Skip to main content

Deconvolution and Optimal Filtering in Seismology

  • Chapter
Handbook of Signal Processing in Acoustics
  • 751 Accesses

Deconvolution is an important, well-studied problem that is commonly encountered in seismology [1–4]. During hydrocarbon exploration, seismic receivers measure a noisy version of the earth’s response that is blurred by a source wavelet (for example, from marine air guns, or land dynamite charges). Deconvolution becomes necessary to deduce the earth’s response fromthe blurred and noisy receiver measurements. In earthquake seismology, the receivers measure seismic waves generated by earthquakes. In this case, deconvolution is employed to isolate the earthquake source time function, which characterizes the underground faulting process, from propagation effects [5–7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 629.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 799.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. M. Webster, ed., Deconvolution. Soc. Expl. Geophys., Geophysics reprint series; No. 1, 1978.

    Google Scholar 

  2. E. A. Robinson and O. M. Osman, eds., Deconvolution 2. Soc. Expl. Geophys., Geophysics reprint series; No. 17, 1996.

    Google Scholar 

  3. Öz Yilmaz, Seismic Data Analysis: Vols. I and II. Soc. Expl. Geophys., second ed., 2001.

    Google Scholar 

  4. J. M. Mendel, Optimal seismic deconvolution: An estimation-based approach. NY: Academic Press Inc., 1983.

    Google Scholar 

  5. T. Lay and T. C. Wallace, Modern Global Seismology. NY: Academic Press, 1995.

    Google Scholar 

  6. P. Shearer, Introduction to Seismology. Cambridge, UK: Cambridge University Press, 1999.

    Google Scholar 

  7. M. Bertero, D. Bindi, P. Boccacci, M. Cattaneo, C. Eva, and V. Lanza, “Application of the projected Landweber method to the estimation of the source time function in seismology,” Inverse Problems, vol. 13, pp. 465–486, 1997.

    Google Scholar 

  8. R. Neelamani, H. Choi, and R. G. Baraniuk, “ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems,” IEEE Trans. Signal Processing, vol. 52, pp. 418–433, Feb. 2004.

    Google Scholar 

  9. E. A. Robinson and S. Treitel, Geophysical Signal Analysis. Englewood Cliffs, NJ, USA: Prentice Hall, 1980.

    Google Scholar 

  10. S. Treitel, “Principles of digital multichannel filtering,” in Deconvolution (G. M. Webster, ed.), pp. 334–360, Soc. Expl. Geophys., 1978. Reprinted from Geophysics vol. 35, no. 5, pp. 785–811.

    Google Scholar 

  11. J. Agard and G. Grau, “Etude statistique de sismogrammes,” Geophys. Prosp., vol. 09, no. 04, pp. 503–525, 1961.

    Article  ADS  Google Scholar 

  12. A. T. Walden and J.W.J. Hosken, “The nature of the non-Gaussianity of primary reflection coefficients and its significance for deconvolution,” Geophys. Prosp., vol. 34, no. 07, pp. 1038–1066, 1986.

    Article  ADS  Google Scholar 

  13. S. Mallat, A Wavelet Tour of Signal Processing. NY: Academic Press, 1998.

    MATH  Google Scholar 

  14. E. Candès and D. Donoho, “Curvelets and curvilinear integrals,” J. Approx. Theory., vol. 113, pp. 59–90, 2000.

    Article  Google Scholar 

  15. E. J. Candès and D. L. Donoho, “Recovering edges in ill-posed inverse problems optimality of curvelet frames,” Ann. Statist., vol. 30, pp. 784–842, 2000.

    Google Scholar 

  16. D. L. Donoho, “Nonlinear solution of linear inverse problems by Wavelet-Vaguelette Decomposition,” Appl. Comput. Harmon. Anal., vol. 2, pp. 101–126, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  17. G. Hennenfent, F. Herrmann, and R. Neelamani, “Seismic deconvolution revisited with curvelet frames,” in EAGE 67th Conference & Exhibition Proceedings, June 2005.

    Google Scholar 

  18. K. R. Castleman, Digital Image Processing. NJ: Prentice Hall, 1996.

    Google Scholar 

  19. E. A. Robinson, “Predictive decomposition of seismic traces,” in Deconvolution 2 (E. A. Robinson and O. M. Osman, eds.), pp. 60–71, Soc. Expl. Geophys., 1996.

    Google Scholar 

  20. R. A. Wiggins, “Minimum entropy deconvolution,” Geoexploration, vol. 26, pp. 21–35, 1978.

    Article  Google Scholar 

  21. M. D. Sacchi and T. J. Ulrych, “Nonminimum-phase wavelet estimation using higher order statistics,” The Leading Edge, vol. 19, no. 01, pp. 80–83, 2000.

    Article  Google Scholar 

  22. D. L. Donoho, “On minimum entropy deconvolution,” in Applied Time-Series Analysis II (D. F. Findley, ed.), pp. 556–608, NY: Academic Press, 1981.

    Google Scholar 

  23. A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1989.

    MATH  Google Scholar 

  24. B. Buttkus, “Homomorphic filtering: Theory and practice,” in Deconvolution 2 (E. A. Robinson and O. M. Osman, eds.), pp. 209–245, Soc. Expl. Geophys., 1996.

    Google Scholar 

  25. M. T. Taner and F. Koehler, “Surface consistent corrections,” Geophysics, vol. 46, no. 01, pp. 17–22, 1981.

    Article  ADS  Google Scholar 

  26. S. A. Levin, “Surface-consistent deconvolution,” in Deconvolution 2 (E. A. Robinson and O. M. Osman, eds.), pp. 366–376, Soc. Expl. Geophys., 1996.

    Google Scholar 

  27. G. Cambois and P. L. Stoffa, “Surface-consistent deconvolution in the log/Fourier domain,” in Deconvolution 2 (E. A. Robinson and O. M. Osman, eds.), pp. 377–394, Soc. Expl. Geophys., 1996.

    Google Scholar 

  28. M. M. Backus, “Water reverberations - Their nature and elimination,” in Deconvolution (G. M. Webster, ed.), pp. 136–164, Soc. Expl. Geophys., 1978. Reprinted from Geophysics vol. 24, no. 2, pp. 233–261.

    Google Scholar 

  29. A. Jurkevics and R. Wiggins, “A critique of seismic deconvolution methods,” Geophysics, vol. 49, no. 12, pp. 2109–2116, 1984.

    Article  ADS  Google Scholar 

  30. L. R. Lines and T. J. Ulrych, “The old and the new in seismic deconvolution and wavelet estimation,” Geophys. Prosp., vol. 25, no. 03, pp. 512–540, 1977.

    Article  ADS  Google Scholar 

  31. R. E. White and P. N. S. O’Brien, “Estimation of the primary seismic pulse,” Geophys. Prosp., vol. 22, no. 04, pp. 627–651, 1974.

    Article  ADS  Google Scholar 

  32. M. Saggaf and E. A. Robinson, “A unified framework for the deconvolution of traces of nonwhite reflectivity,” Geophysics, vol. 65, no. 5, pp. 1660–1676, 2000.

    Article  ADS  Google Scholar 

  33. B. J. Newman, “Deconvolution of noisy seismic data – A method for prestack wavelet extraction,” Geophysics, vol. 51, no. 01, pp. 34–44, 1986.

    Article  ADS  Google Scholar 

  34. A. J. Berkhout, “Least-squares inverse filtering and wavelet deconvolution,” Geophysics, vol. 42, no. 07, pp. 1369–1383, 1977.

    Article  ADS  Google Scholar 

  35. K. L. Peacock and S. Treitel, “Predictive deconvolution – Theory and practice,” in Deconvolution (G. M. Webster, ed.), pp. 221–235, Soc. Expl. Geophys., 1978. Reprinted from Geophysics vol. 34, no. 2, pp. 155–169.

    Google Scholar 

  36. M. T. Taner, R. F. O’Doherty, and E. Baysal, “Multiple suppression by multi-channel predictive deconvolution,” in 53rd Mtg., pp. 22–23, Eur. Assn. of Expl. Geophys., 1991.

    Google Scholar 

  37. M. T. Taner, R. F. O’Doherty, and F. Koehler, “Long period multiple suppression by predictive deconvolution in the x-t domain,” Geophys. Prosp., vol. 43, no. 04, pp. 433–468, 1995.

    Article  ADS  Google Scholar 

  38. T. J. Ulrych and T. Matsuoka, “The output of predictive deconvolution,” Geophysics, vol. 56, no. 03, pp. 371–377, 1991.

    Article  ADS  Google Scholar 

  39. S. C. Hornbostel, “Multiple suppression with time-varying gaps and maximized polarity reversals,” in 68th Ann. Internat. Mtg, pp. 1142–1145, Soc. Expl. Geophys., 1998.

    Google Scholar 

  40. M. Schoenberger and L. M. Houston, “Stationarity transformation of multiples to improve the performance of predictive deconvolution,” Geophysics, vol. 63, no. 02s, pp. 723–737, 1998.

    Article  ADS  Google Scholar 

  41. A. T. Walden, “Non-Gaussian reflectivity entropy and deconvolution,” Geophysics, vol. 50, no. 12, pp. 2862–2888, 1985.

    Article  ADS  MathSciNet  Google Scholar 

  42. G. B. Giannakis and J. M. Mendel, “Entropy interpretation of maximum-likelihood deconvolution,” Geophysics, vol. 52, no. 12, pp. 1621–1630, 1987.

    Article  ADS  Google Scholar 

  43. M. Lavielle, “2-D Bayesian deconvolution,” in Deconvolution 2 (E. A. Robinson and O. M. Osman, eds.), pp. 584–594, Soc. Expl. Geophys., 1996.

    Google Scholar 

  44. K. Kaaresen and T. Taxt, “Multichannel blind deconvolution of seismic signals,” Geophysics, vol. 63, no. 06, pp. 2093–2107, 1998.

    Article  ADS  Google Scholar 

  45. P. Sheng, B. White, B. Nair, and S. Kerford, “Bayesian deconvolution of gamma-ray logs,” Geophysics, vol. 52, no. 11, pp. 1535–1546, 1987.

    Article  ADS  Google Scholar 

  46. R. Wiggins, “Entropy guided deconvolution,” in Deconvolution 2 (E. A. Robinson and O. M. Osman, eds.), pp. 265–271, Soc. Expl. Geophys., 1996.

    Google Scholar 

  47. P. L. Stoffa, P. Buhl, and G. M. Bryan, “The application of homomorphic deconvolution to shallow-water marine seismology – Part I: Models,” Geophysics, vol. 39, no. 04, pp. 401–416, 1974.

    Article  ADS  Google Scholar 

  48. S. A. Levin, “Lessons in surface-consistent deconvolution,” in 58th Ann. Internat. Mtg, pp. 718–722, Soc. Expl. Geophys., 1988.

    Google Scholar 

  49. F. Kirchheimer and R. Ferber, “Robust surface-consistent deconvolution with noise suppression,” in 71st Ann. Internat. Mtg, pp. 1831–1834, Soc. Expl. Geophys., 2001.

    Google Scholar 

  50. M. Deffenbaugh and R. Neelamani, “OBC multiple suppression with the Texas Two-step,” in 75th Ann. Internat. Mtg, SPMUL 2.8, Soc. Expl. Geophys., 2005.

    Google Scholar 

  51. R. Neelamani, M. Deffenbaugh, and R. G. Baraniuk, “Texas two-step: A framework for optimal multi-input single-output deconvolution,” IEEE Transactions on Image Processing, vol. 16, no. 11, pp. 2752–2765, Nov. 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Neelamani, R. (2008). Deconvolution and Optimal Filtering in Seismology. In: Havelock, D., Kuwano, S., Vorländer, M. (eds) Handbook of Signal Processing in Acoustics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-30441-0_87

Download citation

Publish with us

Policies and ethics