Skip to main content

Heavy Metals Remediation of Water Using Plants and Lignocellulosic Agrowastes

  • Chapter
Reviews of Environmental Contamination and Toxicology

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 188))

Abstract

Metals in the environment arise from natural sources or directly or indirectly from human activities such as rapid industrialization, urbanization, and anthropogenic sources, threatening the environment and human health (Nriagu 1979). Mining and metallurgical activities produce wastewaters that can be considered as the major source of heavy metal contamination of natural waters (Schalcsha and Ahumada 1998; Reddad et al. 2002a). In the United States alone, more than 50,000 metal-contaminated sites await remediation, many of them Superfund sites (Ensley 2000). They are potential hazards to aquatic, animal, and human life because of their toxicity and bioaccumulative and nonbiodegradable nature (Zuane 1990). Nonessential metals such as Hg, Cd, Cr, Pb,As, and Sb are toxic in their chemically combined forms as well as the elemental form (Manahan 1993).Acute metal poisoning in humans causes severe dysfunction in the renal, reproductive, and nervous systems, and chronic exposures even at low concentrations in the environment can prove to be harmful to human health (Wyatt et al. 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alaerts, GJ, Jitjaturant, V, Kelderman, P (1989) Use of coconut shell based activated carbon for Cr(VI) removal. Water SciTechnol 21:1701–1704.

    CAS  Google Scholar 

  • Alves, MM, Beca, CGG, De Carvalho, RG, Castanheira, JM, Sol Pereira, MC, Vasconcelos, AT (1993) Chromium removal in tannery waste waters polishing by Pinus sylvestris bark. Water Res 27:1333–1338.

    CAS  Google Scholar 

  • Anton, A, Mathe-Gaspar, G (2005) factors affecting heavy metal uptake in plant selection for phytoremediation. Z Naturforsch 60(3–4):244–246.

    CAS  Google Scholar 

  • Ayyappan, S, Tripathi, SD, Vasheer, VS, Das, M, Bhandari, S (1992) Decomposition patterns of manurial inputs in aquaculture and their model-simulating substrates. Int J Ecol Environ Sci 18:101–109.

    Google Scholar 

  • Azim, ME, Wahab, MA, Verdegem, MCJ, Van Dam, A A, van Rooij, JM, Beveridge, CM (2002) The effects of artificial substrates on freshwater pond productivity and water quality and the implications for periphyton-based aquaculture. Aquat Living Resour 15:231–241.

    Google Scholar 

  • Baig, TH, Garcia, AE, Tiemann, KJ, Gardea-Torresdey, JL (1999) Adsorption of heavy metal ions by the biomass of Solanum elaeagnifolium (Silverleaf Nightshade). In: Erickson LE (ed) Proceedings of the Tenth Annual EPA Conference on Hazardous Waste Research. U.S. Environmental Protection agency, Washington, DC, pp 131–139.

    Google Scholar 

  • Bailey, SE, Olin, TJ, Bricka, RM, Adrian, DD (1999) A review of potentially low cost sorbents for heavy metals. Water Res 33(11):2469–2479.

    CAS  Google Scholar 

  • Bansode, RR, Losso, JN, Marshall, WE, Rao, RM, Portier, RJ (2003) Adsorption of metal ions by pecan shell-based granular activated carbons. Bioresour Technol 89:115–119.

    PubMed  CAS  Google Scholar 

  • Barik, SK, Mishra, S, Ayyappan, S (2002) Decomposition patterns of unprocessed and processed lignocellulosics in a freshwater fish pond. Aquat Ecol 34:184–204.

    Google Scholar 

  • Basso, MC, Cerrella, EG, Cukierman, AL (2002) Lignocellulosic materials as potential biosorbents of trace toxic metals from wastewater. Ind Eng Chem Res 41(15):3580–3585.

    CAS  Google Scholar 

  • Benedetti, MF, Milne, CJ, Kinniburgh, DG, van Riemsdijk, WH, Koopal, LK (1995) Environ Sci Technol 29:446–457.

    CAS  Google Scholar 

  • Berg, M, Tran, HC, Nguyen, TC, Pham, HV, Scherteinleib, R, Giger, W (2001) Arsenic contamination of groundwater and drinking water in Vietnam: a human health threat. Environ Sci Technol 35:2621–2626.

    PubMed  CAS  Google Scholar 

  • Biswas, S, Talukder, G, Sharma, A (1999) Prevention of cytotoxic effects of arsenic by short term dietary supplementation with selenium in mice in vivo. Mutat Res 441(1):155–160.

    PubMed  CAS  Google Scholar 

  • Bloom, NS (1992) On the chemical form of mercury in edible fish and marine invertebrate tissue. Can J Fish Aquat Sci 49:1010–1017.

    CAS  Google Scholar 

  • Bodaly, RA, St Louis, VL, Paterson, MJ, Fudge, RJP, Hall, BD, Rosenberg, DM, Rudd, JWM (1997) Bioaccumulation of mercury in the aquatic food chain in newly flooded areas. In: Sigel A, Sigel H (eds) Metal Ions in Biological Systems, Vol 34. Dekker, New York, pp 259–287.

    Google Scholar 

  • Boddu, VM, Krishnaiah, A, Talbott, JL, Smith, ED (2003) Removal of hexavalent chromium from wastewater using a new composite chitosan biosorbent. Environ Sci Technol 37:4449–4456.

    PubMed  CAS  Google Scholar 

  • Bombeo-Tuburan, I, Guanzon, NG Jr, Schroeder, GL (1993) Production of Peneaus monodon (Fabricus) using four natural food types in an extensive system. Aquaculture 112:57–65.

    Google Scholar 

  • Bouanda, J, Dupont, L, Dumonceau, J, Aplincourt, M (2002) Use of a NICA-Donnan approach for a lignocellulosic substrate extracted from wheat bran. Anal Bioanal Chem 373:174–182.

    PubMed  CAS  Google Scholar 

  • Buffle, J (1988) Complexion reactions in aquatic systems: an analytical approach. Horwood, Chichester, pp 156–329.

    Google Scholar 

  • Caille, N, Swanwick, S, Zhao, FJ, McGrath, SP (2004) Arsenic hyperaccumulation by Pteris vittata from arsenic contaminated soils and the effect of liming and phosphate, fertilization. Environ Pollut 132(1):113–120.

    PubMed  CAS  Google Scholar 

  • Chaney, RL, Malik, M, Li, YM, Brown, SL, Brewer, EP, Angle, JS, Baker, AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284.

    PubMed  CAS  Google Scholar 

  • Cheremisinoff, PN, Ellerbush, F (1979) Carbon Adsorption Handbook. Ann Arbor Science, Ann Arbor, MI.

    Google Scholar 

  • Chuah, TG, Jumasiah, A, Azni, I, Katayon, S, Choong, SYT (2005) Rice husk as a potentially low cost biosorbent for heavy metal and dye removal: an overview. Desalination 175:305–316.

    CAS  Google Scholar 

  • Cimino, G, Psserini, A, Toscano, G (2000) Removal of toxic cations and Cr(VI) from aqueous solution by hazelnut shell. Water Res 34(11):2955–2962.

    CAS  Google Scholar 

  • Compeau, GC, Bartha, R (1985) Sulfate reducing bacteria: principal methylators of mercury in anoxic estuarine sediments. Appl Environ Microbiol 50:498–502.

    PubMed  CAS  Google Scholar 

  • Crist, RH, Martin, JR, Carr, D, Watson, JR, Clarke, HJ, Crist, DR (1994) Interactions of metals and protons with algae. Ion exchange vs. adsorption models and a reassessment of Scatchard plots: ion exchange rates and equilibria compared with calcium alginate. Environ SciTechnol 28:1859–1866.

    CAS  Google Scholar 

  • Cutter, GA (1991) Trace elements in estuarine and coastal waters. Rev Geophys (Suppl Contrib Oceanogr) 1–639.

    Google Scholar 

  • Das, D, Chatterjee, A, Mandal, BK, Samanta, G, Chakraborty, D, Chanda, B (1995) Arsenic in groundwater in six districts of west Bengal India: the biggest arsenic calamity in the world, part II. Arsenic species in drinking water and urine of the affected people. Analyst 120(3):917–924.

    PubMed  CAS  Google Scholar 

  • Davis, TA, Volesky, B, Mucci, A (2003) A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37(18):4311–4330.

    PubMed  CAS  Google Scholar 

  • Dronnet, VM, Renard, CMGC, Axelos, MAV, Thibault, JF (1997) Binding of divalent metal cations by sugar-beet pulp. Carbohydr Polym 34:73–82.

    CAS  Google Scholar 

  • Dupont, L, Guillon, E (2003) Removal of hexavalent chromium with a lignocellulosic substrate extracted from wheat bran. Environ Sci Technol 37:4235–4241.

    PubMed  CAS  Google Scholar 

  • Dupont, L, Bouanda, J, Dumonceau, J, Aplincourt, M (2003) Metal ions binding onto a lignocellulosic substrate extracted from wheat bran: a NICA-Donnan approach. J Colloid Interface Sci 263:35–41.

    PubMed  CAS  Google Scholar 

  • Eapen, S, D’Souza, SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23:97–114.

    PubMed  CAS  Google Scholar 

  • El-Nady, FE, Atta, MM (1996) Toxicity and bioaccumulation of heavy metals to some marine biota from the Egyptian coastal waters. J Environ Sci Health A 31(7):1529–1545.

    Google Scholar 

  • Engel, RR, Hopenhayn-Rich, C, Receveur, O, Smith, AH (1994) Vascular effects of chronic arsenic exposure: a review. Epidemiol Rev 16(2):184–209.

    PubMed  CAS  Google Scholar 

  • Ensley, BD (2000) Rationale for use of phytoremediation. In: Phytoremediation of Toxic Metals Using Plants to Clean Up the Environment. Wiley, New York, pp 1–12.

    Google Scholar 

  • Ferguson, J, Bubela, B (1974) The concentration of Cu(II), Pb(II) and Zn(II) from aqueous solution by particulate algal matter. Chem Geol 13:163–186.

    CAS  Google Scholar 

  • Fourest, E, Volesky, B (1996) Contribution of sulphonate groups and alginate to heavy metal biosorption by the dry biomass of Sargassum fluitans. Environ Sci Technol 30:277–282.

    CAS  Google Scholar 

  • Freeman, DW, Duerr, EO, Leber Kenneth, M (1992) Use of bagasse as a feed input to semi-intensive shrimp grow out ponds. J World Aquacult Soc 23(1):23–30.

    Google Scholar 

  • Frisbie, SH, Maynard, DM, Hoque, BA (1999) The nature and extent of arsenic affected drinking water in Bangladesh. In: Sarkar B (ed) Metals and Genetics. Plenum, New York, pp 67–85.

    Google Scholar 

  • Frisbie, SH, Ortega, R, Maynard, DM, Sarkar, B (2002) The concentrations of arsenic and other toxic elements in Bangladesh’s drinking water. Environ Health Perspect 110:1147–1153.

    PubMed  CAS  Google Scholar 

  • Fuhrman, HG, Tjell, JC, Mcconchie, D (2004) Adsorption of arsenic from water using activated neutralized red mud. Environ Sci Technol 38:2428–2434.

    Google Scholar 

  • Gardner, GR (1975) Chemically induced lesions in estuarine and marine teleosts. In: Riberline WE, Migaki G (eds) The Pathology of Fishes. University of Wisconsin Press, Madison, WI, pp 657–693.

    Google Scholar 

  • Gauthier, A, Derenne, S, Dupont, L, Guillon, E, Largeau, C, Dumonceau, J, Aplincourt, M (2002) Characterization and comparison of two ligno-cellulosic substratesby (13)C CP/MAS NMR, XPS, conventional pyrolysis and thermochemolysis. Anal Bioanal Chem 373(8):830–838.

    PubMed  CAS  Google Scholar 

  • Gebel, TW (1999) Arsenic and drinking water contamination. Science 283:1458–1459.

    PubMed  CAS  Google Scholar 

  • Gerente, C, Du Mesnil, PC, Andres, Y, Thibault, J-F, Le Cloirec, P (2000) Removal of metal ions from aqueous solution on low cost natural polysaccharides: sorption mechanism approach. React Funct Polym 46:135–144.

    CAS  Google Scholar 

  • Greene, B, McPherson, R, Darnall, D (1987) Algal sorbents for selective metal ion recovery. In: Patterson JW, Pasino R (eds) Metals Speciation. Separation and Recovery. Lewis, Chelsea, MI, pp 315–338.

    Google Scholar 

  • Guillon, E, Merdy, P, Aplincourt, M, Dumonceau, J (2001) Structural characterization and iron (III) binding ability of domestic and polymeric lignin models. J Colloid Interface Sci 239(1):39–48.

    PubMed  CAS  Google Scholar 

  • Gupta, VK, Ali, I (2004) Removal of lead and chromium from wastewater using bagasse fly ash-a sugar industry waste. J Colloid Interface Sci 271:321–328.

    PubMed  CAS  Google Scholar 

  • Gupta, VK, Jain, CK, Ali, I, Sharma, M, Saini, VK (2003) Removal of cadmium and nickel from wastewater using bagasse fly ash-a sugar industry waste. Water Res 37(16):4038–4044.

    PubMed  CAS  Google Scholar 

  • Hepher, B, Pruginin, Y (1981) Fertilizers and Manures: Commercial Fish Farming with Special Reference to Fish Culture in Israel, Wiley-Interscience, New York.

    Google Scholar 

  • Ho, YS, McKay, G (2000) The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res 34(3):735–742.

    CAS  Google Scholar 

  • Holan, ZR, Volesky, B, Prasetyo, I (1993) Biosorption of cadmium by biomass of marine algae. Biotechnol Bioeng 41:819–825.

    CAS  Google Scholar 

  • Hightower, JM, Moore, D (2003) Mercury levels in high end consumers of fish. Environ Health Perspect 111:604–608.

    PubMed  CAS  Google Scholar 

  • Huang, CP, Wu, MH (1977) The removal of chromium (VI) from dilute aqueous solution by activated carbon. Water Res 11:673–679.

    CAS  Google Scholar 

  • IARC (International Agency for Research on Cancer) (1987) IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Overall Evaluation of Carcinogenicity. An updating of IARC Monographs Volumes 1–42.Supplement 7. WHO, Lyon, France.

    Google Scholar 

  • Ikeuchi, T, Azumaa, M, Katoa, J, Ooshima, H (1999) Screening of microorganisms for xylitol production and fermentation behavior in high concentrations of xylose. Biomass Bioenergy 16(5):333–339.

    CAS  Google Scholar 

  • Jang, LK, Nguyen, D, Geesy, GG (1995) Effect of pH on the absorption of Cu(II) by alginate gel. Water Res 29(1):315–321.

    CAS  Google Scholar 

  • Jianlong, W, Zhan, X, Quan, YI (2000) Removal of Cr(VI) from aqueous solution by macroporous resin adsorption. J Environ Sci Health A 35(7):1211–1230.

    Google Scholar 

  • Joseph, KO, Krishnani, KK, Gupta, BP, Muralidhar, M (2002) Acute toxicity of some heavy metals to P. monodon. Aquacult 3(2):143–148.

    Google Scholar 

  • Karim, M (2000) Arsenic in groundwater and health problems in Bangladesh. Water Res 34(1):304–310.

    CAS  Google Scholar 

  • Kennish, MJ (1992) Ecology of Estuaries: Anthropogenic Effects. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Keshavanath, P, Ramesh, TJ, Gangadhar, B, Beveridge, MCM, van DAM, AA, Sandifer, PA (2001) On-farm evaluation of Indian major carp production with sugarcane bagasse as substrate for periphyton. Asian Fish Sci 14(4):367–376.

    Google Scholar 

  • Kewalramani, N, Kamra, DN, Lall, D, Pathak, NN (1988) Bioconversion of sugarcane bagasse with white rot fungi. Biotechnol Lett 10(5):369–372.

    Google Scholar 

  • Khan, E, Virojnagud, W, Ratpukdi, T (2004) Use of biomass sorbents for oil removal from gas station runoff. Chemosphere 57:681–689.

    PubMed  CAS  Google Scholar 

  • Khattak, AK, Page, AL, Parker, DR, Bakhtar, D (1991) Accumulation and interactions of arsenic, selenium, molybdenum and phosphorous in Alfalfa. J Environ Qual 20:165–168.

    CAS  Google Scholar 

  • Kim, D, Wang, Q, Sorial, GA, Dionysiou, DD, Timberlake, D (2004) A model approach for evaluating effects of remedial actions on mercury speciation and transport in a lake system. Sci Total Environ 327(1–3):1–15.

    PubMed  CAS  Google Scholar 

  • King, JK, Kostka, JE, Frischer, ME, Saunders, FM (2000) Sulfate reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments. Appl Environ Microbiol 66(6):2430–2437.

    PubMed  CAS  Google Scholar 

  • Kinnersely, AM (1993) The role of phytochelates in plant growth and productivity. Plant Growth Regul 12:207–217.

    Google Scholar 

  • Kinniburgh, DG, Milne, CJ, Benedetti, MF, Pinheiro, JO, Filius, J, Koopal, LK, Van Riemsdijk, WH (1996) Metal ion binding by humic acid: application of NICA-Donnan model. Environ Sci Technol 30:1687–1698.

    CAS  Google Scholar 

  • Korshin, GV, Frenkel, AI, Stern, EA (1998) EXAFS study of inner-shell structure in copper (II) complexes with humic substances. Environ Sci Technol 32:2699–2705.

    CAS  Google Scholar 

  • Kratochvil, D, Volesky, B (2000). Multicomponent biosorption in fixed beds. Water Res 34(12):3186–3196.

    CAS  Google Scholar 

  • Kratochvil, D, Pimentel, P, Volesky, B (1998) Removal of trivalent and hexavalent chromium by seaweed biosorbent. Environ Sci Technol 32:2693–2698.

    CAS  Google Scholar 

  • Krishnani, KK, Gupta, BP, Joseph, KO, Muralidhar, M, Nagavel, A (2002) Studies on the use of neem products for removal of ammonia from brackishwater. J Environ Sci Health A 37(5):893–904.

    CAS  Google Scholar 

  • Krishnani, KK, Azad, IS, Kailasam, M, Thirunavukkarasu, AR, Gupta, BP, Joseph, KO, Muralidhar, M, Abraham, M (2003a) Acute toxicity of some heavy metals to Lates calcarifer fry with a note on its histopathological manifestations. J Environ Sci Health 38(4):645–655.

    CAS  Google Scholar 

  • Krishnani, KK, Gupta, BP, Joseph, KO, Muralidhar, M, Sarda, C, Nagavel, A, Parimala, V (2003b) Decontamination of nitrogenous toxicants from brackish water using natural plant and animal extracts. Bull Environ Contam Toxicol 71(1):196–203.

    PubMed  CAS  Google Scholar 

  • Krishnani, KK, Parimala, V, Meng, X (2004) Detoxification of hexavalent chromium from coastal water using lignocellulosic waste. Water SA 30(4):541–545.

    CAS  Google Scholar 

  • Krishnani, KK, Parimala, V, Gupta, BP, Azad, IS, Xioaguang, Meng, Abraham, M (2006) Bagasse assisted bioremediation of shrimp farm wastewater. Water Environ Res 78 (In Press).

    Google Scholar 

  • Kudo, A, Miyahara, S (1991) A case history: Minamata mercury pollution in Japan-from loss of human lives to decontamination. Water Sci Technol 23:283–290.

    CAS  Google Scholar 

  • Kuyucak, N, Volesky, B (1989) The mechanism of cobalt biosorption. Biotechnol Bioeng 33:823–831.

    CAS  Google Scholar 

  • Lalwani, SB, Wiltowski, T, Hubner, A, Weston, A, Mandich, N (1998) Removal of hexavalent chromium and metal cations by a selective and novel carbon adsorbent. Carbon 36:1219–1226.

    Google Scholar 

  • Laszlo, JA, Dintzis, FR (1994) Crop residues as ion exchange materials-treatment of soyabean hull and sugar beet fibre (pulp) with epichlorohydrin to improve cation exchange capacity and physical stability. J Appl Polym Sci 52(4):531–538.

    CAS  Google Scholar 

  • LeDuc, DL, Terry, N (2005) Phytoremediation of toxic trace elements in soil and water. J Ind Microbiol Biotechnol 32(11–12): 514–520.

    PubMed  CAS  Google Scholar 

  • Lee, AN, Charles, MR (2004) Phytodegradation of organic compounds Curr Opin Biotechnol 15:225–230.

    Google Scholar 

  • Lee, CK, Low, KS, Liew, SC, Choo, CS (1999) Removal of arsenic (V) from aqueous solution by quaternized rice husk. Environ Technol 20:971–978.

    CAS  Google Scholar 

  • Leppert, D (1990) Heavy metal sorption with clinoptilolite zeolite: alternatives for treating contaminated soil and water. Mining Eng 42(6):604–608.

    CAS  Google Scholar 

  • Leusch, A, Holan, ZR, Volesky, B (1995) Biosorption of heavy metals (Cd, Cu, Ni, Pb0, Zn) by chemically-reinforced biomass of marine algae. J Chem Technol Biotechnol 62:279–288.

    CAS  Google Scholar 

  • Lombi, E, Zhao, FJ, Dunham, SJ, McGrath, SP (2001) Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction. J Environ Qual 30:1919–1926.

    PubMed  CAS  Google Scholar 

  • Low, KS, Lee, CK, Wong, SY, Tang, PL (2000) Metal sorption enhancement of rice hull through chemical modification. Environ Technol 21:1239–1244.

    CAS  Google Scholar 

  • Ma, LQ, Komar, KM, Tu, C, Zhang, W, Cai, Y, Kennelly, ED (2001) A fern that hyperaccumulates arsenic. Nature (Lond) 409:579.

    CAS  Google Scholar 

  • MacCarthy, P, Klusman, RW, Cowling, SW, Rice, JA (1995) Water analysis. Anal Chem 67:525R–582R.

    CAS  Google Scholar 

  • Manahan, SE (1993) Fundamentals of Environmental Chemistry. Lewis, Chelsea, MI.

    Google Scholar 

  • Mani, PK, Thomas, P, Philip, B (1998) Comparative efficiency of lignocellulose conversion on aquatic weed substrate (Salvinia molesta Mitchell) by different species of oyster mushroom (Pleu-rotus sajor-kaju, P. florida and P. citrinopileatus). In: Mohandas A, Singh ISB (eds) Frontiers in Applied Environmental Microbiology. SES, CUSAT, Cochin, India, pp 41–44.

    Google Scholar 

  • Manuel, PC, Jose, MM, Rosa, TM (1995) Chromium (VI) removal with activated carbons. Water Res 29:2174–2180.

    Google Scholar 

  • Marinsky, JA (1987) A two phase model for the interpretation of proton and metal ion interaction with charged polyelectrolyte gels and their linear analogs. In: Stumm W (ed) Aquatic Surface Chemistry. Wiley, New York, pp 49–81.

    Google Scholar 

  • Marshall, WE, Champagne, ET (1995) Agricultural by-products as adsorbents for metal ions in laboratory prepared solutions and in manufacturing wastewater. J Environ Sci Health A 30(2):241–261.

    Google Scholar 

  • Masri, MS, Reuter, FW, Friedman, M (1974) Binding of metal cations by natural substances. J Appl Polym Sci 18:675–681.

    Google Scholar 

  • Matis, KA, Zouboulis, AI (1994) Flotation of cadmium loaded biomass. Biotechnol Bioeng 44:354–360.

    CAS  Google Scholar 

  • Mattson, JS, Mark, HB (1971) Activated Carbon Surface Chemistry and Adsorption from Aqueous Solution. Dekker, New York.

    Google Scholar 

  • Meharg, AA, Macnair, MR (1990) An altered phosphate uptake system in arsenate tolerant Holcus lanatus L. New Phytol 116:29–35.

    CAS  Google Scholar 

  • Micard, V, Renard, CMGC, Colquhoun, IJ, Thibault, JF (1997) End products of enzyme saccharification of beet pulp, with a special attention to feruloylated oligosaccharides. Carbohydr Polym 32:283–292.

    CAS  Google Scholar 

  • Miltner, M, Cange, S, Perry, WG Jr, Avault, JW Jr (1983) Rice straw as a feed supplement for Macrobrachium resoenbergii in ponds J World Aquacult Soc 14:170–173.

    Google Scholar 

  • Mkandawire, Martin, Lyubun, YV, Kosterine, PV, Dudel, E, Gert (2004) Toxicity of arsenic species to Lemna gibba L. and the influence of phosphate on arsenic bioavailability. Wiley Interscience online. Wiley Periodicals, New York, pp 26–33.

    Google Scholar 

  • Moffat, A (1995) Plants proving their worth in toxic metal clean up. Science 269:302–303.

    CAS  Google Scholar 

  • Namasivayan, C, Kadirvelu, K (1999) Uptake of mercury (II) from wastewater by activated carbon from an unwanted agricultural solid by-product: coirpith. Carbon 37:79–84.

    Google Scholar 

  • Nickson, R, McArthur, J, Burgass, W, Ahmed, KM (1998) Arsenic poisoning of Bangladesh groundwater. Nature (Lond) 395:338.

    CAS  Google Scholar 

  • Niu, H, Xu, XS, Wang, JH (1993) Removal of lead from aqueous solutions by penicillium biomass. Biotechnol Bioeng 42:785–787.

    CAS  Google Scholar 

  • Nkhalambayausi-Chirwa, EM, Wang, YT (2001) Simultaneous Cr(VI) reduction and phenol degradation in a fixed film coculture bioreactor: reactor performance. Water Res 35:1921–1932.

    PubMed  CAS  Google Scholar 

  • Nordstrum, DK (2002) Public health worldwide occurrences of arsenic in ground-water. Science 296:2143.

    Google Scholar 

  • Nriagu, JO (1979) Global inventory of natural and anthopogenic emissions of trace metals to the atmosphere. Nature (Lond) 279:409–411.

    CAS  Google Scholar 

  • Ouki, SK, Kavannagh, M (1997) Performance of natural zeolites for the treatment of mixed metal-contaminated effluents. Waste Manag Res 15:383–394.

    CAS  Google Scholar 

  • Parimala, V, Krishnani, KK, Gupta, BP, Jayanthi, M, Abraham, M (2004) Phytoremediation of chromium from seawater using five different products from coconut husk. Bull Environ Contam Toxicol 73:31–37.

    PubMed  CAS  Google Scholar 

  • Pauli, G, Gravitis, J (1997) Environmental Management of Plantations: Through Zero Emission Approach-Plantation Management for the 21st Century. Proceedings of the International Planters Conference on Plantation Management for the 21st Century, Kuala Lumpur, Malaysia, Vol 1. The Incorporated Society of Planters, Kuals Lumpur, pp 193–207.

    Google Scholar 

  • Peniche-Covas, C, Alvarez, LW, Arguelles-Monal, W (1992) The adsorption of mercuric ions by chitosan. J Appl Ploym Sci 46:1147–1150.

    CAS  Google Scholar 

  • Pickering, IJ, Prince, RC, George, MJ, Smith, RD, George, GN, Salt, DE (2000) Reduction and coordination of arsenic in Indian mustard. Plant Physiol 122:1171–1177.

    PubMed  CAS  Google Scholar 

  • Pradas, EG, Sanchez, MV, Cruz, FC, Viciana, MS, Prez, MF (1994) Adsorption of cadmium and zinc from aqueous solution on natural and activated bentonite. J Chem Technol Biotechnol 59:289–295.

    Google Scholar 

  • Rahman, MM, Sengupta, MK, Ahamed, S, Chowdhury, UK, Lodh, D, Hossain, A, Das, B, Roy, N, Saha, KC, Palit, SK, Chakraborti, D (2005) Arsenic contamination of groundwater and its health impact on residents in a village in West Bengal, India. Bull WHO 83(1):49–57.

    PubMed  Google Scholar 

  • Raji, C, Anirudhan, TS (1998) Batch Cr(VI) removal by polyacrylamide-grafted saw dust: kinetics and thermodynamics. Water Res 32(12):3772–3780.

    CAS  Google Scholar 

  • Ramelow, GJ, Fralick, D, Zhao, Y (1992) Factors affecting the uptake of aqueous metal ions by dried seaweed biomass. Microbios 72:81–93.

    CAS  Google Scholar 

  • Ravat, C, Monteil-Rivera, F, Dumonceau, F (2000) Metal ions binding to natural organic matter extracted from wheat bran: application of the surface complexation model. J Colloid Interface Sci 225:329.

    PubMed  CAS  Google Scholar 

  • Reddad, Z, Gerente, Y, Andres, Y, Le Cloirec, P (2002a) Comparison of the fixation of several metal ions onto a low cost biopolymer. Water Sci Technol Water Supply 2(5–6):217–224.

    CAS  Google Scholar 

  • Reddad, Z, Gerente, C, Andres, Y, Ralet, M-C, Thibault, J-F, Le, Cloirec P (2002b) Ni(II) and Cu(II) binding properties of native and modified sugar beet pulp. Carbohydr Polym 49:23–31.

    CAS  Google Scholar 

  • Reddad, Z, Gerente, C, Andres, Yves, Pierre, Le, Cloirec (2002c) Modeling of single and competitive metal adsorption onto a natural polysaccharide. Environ Sci Technol 36:2242–2248.

    PubMed  CAS  Google Scholar 

  • Reddad, Z, Zerente, C, Andres, Y, Le, Cloirec P (2002d) Adsorption of several metal ions onto a low cost biosorbent: kinetic and equilibrium studies. Environ Sci Technol 36:2067–2073.

    PubMed  CAS  Google Scholar 

  • Reddad, Z, Zerente, C, Andres, Y, Le, Cloirec P (2003) Mechanisms of Cr(III) and Cr(VI) removal from aqueous solutions by sugar beet pulp. Environ Toxicol 24:257–264.

    CAS  Google Scholar 

  • Reeves, RD, Baker, AJH (2000) Metal accumulating plants. In: Raskin I, Ensley ED (eds) Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment. Wiley, New York, pp 193–229.

    Google Scholar 

  • Reid, J (1994) Arsenic occurrence: USEPA sees clearer picture. J Am Water Works Assoc 86(9):44–51.

    CAS  Google Scholar 

  • Roy, D, Greenlaw, PN, Shane, BS (1993) Adsorption of heavy metals by green algae and ground rice hulls. J Environ Sci Health A 28(1):37–50.

    Google Scholar 

  • Robinson, B, Duwig, C, Bolan, N, Kannathasan, M, Saravanan, A (2003) Uptake of arsenic by New Zealand watercress (Lepidium sativum). Sci Total Environ 301:67–73.

    PubMed  CAS  Google Scholar 

  • Salt, DE, Blaylock, M, Kumar PBAN, Dushenkov, S, Ensley, BD, Chet, I, Raskin, I (1996) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474.

    Google Scholar 

  • Schalcsha, E, Ahumada, IT (1998) Heavy metals in rivers and soils of central Chile. Water Sci Technol 37:251–255.

    Google Scholar 

  • Schiewer, S (1999) Modelling complexation and electrostatic attraction in heavy metal biosorption by Sargassum biomass. J Appl Phycol 11:79–87.

    CAS  Google Scholar 

  • Schiewer, S, Volesky, B (1997) Ionic strength and electrostatic effect in biosorption of divalent metal ions and protons. Environ Sci Technol 30:2478–2485.

    Google Scholar 

  • Schiewer, S, Wong, HM (1999) Metal binding stoichiometry and isotherm choice in biosorption. Environ Sci Technol 33:3821–3828.

    CAS  Google Scholar 

  • Schrope, M (2001) US to take temperature of mercury threat. Nature (Lond) 409: 124.

    CAS  Google Scholar 

  • Seki, H, Suzuki, A, Mitsueda, S (1998) Biosorption of heavy metal ions on Rhodobcter sphaeroides and Alcaligenes eutrophus H16. J Colloid Interface Sci 197:185–190.

    PubMed  CAS  Google Scholar 

  • Sharma, DC, Forster, CF (1994) A preliminary examination into the adsorption of hexavalent chromium using low cost adsorbents. Bioresour Technol 47:257–264.

    CAS  Google Scholar 

  • Simkovic, I, Laszlo, JA (1997) Preparation of ion exchangers from bagasse by crosslinking with epichlorohydrin-NH4OH or epichlorohydrin-imadazole. J Appl Polym Sci 64(13):2561–2566.

    CAS  Google Scholar 

  • Smith, AH, Lingas, EC, Rahman, M (2000) Contamination of drinking water by As in Bangladesh: a public health emergency. Bull WHO 78:1093–1103.

    PubMed  CAS  Google Scholar 

  • South, GR, Whittick, A (1987) Introduction to Phycology. Blackwell, Oxford, pp 61–62.

    Google Scholar 

  • Srivastava, SK, Singh, AK, Sharma, A (1994) Studies on the uptake of lead and zinc by lignin obtained from black liquor-a paper industry waste material. Environ Technol 15:353–361.

    CAS  Google Scholar 

  • Tan, WT, Ooi, ST, Lee, CK (1993) Removal of chromium (VI) from solution by coconut husk and palm pressed fibres. Environ Technol 14:277–282.

    CAS  Google Scholar 

  • Tarley, CRT, Ferreira, SLC, Arruda, MAZ (2004) Use of modified rice husks as a natural solid adsorbent of trace metals: characterization and development of an online preconcentration system for cadmium and lead determination by FAAS. Microchem J 77(2):163–175.

    Google Scholar 

  • Texier, AC, Andres, Y, Le, Cloirec P (1999) Selective biosorption of lanthanide (La, Eu, Yb) ions by Pseudomonas aeruginosa. Environ Sci Technol 33:489–495.

    CAS  Google Scholar 

  • Tsezos, M, Volesky, B (1981) Biosorption of uranium and thorium. Biotechnol Bioeng 23:583–604.

    CAS  Google Scholar 

  • Tummavuori, J, Aho, M (1980a) On the ion exchange properties of peat. Part I: On the adsorption of some divalent metal ions (Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+) on the peat. Suo 31(4)79–83.

    CAS  Google Scholar 

  • Tummavuori, J, Aho, M (1980b) On the ion exchange properties of peat. Part II: On the adsorption of alkali, earth alkali, aluminium (III), chromium (III), iron (III), silver, mercury (II) and ammonium ions to the peat. Suo 31(2–3):45–51.

    CAS  Google Scholar 

  • USEPA (2001) Fed Reg 66(14):6976.

    Google Scholar 

  • USEPA (2002) Proven alternatives for aboveground treatment of arsenic in ground-water. EPA-542-S-02-2002. Office of Solid Waste and Emergence Response, U.S. Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • Vaughan, T, Seo, CW, Marshall, WE (2001) Removal of selected metal ions from aqueous solution using modified corncobs. Bioresour Technol 78:133–139.

    PubMed  CAS  Google Scholar 

  • Visscher, P, Eirik, T, Duerr, O (1991) Water quality and microbial dynamics in shrimp ponds receiving bagasse-based feed. J World Aquacult Soc 22(1):65–76.

    Google Scholar 

  • Volesky, B, Holan, ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250.

    PubMed  CAS  Google Scholar 

  • Wase, DAJ, Forster, CF (1997) Biosorption of heavy metals: an introduction. In: Wase J, Forster C (eds) Biosorbents for Metal Ions. Taylor and Francis, London.

    Google Scholar 

  • WHO (1993) Guidelines for Drinking Water Quality, 2nd ed. WHO, Geneva, Switzerland.

    Google Scholar 

  • Wielinga, B, Mizuba, MM, Hansel, CM, Fendorf, S (2001) Iron promoted reduction of chromate by dissimilatory iron reducing bacteria. Environ Sci Technol 35:522–527.

    PubMed  CAS  Google Scholar 

  • Winfrey, MR, Rudd, JWM (1990) Environmental factors affecting the formation of methyl mercury in low pH lakes. Environ Toxicol Chem 9:853–869.

    CAS  Google Scholar 

  • Wong, KK, Lee, CK, Low, KS, Haron, MJ (2003) Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions. Chemosphere 50(1):23–28.

    PubMed  CAS  Google Scholar 

  • Woodford, MK, (1984) The Silage Fermentation. Dekker, New York.

    Google Scholar 

  • Wyatt, CJ, Fimbres, C, Romo, L, Mendez, RO, Grijalva, M (1998) Incidence of heavy metal contamination in water supplies in Northern Mexico. Environ Res 176:114–119.

    Google Scholar 

  • Yadava, KP, Tyagi, BS, Singh, VN (1991) Effect of temperature on the removal of lead (II) by adsorption on China clay and wollastonite. J Chem Technol Biotechnol 51:47–60.

    CAS  Google Scholar 

  • Yang, GCC, Lin, S (1998) Removal of lead from a silt loam soil by electrokinetic remediation. J Hazard Mater 58:285–299.

    CAS  Google Scholar 

  • Yang, J, Volesky, B (1999) Modeling uranium-proton ion exchange in biosorption. Environ Sci Technol 33:4079–4085.

    CAS  Google Scholar 

  • Zuane, JD (1990) Handbook of Drinking Water Quality: Standards and Control. Van Nostrand Reinhold, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Krishnani, K.K., Ayyappan, S. (2006). Heavy Metals Remediation of Water Using Plants and Lignocellulosic Agrowastes. In: Ware, G.W., et al. Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 188. Springer, New York, NY. https://doi.org/10.1007/978-0-387-32964-2_2

Download citation

Publish with us

Policies and ethics