Skip to main content

CD4+ T Cells Cooperate With Macrophages for Specific Elimination of MHC Class II-Negative Cancer Cells

  • Conference paper
Crossroads between Innate and Adaptive Immunity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 590))

Abstract

Our present knowledge of how T cells eliminate cancer is mainly based on memory immune responses investigated with vaccinated mice1,2. In-vivo depletion studies with anti-CD4 monoclonal antibodies (mAb) have revealed that the antitumor immunity conferred by prophylactic vaccination is usually CD4+ T cell dependent. CD4+ T cells were required for vaccination-induced immunity against the B16 melanoma35, against the Mc51.9 fibrosarcoma6, against the J558 plasmacytoma7, and against the A20 lymphoma7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  1. L. Gross. Intradermal immunization of C3H mice against a sarcoma that originated in an animal of the same line. Cancer Res 3:326–333 (1943).

    Google Scholar 

  2. R.G. Lynch, R.J. Graff, S. Sirisinha, E.S. Simms and H.N. Eisen. Myeloma proteins as tumor-specific transplantation antigens. Proc Natl Acad Sci USA 69:1540–1544 (1972).

    Article  PubMed  CAS  Google Scholar 

  3. G. Dranoff, E. Jaffee, A. Lazenby, P. Golumbek, H. Levitsky, K. Brose, V. Jackson, H. Hamada, D. Pardoll and R.C. Mulligan. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 90:3539–3543 (1993).

    Article  PubMed  CAS  Google Scholar 

  4. H.I. Levitsky, A. Lazenby, R.J. Hayashi and D.M. Pardoll. In vivo priming of two distinct antitumor effector populations: the role of MHC class I expression. J Exp Med 179:1215–1224 (1994).

    Article  PubMed  CAS  Google Scholar 

  5. K. Hung, R. Hayashi, A. Lafond-Walker, C. Lowenstein, D. Pardoll and H. Levitsky. The central role of CD4(+) T cells in the antitumor immune response. J Exp Med 188:2357–2368 (1998).

    Article  PubMed  CAS  Google Scholar 

  6. Z. Qin and T. Blankenstei. CD4+ T cell-mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by non-hematopoietic cells. Immunity 12:677–686 (2000).

    Article  PubMed  CAS  Google Scholar 

  7. K. Liu, J. Idoyaga, A. Charalambous, S. Fujii, A. Bonito, J. Mordoh, R. Wainstok, X.F. Bai, Y. Liu and R.M. Steinman. Innate NKT lymphocytes confer superior adaptive immunity via tumor-capturing dendritic cells. J Exp Med 202:1507–1516 (2005).

    Article  PubMed  CAS  Google Scholar 

  8. H. Fujiwara, M. Fukuzawa, T. Yoshioka, H. Nakajima and T. Hamaoka. The role of tumor-specific Lyt-1+2-T cells in eradicating tumor cells in vivo, I: lyt-1+2-T cells do not necessarily require recruitment of host’s cytotoxic T cell precursors for implementation of in vivo immunity. J Immunol 133:1671–1676 (1984).

    PubMed  CAS  Google Scholar 

  9. B. Bogen, L. Munthe, A. Sollien, P. Hofgaard, H. Omholt, F. Dagnaes, Z. Dembic and G.F. Lauritzsen. Naive CD4+ T cells confer idiotype-specific tumor resistance in the absence of antibodies. Eur J Immunol 25:3079–3086 (1995).

    Article  PubMed  CAS  Google Scholar 

  10. D. Mumberg, P.A. Monach, S. Wanderling, M. Philip, A.Y. Toledano, R.D. Schreiber and H. Schreiber. CD4(+) T cells eliminate MHC class II-negative cancer cells in vivo by indirect effects of IFN-gamma. Proc Natl Acad Sci USA 96:8633–8638 (1999).

    Article  PubMed  CAS  Google Scholar 

  11. F. Fallarino, U. Grohmann, R. Bianchi, C. Vacca, M.C. Fioretti and P. Puccetti. Th1 and Th2 cell clones to a poorly immunogenic tumor antigen initiate CD8+ T cell-dependent tumor eradication in vivo. J Immunol 165:5495–5501 (2000).

    PubMed  CAS  Google Scholar 

  12. Z. Dembic, K. Schenck and B. Bogen. Dendritic cells purified from myeloma are primed with tumor-specific antigen (idiotype) and activate CD4+ T cells. Proc Natl Acad Sci USA 97:2697–2702 (2000).

    Article  PubMed  CAS  Google Scholar 

  13. Z. Dembic, J.A. Rottingen, J. Dellacasagrande, K. Schenck and B. Bogen. Phagocytic dendritic cells from myelomas activate tumor-specific T cells at a single cell level. Blood 97:2808–2814 (2001).

    Article  PubMed  CAS  Google Scholar 

  14. F. Ossendorp, E. Mengede, M. Camps, R. Filius and C.J. Melief. Specific T helper cell requirement for optimal induction of cytotoxic T lymphocytes against major histocompatibility complex class II negative tumors. J Exp Med 187:693–702 (1998).

    Article  PubMed  CAS  Google Scholar 

  15. D.R. Surman, M.E. Dudley, W.W. Overwijk and N.P. Restifo. Cutting edge: CD4+ T cell control of CD8+ T cell reactivity to a model tumor antigen. J Immunol 164:562–565 (2000).

    PubMed  CAS  Google Scholar 

  16. F.G. Gao, V. Khammanivong, W.J. Liu, G.R. Leggatt, I.H. Frazer and G.J. Fernando. Antigen-specific CD4+ T-cell help is required to activate a memory CD8+ T cell to a fully functional tumor killer cell. Cancer Res 62:6438–6441 (2002).

    PubMed  CAS  Google Scholar 

  17. P.D. Greenberg, D.E. Kern and M.A. Cheever. Therapy of disseminated murine leukemia with cyclophosphamide and immune Lyt-1+,2-T cells: tumor eradication does not require participation of cytotoxic T cells. J Exp Med 161:1122–1134 (1985).

    Article  PubMed  CAS  Google Scholar 

  18. C.M. Coughlin, K.E. Salhany, M.S. Gee, D.C. LaTemple, S. Kotenko, X. Ma, G. Gri, M. Wysocka, J.E. Kim, L. Liu, F. Liao, J.M. Farber, S. Pestka, G. Trinchieri and W.M. Lee. Tumor cell responses to IFNgamma affect tumorigenicity and response to IL-12 therapy and antiangiogenesis. Immunity 9:25–34 (1998).

    Article  PubMed  CAS  Google Scholar 

  19. P.D. Greenberg, M.A. Cheever and A. Fefer. Eradication of disseminated murine leukemia by chemoimmunotherapy with cyclophosphamide and adoptively transferred immune syngeneic Lyt-1+2-lymphocytes. J Exp Med 154:952–963 (1981).

    Article  PubMed  CAS  Google Scholar 

  20. M. Kahn, H. Sugawara, P. McGowan, K. Okuno, S. Nagoya, K.E. Hellstrom, I. Hellstrom and P. Greenberg. CD4+ T cell clones specific for the human p97 melanoma-associated antigen can eradicate pulmonary metastases from a murine tumor expressing the p97 antigen. J Immunol 146:3235–3241 (1991).

    PubMed  CAS  Google Scholar 

  21. T. Nishimura, K. Iwakabe, M. Sekimoto, Y. Ohmi, T. Yahata, M. Nakui, T. Sato, S. Habu, H. Tashiro, M. Sato and A. Ohta. Distinct role of antigen-specific T helper type 1 (Th1) and Th2 cells in tumor eradication in vivo. J Exp Med 190:617–627 (1999).

    Article  PubMed  CAS  Google Scholar 

  22. K.U. Lundin, P.O. Hofgaard, H. Omholt, L.A. Munthe, A. Corthay and B. Bogen. Therapeutic effect of idiotype-specific CD4+ T cells against B-cell lymphoma in the absence of anti-idiotypic antibodies. Blood 102:605–612 (2003).

    Article  PubMed  CAS  Google Scholar 

  23. F.M. Burnet. The concept of immunological surveillance. Prog Exp Tumor Res 13:1–27 (1970).

    PubMed  CAS  Google Scholar 

  24. D.H. Kaplan, V. Shankaran, A.S. Dighe, E. Stockert, M. Aguet, L.J. Old and R.D. Schreiber. Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci USA 95:7556–7561 (1998).

    Article  PubMed  CAS  Google Scholar 

  25. M.J. Smyth, K.Y. Thia, S.E. Street, E. Cretney, J.A. Trapani, M. Taniguchi, T. Kawano, S.B. Pelikan, N.Y. Crowe and D.I. Godfrey. Differential tumor surveillance by natural killer (NK) and NKT cells. J Exp Med 191:661–668 (2000).

    Article  PubMed  CAS  Google Scholar 

  26. M.J. Smyth, K.Y. Thia, S.E. Street, D. MacGregor, D.I. Godfrey and J.A. Trapani. Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J Exp Med 192:755–760 (2000).

    Article  PubMed  CAS  Google Scholar 

  27. V. Shankaran, H. Ikeda, A.T. Bruce, J.M. White, P.E. Swanson, L.J. Old and R.D. Schreiber. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410:1107–1111 (2001).

    Article  PubMed  CAS  Google Scholar 

  28. M. Girardi, D.E. Oppenheim, C.R. Steele, J.M. Lewis, E. Glusac, R. Filler, P. Hobby, B. Sutton, R.E. Tigelaar and A.C. Hayday. Regulation of cutaneous malignancy by gammadelta T cells. Science 294:605–609 (2001).

    Article  PubMed  CAS  Google Scholar 

  29. S.E. Street, J.A. Trapani, D. MacGregor and M.J. Smyth. Suppression of lymphoma and epithelial malignancies effected by interferon gamma. J Exp Med 196:129–134 (2002).

    Article  PubMed  CAS  Google Scholar 

  30. K. Takeda, M.J. Smyth, E. Cretney, Y. Hayakawa, N. Kayagaki, H. Yagita and K. Okumura. Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J Exp Med 195:161–169 (2002).

    Article  PubMed  CAS  Google Scholar 

  31. R.A. Gatti and R.A. Good. Occurrence of malignancy in immunodeficiency diseases: a literature review. Cancer 28:89–98 (1971).

    Article  PubMed  CAS  Google Scholar 

  32. S.A. Birkeland, H.H. Storm, L.U. Lamm, L. Barlow, I. Blohme, B. Forsberg, B. Eklund, O. Fjeldborg, M. Friedberg and L. Frodin. Cancer risk after renal transplantation in the Nordic countries, 1964–1986. Int J Cancer 60:183–189 (1995).

    Article  PubMed  CAS  Google Scholar 

  33. A. Corthay, D.K. Skovseth, K.U. Lundin, E. Rosjo, H. Omholt, P.O. Hofgaard, G. Haraldsen and B. Bogen. Primary antitumor immune response mediated by CD4+ T cells. Immunity 22:371–383 (2005).

    Article  PubMed  CAS  Google Scholar 

  34. G.F. Lauritzsen, S. Weiss, Z. Dembic and B. Bogen. Naive idiotype-specific CD4+ T cells and immunosurveillance of B-cell tumors. Proc Natl Acad Sci USA 91:5700–5704 (1994).

    Article  PubMed  CAS  Google Scholar 

  35. Z. Dembic, P.O. Hofgaard, H. Omholt and B. Bogen. Anti-class II antibodies, but not cytotoxic T-lymphocyte antigen 4-immunoglobulin hybrid molecules, prevent rejection of major histocompatibility complex class II-negative myeloma in T-cell receptor-transgenic mice. Scand J Immunol 60:143–152 (2004).

    Article  PubMed  CAS  Google Scholar 

  36. H.K. Kleinman, M.L. McGarvey, J.R. Hassell, V.L. Star, F.B. Cannon, G.W. Laurie and G.R. Martin. Basement membrane complexes with biological activity. Biochemistry 25:312–318 (1986).

    Article  PubMed  CAS  Google Scholar 

  37. B. Bottazzi, N. Polentarutti, R. Acero, A. Balsari, D. Boraschi, P. Ghezzi, M. Salmona and A. Mantovani. Regulation of the macrophage content of neoplasms by chemoattractants. Science 220:210–212 (1983).

    Article  PubMed  CAS  Google Scholar 

  38. R.D. Schreiber, J.L. Pace, S.W. Russell, A. Altman and D.H. Katz. Macrophage-activating factor produced by a T cell hybridoma: physiochemical and biosynthetic resemblance to gamma-interferon. J Immunol 131:826–832 (1983).

    PubMed  CAS  Google Scholar 

  39. A. Mantovani, et al. A. Sica, S. Sozzani, P. Allavena, A. Vecchi and M. Locati. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686 (2004).

    Article  PubMed  CAS  Google Scholar 

  40. R. Evans and P. Alexander. Cooperation of immune lymphoid cells with macrophages in tumour immunity. Nature 228:620–622 (1970).

    Article  PubMed  CAS  Google Scholar 

  41. R. Evans and P. Alexander. Mechanism of immunologically specific killing of tumour cells by macrophages. Nature 236:168–170 (1972).

    Article  PubMed  CAS  Google Scholar 

  42. L. Bingle, N.J. Brown and C.E. Lewis. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196:254–265 (2002).

    Article  PubMed  CAS  Google Scholar 

  43. J.W. Pollard. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4:71–78 (2004).

    Article  PubMed  CAS  Google Scholar 

  44. K. Tsung, J.P. Dolan, Y.L. Tsung and J.A. Norton. Macrophages as effector cells in interleukin 12-induced T cell-dependent tumor rejection. Cancer Res 62:5069–5075 (2002).

    PubMed  CAS  Google Scholar 

  45. C. Guiducci, A.P. Vicari, S. Sangaletti, G. Trinchieri and M.P. Colombo. Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res 65:3437–3446 (2005).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this paper

Cite this paper

Corthay, A. (2007). CD4+ T Cells Cooperate With Macrophages for Specific Elimination of MHC Class II-Negative Cancer Cells. In: Katsikis, P.D., Schoenberger, S.P., Pulendran, B. (eds) Crossroads between Innate and Adaptive Immunity. Advances in Experimental Medicine and Biology, vol 590. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-34814-8_14

Download citation

Publish with us

Policies and ethics