Skip to main content

Abstract

In the preceding chapter we described the measurement and interpretation of steady-state fluorescence anisotropies. These values are measured using continuous illumination, and represent an average of the anisotropy decay by the intensity decay. The measurement of steady-state anisotro-pies is simple. However, interpretation of the steady-state anisotropies usually depends on an assumed form for the anisotropy decay, which is not observed in the experiment. Additional information is available from measurements of the time-dependent anisotropy, that is, the values of r(t) following pulsed excitation. The form of the anisotropy decay depends on the size, shape, and flexibility of the labeled molecule. The measured decays can be compared with the decays calculated from various molecular models. Ani-sotropies decays can be measured using the time-domain (TD) or the frequency-domain (FD) method.

It is important to understand the factors which affect the anisotropy decays. For a spherical molecule the anisot-ropy is expected to decay with a single rotational correlation time (?). Perhaps the most frequent interpretation of the correlation time is in terms of the overall rotational correlation time of a protein. The measured values of ? can be compared with the values predicted for a hydrated sphere of equivalent molecular weight (eq. 10.46). However, ani-sotropy decays are usually multi-exponential, which can be the result of numerous factors. Multi-exponential anisot-ropy decays are expected for non-spherical fluorophores or proteins. The correlation times in the anisotropy decay are determined by the rates of rotation about the various molecular axes. By examination of the correlation time it is sometimes possible to estimate the shapes of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lakowicz JR, Cherek H, Kusba J, Gryczynski I, Johnson ML. 1993. Review of fluorescence anisotropy decay analysis by frequency-domain fluorescence spectroscopy. J Fluoresc 3(2):103–116.

    Article  CAS  Google Scholar 

  2. Lakowicz JR, Gryczynski I. 1991. Frequency-domain fluorescence spectroscopy. In Topics in fluorescence spectroscopy, Vol. 1: Techniques, pp. 293–355. Ed JR Lakowicz. Plenum Press, New York.

    Chapter  Google Scholar 

  3. Spencer RD, Weber G. 1970. Influence of Brownian rotations and energy transfer upon the measurement of fluorescence lifetimes. J Chem Phys 52:1654–1663.

    Article  CAS  Google Scholar 

  4. Szymanowski W. 1935. Einfluss der Rotation der Molekule auf die Messungen der Abklingzert des Fluoreszenzstrahlung. Z Phys 95:466–473.

    Article  CAS  Google Scholar 

  5. Kudryashov PI, Sveshnikov BY, Shirokov VI. 1960. The kinetics of the concentration depolarization of luminescence and of the intermolecular transfer of excitation energy Opt Spectrosc 9:177–181.

    CAS  Google Scholar 

  6. Bauer RK. 1963. Polarization and decay of fluorescence of solutions. Z Naturforsch A 18:718–724.

    Google Scholar 

  7. Cross AJ, Fleming GR. 1984. Analysis of time-resolved fluorescence anisotropy decays. Biophys J 46:45–56.

    Article  CAS  Google Scholar 

  8. Wahl Ph. 1979. Analysis of fluorescence anisotropy decays by the least squares method. Biophys Chem 10:91–104.

    Article  CAS  Google Scholar 

  9. Taylor JR. 1982. An introduction to error analysis, Vol.. 9, pp. 173–187. University Science Books, Mill Valley, CA.

    Google Scholar 

  10. Dale RE, Chen LA, Brand L. 1977. Rotational relaxation of the “microviscosity” probe diphenylhexatriene in paraffin oil and egg lecithin vesicles. J Am Chem Soc 252(21):7500–7510.

    CAS  Google Scholar 

  11. Papenhuijzen J, Visser AJWG. 1983. Simulation of convoluted and exact emission anisotropy decay profiles. Biophys Chem 17:57–65.

    Article  CAS  Google Scholar 

  12. Gilbert CW. 1983. A vector method for the non-linear least squares reconvolution-and-fitting analysis of polarized fluorescence decay data. In Time-resolved fluorescence spectroscopy in biochemistry and biology, pp. 605–605. Ed RB Cundall, RE Dale. Plenum Press, New York.

    Google Scholar 

  13. Beechem JM, Brand L. 1986. Global analysis of fluorescence decay: applications to some unusual experimental and theoretical studies. Photochem Photobiol 44:323–329.

    Article  CAS  Google Scholar 

  14. Crutzen M, Ameloot M, Boens N, Negri RM, De Schryver FC. 1993. Global analysis of unmatched polarized fluorescence decay curves. J Phys Chem 97:8133–8145.

    Article  CAS  Google Scholar 

  15. Vos K, van Hoek A, Visser AJWG. 1987. Application of a reference convolution method to tryptophan fluorescence in proteins. Eur J Biochem 165:55–63.

    Article  CAS  Google Scholar 

  16. Weber G. 1971. Theory of fluorescence depolarization by anisotrop-ic Brownian rotations: discontinuous distribution approach. J Chem Phys 55:2399–2407.

    Article  CAS  Google Scholar 

  17. Merkelo H, Hammond JH, Hartman SR, Derzko ZI. 1970. Measurement of the temperature dependence of depolarization time of luminescence. J Luminesc 1,2:502–512.

    Article  Google Scholar 

  18. Lakowicz JR, Prendergast FG, Hogen D. 1979. Differential polarized phase fluorometric investigations of diphenylhexatriene in lipid bilayers: quantitation of hindered depolarizing rotations. Biochemistry 18:508–519.

    Article  CAS  Google Scholar 

  19. Reinhart GD, Marzola P, Jameson DM, Gratton E. 1991. A method for on-line background subtraction in frequency domain fluorometry. J Fluoresc 1(3):153–162.

    Article  CAS  Google Scholar 

  20. Belford GG, Belford RL, Weber G. 1972. Dynamics of fluorescence polarization in macromolecules. Proc Natl Acad Sci USA 69:1392–1393.

    Article  CAS  Google Scholar 

  21. Chuang TJ, Eisenthal KB. 1972. Theory of fluorescence depolarization by anisotropic rotational diffusion. J Chem Phys 57:5094–5097.

    Article  CAS  Google Scholar 

  22. Ehrenberg M, Rigler R. 1972. Polarized fluorescence and rotational Brownian diffusion. Chem Phys Lett 14:539–544.

    Article  CAS  Google Scholar 

  23. Tao T. 1969. Time-dependent fluorescence depolarization and Brownian rotational diffusion of macromolecules. Biopolymers 8:609–632.

    Article  CAS  Google Scholar 

  24. Lombardi JR, Dafforn GA. 1966. Anisotropic rotational relaxation in rigid media by polarized photoselection. J Chem Phys 44:3882–3887.

    Article  Google Scholar 

  25. Small EW, Isenberg I. 1977. Hydrodynamic properties of a rigid molecule: rotational and linear diffusion and fluorescence anisotropy. Biopolymers 16:1907–1928.

    Article  CAS  Google Scholar 

  26. Steiner RF. 1991. Fluorescence anisotropy: theory and applications. in Topics in fluorescence spectroscopy, Vol. 2: Principles, pp. 1–52. Ed JR Lakowicz. Plenum Press, New York.

    Google Scholar 

  27. Veatch WR, Stryer L. 1977. Effect of cholesterol on the rotational mobility of diphenylhexatriene in liposomes: a nanosecond fluorescence anisotropy study. J Mol Biol 117:1109–1113.

    Article  CAS  Google Scholar 

  28. Chen LA, Dale RE, Roth S, Brand L. 1977. Nanosecond time-dependent fluorescence depolarization of diphenylhexatriene in dimyristoyllecithin vesicles and the determination of “microviscosi-ty”. J Biol Chem 252(7):2163–2169.

    CAS  Google Scholar 

  29. Ameloot M, Hendrickx H, Herreman W, Pottel H, Van Cauwelaert F, van der Meer W. 1984. Effect of orientational order on the decay of fluorescence anisotropy in membrane suspensions. Biophys J 46:525–539.

    Article  CAS  Google Scholar 

  30. Hildenbrand K, Nicolau C. 1979. Nanosecond fluorescence anisotropy decays of 1,6-diphenyl-1,3,5-hexatriene in membranes. Biochim Biophys Acta 553:365–377.

    Article  CAS  Google Scholar 

  31. Kinosita K, Kawato S, Ikegami A. 1977. A theory of fluorescence polarization decay in membranes. Biophys J 20:289–305.

    Article  CAS  Google Scholar 

  32. Kinosita K, Ikegami A, Kawato S. 1982. On the wobbling-in-cone analysis of fluorescence anisotropy decay. Biophys J 37:461–464.

    Article  CAS  Google Scholar 

  33. Komura S, Ohta Y, Kawato S. 1990. A theory of optical anisotropy decay in membranes. J Phys Soc Jpn 59(7):2584–2595.

    Article  CAS  Google Scholar 

  34. Wallach D. 1967. Effects of internal rotation on angular correlation functions. J Chem Phys 47:5258–5268.

    Article  CAS  Google Scholar 

  35. Gottlieb YYa, Wahl Ph. 1963. Étude théorique de la polarisation de fluorescence des macromolecules portant un groupe émetteur mobile autour d’un axe de rotation. J Chim Phys 60:849–856.

    Google Scholar 

  36. Lapari G, Szabo A. 1980. Effect of librational motion on fluorescence depolarization and nuclear magnetic resonance relaxation in macromolecules and membranes. Biophys J 30:489–506.

    Article  Google Scholar 

  37. Vincent M, Gallay J. 1991. The interactions of horse heart apocy-tochrome c with phospholipid vesicles and surfactant micelles: time-resolved fluorescence study of the single tryptophan residue (Trp-59). Eur Biophys J 20:183–191.

    Article  CAS  Google Scholar 

  38. Pap EHW, Ter Horst JJ, Van Hoek A, Visser AJWG. 1994. Fluorescence dynamics of diphenyl-1,3,5-hexatriene-labeled phos-pholipids in bilayer membranes. Biophys Chem 48:337–351.

    Article  CAS  Google Scholar 

  39. Gryczynski I, Johnson ML, Lakowicz JR. 1994. Analysis of anisotropy decays in terms of correlation time distributions, measured by frequency-domain fluorometry. Biophys Chem 52:1–13.

    Article  CAS  Google Scholar 

  40. Peng K, Visser AJWG, van Hoek A, Wolfs CJAM, Sanders JC, Hemminga MA. 1990. Analysis of time-resolved fluorescence anisotropy in lipid-protein systems, I: application to the lipid probe octadecyl rhodamine B in interaction with bacteriophage M13 coat protein incorporated in phospholipid bilayers. Eur Biophys J 18:277–283.

    Article  CAS  Google Scholar 

  41. Visser AJWG, van Hoek A, van Paridon PA. 1987. Time-resolved fluorescence depolarization studies of parinaroyl phosphatidyl-choline in triton X-100 micelles and rat skeletal muscle membranes. Membrane receptors, dynamics, and energetics, pp. 353–361. Ed KWA Wirtz. Plenum Press, New York.

    Google Scholar 

  42. Brand L, Knutson JR, Davenport L, Beechem JM, Dale RE, Walbridge DG, Kowalczyk AA. 1985. Time-resolved fluorescence spectroscopy: some applications of associative behaviour to studies of proteins and membranes. In Spectroscopy and the dynamics of molecular biological systems, pp. 259–305. Ed P Bayley, RE Dale. Academic Press, London.

    Google Scholar 

  43. Ruggiero A, Hudson B. 1989. Analysis of the anisotropy decay of trans-parinaric acid in lipid bilayers. Biophys J 55:1125–1135.

    Article  CAS  Google Scholar 

  44. Visser NV, Hink MA, van Hoek A, Visser AJWG. 1999. Comparison between fluorescence correlation spectroscopy and time-resolved fluorescence anisotropy as illustrated with a fluorescent dextran conjugate. J Fluoresc 9(3):251–255.

    Article  CAS  Google Scholar 

  45. Ross JA, Schmidt CJ, Brand L. 1981. Time-resolved fluorescence of the two tryptophans in horse liver alcohol dehydrogenase. Biochemistry 20:4369–4377.

    Article  CAS  Google Scholar 

  46. Vincent M, Deveer A-M, De Haas GH, Verheij HM, Gallay J. 1993. Stereospecificity of the interaction of porcine pancreatic phospholi-pase A2 with micellar and monomeric inhibitors. Eur J Biochem 215(3):531–539.

    Article  CAS  Google Scholar 

  47. Lakshmikanth GS, Krishnamoorthy G. 1999. Solvent-exposed tryp-tophans probe the dynamics at protein surfaces. Biophys J 77:1100–1106.

    Article  CAS  Google Scholar 

  48. Deprez E, Tauc P, Leh H, Mouscadot J-F, Auclair C, Brochon J-C. 2000. Oligomeric states of the HIV-1 integrase as measured by time-resolved fluorescence anisotropy. Biochemistry 39:9275–9284.

    Article  CAS  Google Scholar 

  49. Rami BR, Krishnamoorthy G, Udgaonkar JB. 2003. Dynamics of the core tryptophan during the formation of productive molten globule intermediate of Barstar. Biochemistry 42:7986–8000.

    Article  CAS  Google Scholar 

  50. Tcherkasskaya O, Ptitsyn OB, Knutson JR. 2000. Nanosecond dynamics of tryptophans in different conformational states of apomyoglobin proteins. Biochemistry 39:1879–1889.

    Article  CAS  Google Scholar 

  51. Axelsen PH, Gratton E, Prendergast FG. 1991. Experimentally verifying molecular dynamics simulations through fluorescence anisotropy measurements. Biochemistry 30:1173–1179.

    Article  CAS  Google Scholar 

  52. Fa M, Karolin J, Aleshkov S, Strandberg L, Johansson LB-A, Ny T. 1995. Time-resolved polarized fluorescence spectroscopy studies of plasminogen activator inhibitor type I: conformational changes of the reactive center upon interactions with target proteases, vitronectin and heparin. Biochemistry 34:13833–13840.

    Article  CAS  Google Scholar 

  53. Broos J, Visser AJWG, Engbersen FJ, Verboom W, van Hoek A, Reinhoudt DN. 1995. Flexibility of enzymes suspended in organic solvents probed by time-resolved fluorescence anisotropy: evidence that enzyme activity and enantioselectivity are directly related to enzyme flexibility. J Am Chem Soc 117(51):12657–12663.

    Article  CAS  Google Scholar 

  54. Yguerabide J, Epstein HF, Stryer L. 1970. Segmental flexibility in an antibody molecules. J Mol Biol 51:573–590.

    Article  CAS  Google Scholar 

  55. Hanson DC,Yguerabide J, Schumaker VN. 1981. Segmental flexibility of immunoglobulin G antibody molecules in solution: a new interpretation. Biochemistry 20:6842–6852.

    Article  CAS  Google Scholar 

  56. Wahl Ph. 1969. Mesure de la décroissance de la fluorescence polarisée de la γglobuline-1-sulfonyl-5-diméthylaminonaphthlène. Biochim Biophys Acta 175:55–64.

    CAS  Google Scholar 

  57. Wahl Ph, Kasai M, Changuex J-P. 1971. A study of the motion of proteins in excitable membrane fragments by nanosecond fluorescence polarization spectroscopy. Eur J Biochem 18:332–341.

    Article  CAS  Google Scholar 

  58. Brochon J-C, Wahl Ph. 1972. Mesures des déclins de l’anisotropic de fluorescence de la γglobuline et de ses fragments Fab, Fc et F(ab)2 marqués avec le 1-sulfonyl-5-diméthyl-aminonaphthaléne. Eur J Biochem 25:20–32.

    Article  CAS  Google Scholar 

  59. Holowka D, Wensel T, Baird B. 1990. A nanosecond fluorescence depolarization study on the segmental flexibility of receptor-bound immunoglobulin E. Biochemistry 29:4607–4612.

    Article  CAS  Google Scholar 

  60. Visser AJG, van Hoek A, Visser NV, Lee Y, Ghisia S. 1997. Time-resolved fluorescence study of the dissociation of FMN from the yellow fluorescence protein from Vibrio fischeri. Photochem Photobiol 65(3):570–575.

    Article  CAS  Google Scholar 

  61. Lakowicz JR, Laczko G, Gryczynski I, Cherek H. 1986. Measurement of subnanosecond anisotropy decays of protein fluorescence using frequency-domain fluorometry. J Biol Chem 261(5): 2240–2245.

    CAS  Google Scholar 

  62. Maliwal BP, Lakowicz JR. 1986. Resolution of complex anisotropy decays by variable frequency phase-modulation fluorometry: a simulation study. Biochim Biophys Acta 873:161–172.

    CAS  Google Scholar 

  63. Maliwal BP, Hermetter A, Lakowicz JR. 1986. A study of protein dynamics from anisotropy decays obtained by variable frequency phase-modulation fluorometry: internal motions of N-methylan-thraniloyl melittin. Biochim Biophys Acta 873:173–181.

    CAS  Google Scholar 

  64. Bayley P, Martin S, Browne P, Royer C. 2003. Time-resolved fluorescence anisotropy studies show domain-specific interactions of calmodulin with IQ target sequences of myosin V. Eur Biophys J 32:122–127.

    CAS  Google Scholar 

  65. Lakowicz JR, Laczko G, Gryczynski I. 1987. Picosecond resolution of tyrosine fluorescence and anisotropy decays by 2-GHz frequency-domain fluorometry. Biochemistry 26:82–90.

    Article  CAS  Google Scholar 

  66. Lakowicz JR, Laczko G, Gryczynski I. 1986. Picosecond resolution of oxytocin tyrosyl fluorescence by 2-GHz frequency-domain fluo-rometry. Biophys Chem 24:97–100.

    Article  CAS  Google Scholar 

  67. Lakowicz JR, Gratton E, Cherek H, Maliwal BP, Laczko G. 1984. Determination of time-resolved fluorescence emission spectra and anisotropies of a fluorophore–protein complex using frequency-domain phase-modulation fluorometry. J Biol Chem 259(17): 10967–10972.

    CAS  Google Scholar 

  68. Shinitzky M, Barenholz Y. 1978. Fluidity parameters of lipid regions determined by fluorescence polarization. Biochim Biophys Acta 515:367–394.

    CAS  Google Scholar 

  69. Kawato S, Kinosita K, Ikegami A. 1978. Effect of cholesterol on the molecular motion in the hydrocarbon region of lecithin bilayers studied by nanosecond fluorescence techniques. Biochemistry 17:5026–5031.

    Article  CAS  Google Scholar 

  70. Kawato S, Kinosita K, Ikegami A. 1977. Dynamic structure of lipid bilayers studied by nanosecond fluorescence techniques. Biochemistry 16:2319–2324.

    Article  CAS  Google Scholar 

  71. Stubbs CD, Williams BW. 1992. Fluorescence in membranes. In Topics in fluorescence spectroscopy, Vol. 3: Biochemical applications, pp. 231–271. Ed JR Lakowicz. Plenum Press, New York.

    Chapter  Google Scholar 

  72. Stubbs CD, Kouyama T, Kinosita K, Ikegami A. 1981. Effect of double bonds on the dynamic properties of the hydrocarbon region of lecithin bilayers. Biochemistry 20:4257–4262.

    Article  CAS  Google Scholar 

  73. Vincent M, de Foresta B, Gallay J, Alfsen A. 1982. Nanosecond fluorescence anisotropy decays of n-(9-anthroyloxy) fatty acids in dipalmitoylphosphatidylcholine vesicles with regard to isotropic solvents. Biochemistry 21:708–716.

    Article  CAS  Google Scholar 

  74. Pal R, Petri WA, Ben-Yashar V, Wagner RR, Barenholz Y. 1985. Characterization of the fluorophore 4-heptadecyl-7-hydroxy-coumarin: a probe for the head-group region of lipid bilayers and biological membranes. Biochemistry 24:573–581.

    Article  CAS  Google Scholar 

  75. Wolber PK, Hudson BS. 1981. Fluorescence lifetime and time-resolved polarization anisotropy studies of acyl chain order and dynamics in lipid bilayers. Biochemistry 20:2800–2810.

    Article  CAS  Google Scholar 

  76. Davenport L, Targowski P. 1996. Submicrosecond phospholipid dynamics using a long-lived fluorescence emission anisotropy probe. Biophys J 71:1837–1852.

    Article  CAS  Google Scholar 

  77. Kinosita K, Kawato S, Ikegami A. 1984. Dynamic structure of biological and model membranes: analysis by optical anisotropy decay measurements. Adv Biophys 17:147–203.

    Article  Google Scholar 

  78. Jähnig F. 1979. Structural order of lipids and proteins in membranes: evaluation of fluorescence anisotropy data. Proc Natl Acad Sci USA 76:6361–6365.

    Article  Google Scholar 

  79. Heyn MP. 1979. Determination of lipid order parameters and rotational correlation times from fluorescence depolarization experiments. FEBS Lett 108:359–364.

    Article  CAS  Google Scholar 

  80. Van Blitterswijk WJ, Van Hoeven RP, Van Der Meer BW. 1981. Lipid structural order parameters (reciprocal of fluidity) in biomembranes derived from steady-state fluorescence polarization measurements. Biochim Biophys Acta 644:323–332.

    Article  Google Scholar 

  81. Best L, John E, Jähnig F. 1987. Order and fluidity of lipid membranes as determined by fluorescence anisotropy decay. Eur Biophys J 15:87–102.

    Article  CAS  Google Scholar 

  82. Lakowicz JR, Cherek H, Maliwal BP, Gratton E. 1985. Time-resolved fluorescence anisotropies of diphenylhexatriene and pery-lene in solvents and lipid bilayers obtained from multifrequency phase-modulation fluorometry. Biochemistry 24:376–383.

    Article  CAS  Google Scholar 

  83. Faucon JF, Lakowicz JR. 1987. Anisotropy decay of diphenylhexa-triene in melittin-phospholipid complexes by multifrequency phasemodulation fluorometry. Arch Biochem Biophys 252(1):245–258.

    Article  CAS  Google Scholar 

  84. Lakowicz JR. 1985. Frequency-domain fluorometry for resolution of time-dependent fluorescence emission. Spectroscopy 1:28–37.

    Google Scholar 

  85. Mateo CR, Souto AA, Amat-Guerri F, Acuña AU. 1996. New fluorescent octadecapentaenoic acids as probes of lipid membranes and protein-lipid interactions. Biophys J 71:2177–2191.

    Article  CAS  Google Scholar 

  86. Wahl Ph, Paoletti J, Le Pecq J-B. 1970. Decay of fluorescence emission anisotropy of the ethidium bromide–DNA complex evidence for an internal motion in DNA. Proc Natl Acad Sci USA 65(2):417–421.

    Article  CAS  Google Scholar 

  87. Millar DP, Robbins RJ, Zewail AH. 1981. Time-resolved spec-troscopy of macromolecules: effect of helical structure on the tor-sional dynamics of DNA and RNA. J Chem Phys 74(7):4200–4201.

    Article  CAS  Google Scholar 

  88. Ashikawa I, Kinosita K, Ikegami A, Nishimura Y, Tsuboi M, Watanabe K, Iso K, Nakano T. 1983. Internal motion of deoxyri-bonucleic acid in chromatin: nanosecond fluorescence studies of intercalated ethidium. Biochemistry 22:6018–6026.

    Article  CAS  Google Scholar 

  89. Wang J, Hogan M, Austin RH. 1982. DNA motions in the nucleo-some core particle. Proc Natl Acad Sci USA 79:5896–5900.

    Article  CAS  Google Scholar 

  90. Schurr JM, Fujimoto BS, Wu P, Song L. 1992. Fluorescence studies of nucleic acids: dynamics, rigidities, and structures. in Topics in fluorescence spectroscopy, vol. 3: Biochemical applications, pp. 137–229. Ed JR Lakowicz. Plenum Press, New York.

    Chapter  Google Scholar 

  91. Thomas JC, Allison SA, Appellof CJ, Schurr JM. 1980. Torsion dynamics and depolarization of fluorescence of linear macromole-cules, II: fluorescence polarization anisotropy measurements on a clean viral 29 DNA. Biophys Chem 12:177–188.

    Article  CAS  Google Scholar 

  92. Barkley MD, Zimm BH. 1979. Theory of twisting and bending of chain macromolecules; analysis of the fluorescence depolarization of DNA. J Chem Phys 70:2991–3007.

    Article  CAS  Google Scholar 

  93. Duhamel J, Kanyo J, Dinter-Gottlieb G, Lu P. 1996. Fluorescence emission of ethidium bromide intercalated in defined DNA duplexes: evaluation of hydrodynamics components. Biochemistry 35:16687–16697.

    Article  CAS  Google Scholar 

  94. Collini M, Chirico G, Baldini G, Bianchi ME. 1995. Conformation of short DNA fragments by modulated fluorescence polarization anisotropy. Biopolymers 36:211–225.

    Article  CAS  Google Scholar 

  95. Tramier M, Kemnitz K, Durleux C, Coppey J, Denjean P, Pansu RB, Coppey-Moisan M. 2000. Restrained torsional dynamics of nuclear DNA in living proliferative mammalian cells. Biophys J 78:2614–2627.

    Article  CAS  Google Scholar 

  96. Axelrod D. 1979. Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization. Biophys J 26:557–574.

    Article  CAS  Google Scholar 

  97. Axelrod D. 1989. Fluorescence polarization microscopy. Methods Cell Biol 30:333–352.

    Article  CAS  Google Scholar 

  98. Deprez E, Tauc P, Leh H, Mouscadet J-F, Auclair C, Hawkins ME, Brochon J-C. 2001. DNA binding induces dissociation of the multimeric form of HIV-1 integrase: a time-resolved fluorescence anisotropy study. Proc Natl Acad Sci USA 98(18):10090–10095.

    Article  CAS  Google Scholar 

  99. Podtelezhnikov AA, Gao K, Bushman FD, McCammon JA. 2003. Modeling HIV-1 integrase complexes based on their hydrodynamic properties. Biopolymers 68:110–120.

    Article  CAS  Google Scholar 

  100. De Luca L, Pedretti A, Vistoli G, Barreca ML, Villa L, Monforte P, Chimirri A. 2003. Analysis of the full-length integrase-DNA complex by a modified approach for DNA docking. Biochem Biophys Res Commun 310:1083–1088.

    Article  CAS  Google Scholar 

  101. Leh H, Brodin P, Bischerour J, Deprez E, Tauc P, Brochon JC, LeCam E, Coulaud D, Auclair C, Mouscadet JF. 2000. Determinants of Mg2+ -dependent activities of recombinant human immunodeficiency virus type 1 integrase. Biochemistry 39:9285–9294.

    Article  CAS  Google Scholar 

  102. Deprez E, Tauc P, Leh H, Mouscadet JF, Auclair C, Brochon JC. 2000. Oligomeric states of the HIV-1 integrase as measured by time-resolved fluorescence anisotropy. Biochemistry 39:9275–9284.

    Article  CAS  Google Scholar 

  103. Suhling K, Siegel J, Lanigan PMP, Lévêque-Fort S, Webb SED, Phillips D, Davis DM, French PMW. 2004. Time-resolved fluorescence anisotropy imaging applied to live cells. Opt Lett 29(6):584–586.

    Article  Google Scholar 

  104. Clayton AHA, Hanley QS, Arndt-Jovin D, Subramaniam V, Jovin TM. 2002. Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM). Biophys J 83:1631–1649.

    Article  CAS  Google Scholar 

  105. Siegel J, Suhling K, Lévêque-Fort S, Webb SED, Davis DM, Phillips D, Sabharwal Y, French PMW. 2003. Wide-field time-resolved fluorescence anisotropy imaging (TR-FAIM): imaging the rotational mobility of a fluorophore. Rev Sci Instrum 74(1):182–192.

    Article  CAS  Google Scholar 

  106. González-Rodríguez J, Acuña AU, Alvarez MV, Jovin TM. 1994. Rotational mobility of the fibrinogen receptor glycoprotein IIb/IIIa or integrin αIIbβ3 in the plasma membrane of human platelets. Biochemistry 33:266–274.

    Article  Google Scholar 

  107. Lavalette D, Tétreau C, Tourbez M, Blouquit Y. 1999. Microscopic viscosity and rotational diffusion of proteins in a macromolecular environment. Biophys J 76:2744–2751.

    Article  CAS  Google Scholar 

  108. Lettinga MP, van Kats CM, Philipse AP. 2000. Rotational diffusion of tracer spheres in packings and dispersions of colloidal spheres studied with time-resolved phosphorescence anisotropy. Langmuir 16:6166–6172.

    Article  CAS  Google Scholar 

  109. Karon BS, Geddis LM, Kutchai H, Thomas DD. 1995. Anesthetics alter the physical and functional properties of the Ca-ATPase in cardiac sarcoplasmic reticulum. Biophys J 68:936–945.

    Article  CAS  Google Scholar 

  110. Voss JC, Mahaney JE, Thomas DD. 1995. Mechanism of Ca-ATPase inhibition by melittin in skeletal sarcoplasmic reticulum. Biochemistry 34:930–939.

    Article  CAS  Google Scholar 

  111. Brown LJ, Klonis N, Sawyer WH, Fajer PG, Hambly BD. 2001. Independent movement of the regulatory and catalytic domains of myosin heads revealed by phosphorescence anisotropy. Biochemistry 40:8283–8291.

    Article  CAS  Google Scholar 

  112. Mueller B, Karim CB, Negrashov IV, Kutchai H, Thomas DD. 2004. Direct detection of phospholamban and sarcoplasmic reticulum Ca-ATPase interaction in membranes using fluorescence resonance energy transfer. Biochemistry 43:8754–8765.

    Article  CAS  Google Scholar 

  113. Terpetschnig E, Szmacinski H, Lakowicz JR. 1997. Long-lifetime metal–ligand complexes as probes in biophysics and clinical chemistry. Methods Enzymol 278:295–321.

    Article  CAS  Google Scholar 

  114. Li L, Szmacinski H, Lakowicz JR. 1997. Synthesis and luminescence spectral characterization of long-lifetime lipid metal–ligand probes. Anal Biochem 244:80–85.

    Article  CAS  Google Scholar 

  115. Guo X-Q, Castellano FN, Li L, Szmacinski H, Lakowicz JR, Sipior J. 1997. A long-lived, highly luminescent Re(I) metal–ligand complex as a biomolecular probe. Anal Biochem 254:179–186.

    Article  CAS  Google Scholar 

  116. DeGraff BA, Demas JN. 1994. Direct measurement of rotational correlation times of luminescent ruthenium (II) molecular probes by differential polarized phase fluorometry. J Phys Chem 98:12478–12480.

    Article  CAS  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2006). Time-Dependent Anisotropy Decays. In: Lakowicz, J.R. (eds) Principles of Fluorescence Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-46312-4_11

Download citation

Publish with us

Policies and ethics