. Twell, eds., J. Wiley & Sons Ltd., N.Y., pp. 75-99.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Koutsika-Sotiriou, M., Traka-Mavrona, E. (2008). Snap Bean. In: Prohens, J., Nuez, F. (eds) Vegetables II. Handbook of Plant Breeding, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-0-387-74110-9_2

Download citation

Publish with us

Policies and ethics