Skip to main content

Part of the book series: ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY ((AEMB,volume 595))

Abstract

Curcumin (U1) has a wide spectrum of therapeutic effects such as antitumor and anti-inflammatory effects, including antibacterial, antiviral, antifungal, and antispasmodic activities. By comparison of the structure–activity relationship, tetrahydrocurcumin (THU1), one of the major metabolites, showed the highest antioxidative activity in both in vitro and in vitro systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. K. M. Nadkarni, Curcuma longa. In: K. M. Narkarni, ed. India Materia Medica. Bombay, Popular Prakashan Publishing, 1976, pp. 414–416.

    Google Scholar 

  2. 2. K. Kohli, J. Ali, M. J. Ansari, and Z. Raheman, Curcumin: A natural anti-inflmmatory agent. Ind J Pharmacol 37, 141–147 (2005).

    CAS  Google Scholar 

  3. 3. A. H. Conney, Enzyme induction and dietary chemicals as approaches to cancer chemoprevention: The Seventh DeWitt S. Goodman lecture. Cancer Res 63, 7005–7031 (2003).

    PubMed  CAS  Google Scholar 

  4. 4. Y. Sugiyama, S. Kawakishi, and T. Osawa, Involvement of the β-diketone moiety in the antioxidative mechanism of tetrahydrocurcumin. Biochem Pharmacol 52, 519–525 (1996).

    Article  PubMed  CAS  Google Scholar 

  5. 5. Y. Nakamura, Y. Ohto, A. Murakami, T. Osawa, and H. Ohigashi, Inhibitory effects of curcumin and tetrahydro- curcuminoids on the tumor promoter-induced reactive oxygen species generation in leukocytes in vitro and in vivo. Jpn J Cancer Res 89, 361–370 (1998).

    PubMed  CAS  Google Scholar 

  6. 6. J. P. Gaddipati, S. V. Sundar, J. Calemine, P. Seth, G. S. Sidhu, and R. K. Maheshwari, Differential regulation of cytokines and transcription factors in liver by curcumin following hemorrhage/resuscitation. Shock 19,150–156 (2003).

    Article  PubMed  CAS  Google Scholar 

  7. 7. C. D. Huang, O. Tliba, R. A. Panettieri, Jr., and Y. Amrani Bradykinin induces interleukin-6 production in human airway smooth muscle cells: Modulation by Th2 cytokines and dexamethasone. Am J Respir Cell Mol Biol 28, 330–338 (2003).

    Article  PubMed  CAS  Google Scholar 

  8. 8. C. Natarajan and J. J. Bright, Curcumin inhibits experimental allergic encephalomyelitis by blocking IL-12 signaling through Janus kinase-STAT pathway in T lymphocytes. J Immunol 168, 6506–6513 (2002).

    PubMed  CAS  Google Scholar 

  9. 9. U. R. Pendurthi, J. T. Williums, and L. V. Rao, Inhibition of tissue factor gene activation in cultured endothelial cells by curcumin. Suppression of activation of transcription factors Egr-1, AP-1 and NF kappa B. Arterioscler Thromb Vasc Biol 17, 3406–3413 (1997).

    PubMed  CAS  Google Scholar 

  10. 10. A. Bierhaus, Y. Zhang, P. Quehenberger, T. Luther, M. Haase and M. Muller, The dietary pigment curcumin reduces endothelial tissue factor gene expression by inhibiting binding of AP-1 to the DNA and activation of NF-kappa B. Thromb Haemost 77, 772–782 (1997).

    PubMed  CAS  Google Scholar 

  11. 11. S. W. Perkins, R. D. Verschoyle, K. Hill, L. Parveen, M. D. Threadgill, R. A. Sharma, RM. L. Williams, W. P. Steward, and A. J. Gescher, Chemopreventive efficacy and pharmacokinetics of U1 in the min/+ mouse, a model of familial adenomatous polyposis. Cancer Epidemiol Biomark Prev 11, 535–540 (2002).

    CAS  Google Scholar 

  12. 12. P. Limtrakul, S. Lipigorngoson, O. Namwong, A. Apisariyakul, and F. W. Dunn, Inhibitory effect of dietary curcumin on skin carcinogenesis in mice. Cancer Lett 116, 197–203 (1997).

    Article  PubMed  CAS  Google Scholar 

  13. 13. S. W. E. Chuang, M. L. Kuo, C. H. Hsu, C.R. Chen, J. K. Lin, G. M. Lai, C. Y. Hsieh, and A. L. Cheng, Curcumin-containing diet inhibits diethylnitrosamine- induced murine hepatocarcinogenesis. Carcinogenesis 21, 331–335 (2000).

    Article  PubMed  CAS  Google Scholar 

  14. 14. H. Inano, M. Onoda, N. Inafuku, M. Kubota, Y. Kamada, and T. Osawa, Potent preventive action of curcumin on radiation-induced initiation of mammary tumorigenesis in rats. Carcinogenesis 21, 1836–1841 (2000).

    Google Scholar 

  15. 15. H. Inano, M. Onoda, N. Inafuku, M. Kubota, Y. Kamada, T. Osawa, H. Kobayashi, and K. Wakabayashi, Chemoprevention by curcumin during the promotion stage of tumorigenesis of mammary gland in rats irradiated with gamma-rays. Carcinogenesis 20, 1011–1018 (1999).

    Article  PubMed  CAS  Google Scholar 

  16. 16. G. M. Holder, J. L. Plummer, and A. J. Ryan, The metabolism and excretion of curcumin in the rat. Xenobiotica 8, 761–768 (1978).

    Article  PubMed  CAS  Google Scholar 

  17. 17. M.-H. Pan, T.-M. Huang, and J.-K. Lin, Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos. 27, 486–494 (1999).

    PubMed  CAS  Google Scholar 

  18. 18. J.-M. Kim, D.-J. Arakis, Kim, C.-B. Park, N. Takasuka, H. Baba-Toriyama, T. Ota, Z. Nir, F. Khachik, N. Shimizu, Y. Tanaka, and T. Osawa, Chemopreventive effects of carotenoids and curcumins on mouse colon carcinogenesis after 1,2-dimethylhydrazine Initiation. Carcinogenesis 19, 81–85 (1998).

    Article  PubMed  CAS  Google Scholar 

  19. 19. T. Osawa, Y. Sugiyama, M. Inayoshi, and S. Kawakishi, Antioxidative activity of tetrahydrocurcuminoids. Biosci Biotech Biochem 59, 1609–1612 (1995).

    Article  CAS  Google Scholar 

  20. 20. A. C. Reddy and B. R. Lokesh, Studies on the inhibitory effects of curcumin and eugenol on the formation of reactive oxygen species and the oxidation of ferrous iron. Mol Cell Biochem 137, 1–8 (1994).

    Article  PubMed  CAS  Google Scholar 

  21. 21. N. Sreejayan and M. N. Rao, Free radical scavenging activity of curcuminoids. Arzneimittelforschung 46, 169–171 (1996).

    PubMed  CAS  Google Scholar 

  22. 22. C. V. Rao, A. Rivenson, B. Simi, and B. S. Reddy, Chemoprevention of colon carcinogenesis by dietary curcumin, a naturally occurring plant phenolic compound. Cancer Res 55, 259–266 (1995).

    PubMed  CAS  Google Scholar 

  23. 23. M. K. Unnikrishnan and M. N. Rao, Curcumin inhibits nitrogen dioxide induced oxidation of hemoglobin. Mol Cell Biochem 146, 35–37 (1995).

    Article  PubMed  CAS  Google Scholar 

  24. 24. N. Sreejayan and M. N. Rao, Nitric oxide scavenging by curcuminoids. J Pharm Pharmacol 49, 105–107 (1997).

    PubMed  CAS  Google Scholar 

  25. 25. A. J. Ruby, G. Kuttan, K. D. Babu, K. N. Rajasekharan, nd R. Kuttan, Anti-tumour and antioxidant activity of natural curcuminoids. Cancer Lett 94, 79–83 (1995).

    Article  PubMed  CAS  Google Scholar 

  26. 26. M. Naito, X. Wu, H. Nomura, M. Kodama, Y. Kato, and T. Osawa, The protective effects of tetrahydrocurcumin on oxidative stress in cholesterol-fed rabbits. J Atehroscler Thromb 9, 243–250 (2002).

    CAS  Google Scholar 

  27. 27. K. Okada, C. Wanpoengfrakul, T. Tanaka, S. Toyokuni, K. Uchida, and T. Osawa, Curcumin and especially tetrahydricurcumin ameliorate oxidative stress-induced renal injury in mice. J Nutr 131, 2090–2095 (2001).

    PubMed  CAS  Google Scholar 

  28. 28. K. Itakura, T. Osawa, and K. Uchida, Structure of a fluorescent compound from 4-hydroxy-2-nonenal and Nɛ-hippuryllysine: A Model for fluorophores derived from protein modifications by lipid peroxidation. J Org Chem 63, 185–187 (1998).

    Article  PubMed  CAS  Google Scholar 

  29. 29. S. Yamada, S. Kumazawa, J. Ishii, T. Nakagawa, K. Itakura, N. Shibata, M. Kobayashi, K. Suzuki, T. Osawa, and K. Uchida, Lipofuscin-like fluorescent pigments derived from malondialdehyde. J Lipid Res 42, 1187–1196 (2001).

    PubMed  CAS  Google Scholar 

  30. 30. K. Uchida, M. Kanematsu, K. Sakai, T. Matsuda, N. Hattori, Y. Mizuno, D. Suzuki, T. Miyata, N. Noguchi, E. Niki, and T. Osawa, Protein-Bound acrolein: Potential markers for oxidative stress. Proc Natl Acad Sci USA 95, 4882–4887 (1998).

    Article  PubMed  CAS  Google Scholar 

  31. 31. K. Ichihashi, T. Osawa, S. Toyokuni, and K. Uchida, KEndogenous formation of protein adducts with carcinogenic aldehydes. Implication for oxidative stress. J Biol Chem 276, 23,903–23,913 (2001).

    Article  CAS  Google Scholar 

  32. 32. Y. Kato, Y. Makino, and T. Osawa, Characterization of a specific polyclonal antibody against 13-hydroperoxyoctadecadienoic acid-modified protein. Formation of lipid hydroperoxide-modified apo B-100 in oxidized LDL. J Lipid Res 38, 1334–1346 (1997).

    PubMed  CAS  Google Scholar 

  33. 33. Y. Kato, W. Maruyama, M. Naoi, Y. Hashizume, and T. Osawa, Immunohistochemical detection of dityrosine in lipofuscin pigments in the aged human brain. FEBS Lett 439, 231–234 (1998).

    Article  PubMed  CAS  Google Scholar 

  34. 34. Y. Kato, Y. Mori, Y. Morimitsu, S. Hiroi, T. Ishikawa, and T. Osawa, Formation of Nɛ-(Hexanonyl)lysine in protein exposed to lipid hydroperoxide: A plausible marker for lipid hydroperoxide-derived protein modification. J Biol Chem 274, 20,406–20,414 (1999).

    CAS  Google Scholar 

  35. 35. H. Esterbauer, R. J. Schaur, and H. Zdlner, Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radical. Biol Med 11, 81–128 (1991).

    Article  CAS  Google Scholar 

  36. 36. K. Tsuji, Y. Kawai, Y. Kato, and T. Osawa, Formation of Nɛ-(hexanoyl)ethanolamine, a novel phosphatidylethanolamine adduct, during the oxidation of erythrocyte membrane and low-density lipoprotein. Biochem. Biophys Res Commun. 306, 706–711 (2003).

    Article  PubMed  CAS  Google Scholar 

  37. 37. Y. Kato, X. Wu, M. Naito, H. Nomura, N. Kitamoto, and T. Osawa, Preparation of a monoclonal antibody to Nɛ-(hexanonyl)lysine: application to the evaluation of protective effects of flavonoid supplementation against exercise-induced oxidative stress in rat skeletal muscle. Biochem Biophys Res Commun 274, 389–393 (2000).

    Article  PubMed  CAS  Google Scholar 

  38. 38. K. Minato, Y. Miyake, S. Fukumoto, K. Yamamoto, Y. Shimomura, and T. Osawa, Lemon flavonoid, eriocitrin, suppresses exercise-induced oxidative damage in rat liver. Life Sci 72, 1609–1616 (2003).

    Article  PubMed  CAS  Google Scholar 

  39. 39. N. Osakabe, A. Yasuda, M. Natsume, C. Sanbongi, Y. Kato, T. Osawa, and T. Yoshikawa, Rosmarinic acid, a major polyphenolic component of Perilla Frutescens, reduces lipopolysaccharide (LPS)-induced liver injury in D-galactosamine (D-GalN)-sensitized mice. Free Radical Biol Med 33, 798–806 (2002).

    Article  CAS  Google Scholar 

  40. 40. T. Tsuda, F. Horio, Y. Kato, and T. Osawa, Cyanidin 3-O-β-D-glucoside attenuates the hepatic ischemia–reperfusion injury through a decrease in the neutrophil chemoattractant production in rats. J Nutr Sci Vitaminol 48, 134–141 (2002).

    PubMed  CAS  Google Scholar 

  41. 41. Y. Ueno, F. Horio, K. Uchida, M. Naito, M. Nomura, Y. Kato, T. Tsuda, S. Toyokuni, and T. Osawa, Increase in oxidative stress in kidneys of diabetic Akita mice. Biosci Biotechno. Bioche. 66, 869–872 (2002).

    Article  CAS  Google Scholar 

  42. 42. Y. Kato, A. Yoshida, M. Naito, Y. Kawai, K. Tsuji, M. Kitamura, N. Kitamoto, and T. Osawa, Identification and Quantification of Nɛ-(hexanoyl)lysine in human urine by liquid chromatography/tandem mass spectrometry. Free Radical. Biol Med 37, 1864–1874 (2004).

    Article  CAS  Google Scholar 

  43. 43. Y. Kato, X. Wu, M. Naito, H. Nomura, N. Kitamoto, and T. Osawa, Immunochemical detection of protein dityrosine in atherosclerotic lesion of apo-E-deficient mice using a novel monoclonal antibody. Biochem Biophys Res Commun 275, 11–15 (2000).

    Article  PubMed  CAS  Google Scholar 

  44. 44. E. C. Garcia-Cohen, J. Marin, L. D. Diez-Picazo, A. B. Baena, M. Salaices, and M. A. Rodriguez-Martinez, Oxidative stress induced by tert-butyl hydroperoxide causes vasoconstriction in the aorta from hypertensive and aged rats: role of cyclooxygenase-2 isoform. J Pharmacol Exp Ther 293, 75–81 (2000).

    PubMed  CAS  Google Scholar 

  45. 45. D. A. Shoskes, Effect of bioflavonoids quercetin and curcumin on ischemic renal injury: A new class of renoprotective agents. Transplantation 66(2), 147–152 (1998).

    Article  PubMed  CAS  Google Scholar 

  46. 46. J. Mason, Pharmacology of cyclosporine (sandimmune). VII. Pathophysiology and toxicology of cyclosporine in humans and animals. Pharmacol Rev 41, 423–434 (1990).

    PubMed  CAS  Google Scholar 

  47. 47. G. Remuzzi and N. Perico, Cyclosporine-induced renal dysfunction in experimental animals and humans. Kidney Int 52(Suppl), S70–S74 (1995).

    CAS  Google Scholar 

  48. 48. E. A. Jones and D. A. Shoskes, The effect of mycophenolate mofetil and polyphenolic bioflavonoids on renal ischemia reperfusion injury and repair. J Urol. 163, 999–1004 (2000).

    Article  PubMed  CAS  Google Scholar 

  49. 49. Y. Ueno, M. Kizaki, R. Nakagiri, T. Kamiya, H. Sumi, and T. Osawa, Dietary glutathion protects rats from diabetic nephropathy and neuropathy.J. Nutr 132, 897–900 (2002).

    PubMed  CAS  Google Scholar 

  50. 50. K. B. Soni, M. Lahiri, P. Chackradeo, S. V. Bhide, and R. Kuttan, Protective effect of food additives on aflatoxin-induced mutagenicity and hepatocarcinogenicity. Cancer Lett 115, 129–133 (1997).

    Article  PubMed  CAS  Google Scholar 

  51. 51. P. F. Firozi, V. S. Aboobaker, and R. K. Bhattacharya, Action of curcumin on the cytochrome P450-system catalyzing the activation of aflatoxin B1. Chem-Biol Interact 100, 41–51 (1996).

    Article  PubMed  CAS  Google Scholar 

  52. 52. S. S. Deshpande and G. B. Maru, Effects of curcumin on the formation of benzo[a]pyrene derived DNA adducts in vitro. Cancer Lett 96, 71–80 (1995).

    Article  PubMed  CAS  Google Scholar 

  53. 53. R. Thapliyal, S. S. Deshpande, and G. B. Maru, Effects of turmeric on the activities of benzo(a)pyrene-induced cytochrome P-450 isozymes. J Environ Pathol Toxicol Oncol 20, 59–63 (2001).

    PubMed  CAS  Google Scholar 

  54. 54. E. J. Park, C. H. Jeon, G. Ko, J. Kim, and D. H. Sohn, Protective effect of curcumin in rat liver injury induced by carbon tetrachloride. J Pharm Pharmacol 52, 437–440 (2000).

    Article  PubMed  CAS  Google Scholar 

  55. 55. T. Sugiyama, J. Nagata, A. Yamagishi, K. Endoh, M. Saito, K. Yamada, S. Yamada, and K. Umegaki, Selective protection of curcumin against carbon tetrachloride-induced inactivation of hepatic cytochrome P450 isozymes in rats. Life Sci 78, 2188–2193 (2006).

    Article  PubMed  CAS  Google Scholar 

  56. 56. A. A. Nanji, K. Jokelainen, G. L. Tipoe, A. Rahemtulla, P. Thomas, and A. J. Dannenberg, Curcumin prevents alcohol-induced liver disease in rats by inhibiting the expression of NF-kappa B-dependent genes. Am J Physiol: Gastrointest Liver Physiol 284(2), G321–G327 (2003).

    CAS  Google Scholar 

  57. 57. J. T. Piper, S. S. Singhal, M. S. Salameh, R. T. Torman, Y. C. Awasthi, and S. Awasthi, Mechanisms of anticarcinogenic properties of curcumin: The effect of curcumin on glutathione linked detoxification enzymes in rat liver. Intl J Biochem Cell Biol 30, 445–456 (1998).

    Article  CAS  Google Scholar 

  58. 58. M. Iqbal, S. D. Sharma, Y. Okazaki, M. Fujisawa, and S. Okada, Dietary supplementation of curcumin enhances antioxidant and phase II metabolizing enzymes in ddY male mice: Possible role in protection against chemical carcinogenesis and toxicity. Pharmacol Toxicol 92(1), 33–38 (2003).

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Osawa, T. (2007). NEPHROPROTECTIVE AND HEPATOPROTECTIVE EFFECTS OF CURCUMINOIDS. In: Aggarwal, B.B., Surh, YJ., Shishodia, S. (eds) The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY, vol 595. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-46401-5_18

Download citation

Publish with us

Policies and ethics