Skip to main content

Generalized Wilczynski Invariants for Non-Linear Ordinary Differential Equations

  • Chapter
Symmetries and Overdetermined Systems of Partial Differential Equations

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 144))

Abstract

We show that classical Wilczynski-Se-ashi invariants of linear systems of ordinary differential equations are generalized in a natural way to contact invariants of non-linear ODEs. We explore geometric structures associated with equations that have vanishing generalized Wilczynski invariants and establish relationship of such equations with deformation theory of rational curves on complex algebraic surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Bryant, Two exotic holonomies in dimension four, path geometries, and twistor theory, Proc. Symp. Pure Math. (1991), 53: 33–88.

    Google Scholar 

  2. E. Cartan, Sur les variétés à tconnexion projective, Bull. Soc. Math. France (1924), 52: 205–241.

    MATH  MathSciNet  Google Scholar 

  3. S.-S. Chern, The geometry of the differential equation y‴=F(x, y, y′, y″, Sci. Rep. Nat. Tsing Hua Univ. (1950), 4: 97–111.

    MathSciNet  Google Scholar 

  4. B. Doubrov, B. Komrakov, AND T. Morimoto, Equivalence of holonomic differential equations, Lobachevskij Journal of Mathematics (1999), 3: 39–71.

    MATH  MathSciNet  Google Scholar 

  5. B. Doubrov, Contact trivialization of ordinary differential equations, Differential Geometry and Its applications, 2001, pp. 73–84.

    Google Scholar 

  6. M. Dunajski AND P. Todd, Paraconformal geometry of n-th order ODEs, and exotic holonomy in dimension four, J. Geom. Phys. (2006), 56: 1790–1809.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Fels, The equivalence problem for systems of second order ordinary differential equations, Proc. London Math. Soc. (1995), 71(1): 221–240.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Fels, The inverse problem of the calculus of variations for scalar fourth-order ordinary differential equations, Trans. Amer. Math. Soc. (1996),348: 5007–5029.

    Article  MATH  MathSciNet  Google Scholar 

  9. D. Grossman, Torsion-free path geometries and integrable second order ODE systems, Sel. Math., New Ser. (2000), 6: 399–442.

    Article  MATH  MathSciNet  Google Scholar 

  10. G.H. Halphen, Sur les invariants differentiels des courbes ganches, Journ. de l’Ecole Polytechnique (1880), 28: 1–25.

    Google Scholar 

  11. S. Lie, Klassifikation und Integration von gewönlichen Differentialgleichungen zwischen x, y, die eine Gruppe von Transformationen gestatten, I-IV, Gesamelte Abhandlungen, Vol. 5, Leipzig-Teubner, 1924, S. 240–310, 362–427, 432–448.

    Google Scholar 

  12. P.J. Olver, Symmetry, invariants, and equivalence, New York, Springer Verlag, 1995.

    Google Scholar 

  13. H. Sato AND A.Y. Yoshikawa, Third order ordinary differential equations and Legendre connections, J. Math. Soc. Japan (1998), 50: 993–1013.

    Article  MATH  MathSciNet  Google Scholar 

  14. Yu. Se-ashi, On differential invariants of integrable finite type linear differential equations, Hokkaido Math. J. (1988), 17: 151–195.

    MATH  MathSciNet  Google Scholar 

  15. Yu. Se-ashi, A geometric construction of Laguerre-Forsyth’s canonical forms of linear ordinary differential equations, Adv. Studies in Pure Math. (1993), 22: 265–297.

    MathSciNet  Google Scholar 

  16. N. Tanaka, Geometric theory of ordinary differential equations, Report of Grant-in-Aid for Scientific Research MESC Japan, 1989.

    Google Scholar 

  17. E.J. Wilczynski, Projective differential geometry of curves and ruled surfaces, Leipzig, Teubner, 1905.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Doubrov, B. (2008). Generalized Wilczynski Invariants for Non-Linear Ordinary Differential Equations. In: Eastwood, M., Miller, W. (eds) Symmetries and Overdetermined Systems of Partial Differential Equations. The IMA Volumes in Mathematics and its Applications, vol 144. Springer, New York, NY. https://doi.org/10.1007/978-0-387-73831-4_2

Download citation

Publish with us

Policies and ethics