Skip to main content

Immunotherapy Strategies for Lewy Body and Parkinson's Diseases

  • Reference work entry
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

Accumulation of α-synuclein (α-syn) resulting in the formation of oligomers and protofibrils has been linked to the neurodegenerative process in Parkinson’s disease and Lewy body dementia. Genetic and environmental factors affecting the rate of α-syn production, aggregation, and clearance might play an important role. Therefore, development of new therapies will require either reducing α-syn synthesis and rate of aggregation, or enhancing clearance. Clearance of α-syn aggregates depends on lysosomal and nonlysosomal pathways. Among the various approaches to promote clearance of α-syn aggregates, immunotherapy is of special interest because antibodies can specifically target abnormal α-syn aggregates. Experimental studies have shown that active as well as passive immunization might reduce α-syn accumulation and associated deficits. Similarly, strategies employing anti-α-syn intrabodies, where cells are genetically modified to produce anti-α-syn antibodies, rescue the phenotype associated with α-syn aggregates. In addition, cellular immunotherapy with copolymer has been shown to reduce neurodegeneration in acute models such as 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine (MPTP) toxicity. The mechanisms through which antibodies against α-syn aggregates might ameliorate the deficits in mice and cellular models are under investigation. Antibodies might act by recognizing α-syn oligomers accumulating in the neuronal membranes and promote degradation of α-syn aggregates via endosomal–lysosomal pathways and autophagy. Therapeutic approaches focusing on the combination of antibodies and regulation of cellular immune responses might prove in the future to be effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 249.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CMA:

chaperone-mediated autophagy

DLB:

dementia with LBs

LBD:

Lewy body disease

LRRK2:

leucine-rich repeat kinase-2

MPTP:

1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine

MSA:

multiple systems atrophy

PDD:

PD dementia

PDGF-β:

platelet-derived growth factor-β

PINK1:

PTEN-induced putative kinase-1

PrP:

prion protein

UCH-L1:

ubiquitin carboxyl-terminal esterase-L1

References

  • Aarsland D, Ballard CG, Halliday G. 2004. Are Parkinson’s disease with dementia and dementia with Lewy bodies the same entity? J Geriatr Psychiatry Neurol 17: 137–145.

    Article  PubMed  Google Scholar 

  • Apetri MM, Maiti NC, Zagorski MG, Carey PR, Anderson VE. 2006. Secondary structure of alpha-synuclein oligomers: Characterization by raman and atomic force microscopy. J Mol Biol 355: 63–71.

    Article  CAS  PubMed  Google Scholar 

  • Bahr BA, Bendiske J. 2002. The neuropathogenic contributions of lysosomal dysfunction. J Neurochem 83: 481–489.

    Article  CAS  PubMed  Google Scholar 

  • Benner EJ, Mosley RL, Destache CJ, Lewis TB, Jackson-Lewis V, et al. 2004. Therapeutic immunization protects dopaminergic neurons in a mouse model of Parkinson’s disease. Proc Natl Acad Sci USA 101: 9435–9440.

    Article  CAS  PubMed  Google Scholar 

  • Berger Z, Ravikumar B, Menzies FM, Oroz LG, Underwood BR, et al. 2006. Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum Mol Genet 15: 433–442.

    Article  CAS  PubMed  Google Scholar 

  • Borghi R, Marchese R, Negro A, Marinelli L, Forloni G, et al. 2000. Full length alpha-synuclein is present in cerebrospinal fluid from Parkinson’s disease and normal subjects. Neurosci Lett 287: 65–67.

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Del Tredici K, Bratzke H, Hamm-Clement J, Sandmann-Keil D, et al. 2002. Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson’s disease (preclinical and clinical stages). J Neurol 249 (Suppl 3): III/1–5.

    Google Scholar 

  • Burn DJ. 2006. Cortical Lewy body disease and Parkinson’s disease dementia. Curr Opin Neurol 19: 572–579.

    Article  PubMed  Google Scholar 

  • Chandra S, Chen X, Rizo J, Jahn R, Sudhof TC. 2003. A broken alpha -helix in folded alpha -Synuclein. J Biol Chem 278: 15313–15318.

    Article  CAS  PubMed  Google Scholar 

  • Conway K, Harper J, Lansbury P. 1998. Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med 4: 1318–1320.

    Article  CAS  PubMed  Google Scholar 

  • Conway KA, Lee SJ, Rochet JC, Ding TT, Williamson RE, et al. 2000. Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: Implications for pathogenesis and therapy. Proc Natl Acad Sci USA 97: 571–576.

    Article  CAS  PubMed  Google Scholar 

  • Cuervo AM. 2004. Autophagy: In sickness and in health. Trends Cell Biol 14: 70–77.

    Article  PubMed  CAS  Google Scholar 

  • Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D. 2004. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305: 1292–1295.

    Article  CAS  PubMed  Google Scholar 

  • Danzer KM, Haasen D, Karow AR, Moussaud S, Habeck M, et al. 2007. Different species of alpha-synuclein oligomers induce calcium influx and seeding. J Neurosci 27: 9220–9232.

    Article  CAS  PubMed  Google Scholar 

  • Davidson W, Jonas A, Clayton D, George J. 1998. Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 273: 9443–9449.

    Article  CAS  PubMed  Google Scholar 

  • Ding TT, Lee SJ, Rochet JC, Lansbury PT Jr. 2002. Annular alpha-synuclein protofibrils are produced when spherical protofibrils are incubated in solution or bound to brain-derived membranes. Biochemistry 41: 10209–10217.

    Article  CAS  PubMed  Google Scholar 

  • Edinger AL, Thompson CB. 2004. Death by design: Apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16: 663–669.

    Article  CAS  PubMed  Google Scholar 

  • Emadi S, Liu R, Yuan B, Schulz P, McAllister C, et al. 2004. Inhibiting aggregation of alpha-synuclein with human single chain antibody fragments. Biochemistry 43: 2871–2878.

    Article  CAS  PubMed  Google Scholar 

  • Feany M, Bender W. 2000. A Drosophila model of Parkinson’s disease. Nature 404: 394–398.

    Article  CAS  PubMed  Google Scholar 

  • Fernagut PO, Chesselet MF. 2004. Alpha-synuclein and transgenic mouse models. Neurobiol Dis 17: 123–130.

    Article  CAS  PubMed  Google Scholar 

  • Furukawa K, Matsuzaki-Kobayashi M, Hasegawa T, Kikuchi A, Sugeno N, et al. 2006. Plasma membrane ion permeability induced by mutant alpha-synuclein contributes to the degeneration of neural cells. J Neurochem 97: 1071–1077.

    Article  CAS  PubMed  Google Scholar 

  • Games D, Bard F, Grajeda H, Guido T, Khan K, et al. 2000. Prevention and reduction of AD-type pathology in PDAPP mice immunized with A beta 1–42. Ann NY Acad Sci 920: 274–284.

    Article  CAS  PubMed  Google Scholar 

  • Gasser T. 2007. Update on the genetics of Parkinson’s disease. Mov Disord 22: S343–S350.

    Article  PubMed  Google Scholar 

  • Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, et al. 2002. Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron 34: 521–533.

    Article  CAS  PubMed  Google Scholar 

  • Golbe LI, Mouradian MM. 2004. Alpha-synuclein in Parkinson’s disease: Light from two new angles. Ann Neurol 55: 153–156.

    Article  PubMed  Google Scholar 

  • Gozuacik D, Kimchi A. 2004. Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23: 2891–2906.

    Article  CAS  PubMed  Google Scholar 

  • Halliday GM, Macdonald V, Henderson JM. 2005. A comparison of degeneration in motor thalamus and cortex between progressive supranuclear palsy and Parkinson’s disease. Brain 128: 2272–2280.

    Article  PubMed  Google Scholar 

  • Hansen LA, Galasko D. 1992. Lewy body disease. Curr Opin Neurol Neurosurg 5: 889–894.

    CAS  PubMed  Google Scholar 

  • Hashimoto M, Masliah E. 1999. Alpha-synuclein in Lewy body disease and Alzheimer’s disease. Brain Pathol 9: 707–720.

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto M, Rockenstein E, Mante M, Crews L, Bar-On P, et al. 2004. An antiaggregation gene therapy strategy for Lewy body disease utilizing beta-synuclein lentivirus in a transgenic model. Gene Ther 11: 1713–1723.

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto M, Rockenstein E, Mante M, Mallory M, Masliah E. 2001. β-Synuclein inhibits α-synuclein aggregation: A possible role as an anti-parkinsonian factor. Neuron 32: 213–223.

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto M, Rockenstein E, Masliah E. 2003. Transgenic models of alpha-synuclein pathology: Past, present, and future. Ann NY Acad Sci 991: 171–188.

    Article  CAS  PubMed  Google Scholar 

  • Hattori N, Kobayashi H, Sasaki-Hatano Y, Sato K, Mizuno Y. 2003. Familial Parkinson’s disease: A hint to elucidate the mechanisms of nigral degeneration. J Neurol 250 (Suppl 3): III2–III10.

    PubMed  Google Scholar 

  • Holtzman DM, Bales KR, Wu S, Bhat P, Parsadanian M, et al. 1999. Expression of human apolipoprotein E reduces amyloid-β deposition in a mouse model of Alzheimer’s disease. J Clin Invest 103: R15–R21.

    Article  CAS  PubMed  Google Scholar 

  • Iwai A, Masliah E, Yoshimoto M, De Silva R, Ge N, et al. 1994. The precursor protein of non-Ab component of Alzheimer’s disease amyloid (NACP) is a presynaptic protein of the central nervous system. Neuron 14: 467–475.

    Article  Google Scholar 

  • Iwatsubo T, Yamaguchi H, Fujimuro M, Yokosawa H, Ihara Y, et al. 1996. Purification and characterization of Lewy bodies from brains of patients with diffuse Lewy body disease. Am J Pathol 148: 1517–1529.

    CAS  PubMed  Google Scholar 

  • Janvin CC, Larsen JP, Salmon DP, Galasko D, Hugdahl K, et al. 2006. Cognitive profiles of individual patients with Parkinson’s disease and dementia: Comparison with dementia with lewy bodies and Alzheimer’s disease. Mov Disord 21: 337–342.

    Article  PubMed  Google Scholar 

  • Jao CC, Der-Sarkissian A, Chen J, Langen R. 2004. Structure of membrane-bound alpha-synuclein studied by site-directed spin labeling. Proc Natl Acad Sci USA 101: 8331–8336.

    Article  CAS  PubMed  Google Scholar 

  • Kahle PJ, Neumann M, Ozmen L, Muller V, Odoy S, et al. 2001. Selective insolubility of alpha-synuclein in human Lewy body diseases is recapitulated in a transgenic mouse model. Am J Pathol 159: 2215–2225.

    CAS  PubMed  Google Scholar 

  • Kamp F, Beyer K. 2006. Binding of alpha-synuclein affects the lipid packing in bilayers of small vesicles. J Biol Chem 281: 9251–9259.

    Article  CAS  PubMed  Google Scholar 

  • Kirik D, Rosenblad C, Burger C, Lundberg C, Johansen TE, et al. 2002. Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system. J Neurosci 22: 2780–2791.

    CAS  PubMed  Google Scholar 

  • Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, et al. 1998. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392: 605–608.

    Article  CAS  PubMed  Google Scholar 

  • Klein RL, King MA, Hamby ME, Meyer EM. 2002. Dopaminergic cell loss induced by human A30P alpha-synuclein gene transfer to the rat substantia nigra. Hum Gene Ther 13: 605–612.

    Article  CAS  PubMed  Google Scholar 

  • Klivenyi P, Siwek D, Gardian G, Yang L, Starkov A, et al. 2006. Mice lacking alpha-synuclein are resistant to mitochondrial toxins. Neurobiol Dis 21: 541–548.

    Article  CAS  PubMed  Google Scholar 

  • Komatsu M, Ueno T, Waguri S, Uchiyama Y, Kominami E, et al. 2007. Constitutive autophagy: Vital role in clearance of unfavorable proteins in neurons. Cell Death Differ 14: 887–894.

    CAS  PubMed  Google Scholar 

  • Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, et al. 2006. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441: 880–884.

    Article  CAS  PubMed  Google Scholar 

  • Kosaka K, Yoshimura M, Ikeda K, Budka H. 1984. Diffuse type of Lewy body disease. Progressive dementia with abundant cortical Lewy bodies and senile changes of varying degree – A new disease? Clin Neuropathol 3: 183–192.

    Google Scholar 

  • Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, et al. 1998. Ala30Pro mutation in the gene encoding a-synuclein in Parkinsons’s disease. Nat Genet 18: 106–108.

    Article  CAS  PubMed  Google Scholar 

  • Lansbury PTJ. 1999. Evolution of amyloid: What normal protein folding may tell us about fibrillogenesis and disease. Proc Natl Acad Sci USA 96: 3342–3344.

    Article  CAS  PubMed  Google Scholar 

  • Larsen KE, Sulzer D. 2002. Autophagy in neurons: A review. Histol Histopathol 17: 897–908.

    CAS  PubMed  Google Scholar 

  • Lashuel HA, Hartley DM, Petre BM, Wall JS, Simon MN, et al. 2003. Mixtures of wild-type and a pathogenic (E22G) form of Abeta40 in vitro accumulate protofibrils, including amyloid pores. J Mol Biol 332: 795–808.

    Article  CAS  PubMed  Google Scholar 

  • Lashuel HA, Petre BM, Wall J, Simon M, Nowak RJ, et al. 2002. Alpha-synuclein, especially the Parkinson’s disease-associated mutants, forms pore-like annular and tubular protofibrils. J Mol Biol 322: 1089–1102.

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Patel S, Lee SJ. 2005. Intravesicular localization and exocytosis of alpha-synuclein and its aggregates. J Neurosci 25: 6016–6024.

    Article  CAS  PubMed  Google Scholar 

  • Lee MK, Stirling W, Xu Y, Xu X, Qui D, et al. 2002. Human alpha-synuclein-harboring familial Parkinson’s disease-linked Ala-53→Thr mutation causes neurodegenerative disease with alpha-synuclein aggregation in transgenic mice. Proc Natl Acad Sci USA 99: 8968–8973.

    Article  CAS  PubMed  Google Scholar 

  • Lee VM, Giasson BI, Trojanowski JQ. 2004. More than just two peas in a pod: Common amyloidogenic properties of tau and alpha-synuclein in neurodegenerative diseases. Trends Neurosci 27: 129–134.

    Article  CAS  PubMed  Google Scholar 

  • Lippa CF, Duda JE, Grossman M, Hurtig HI, Aarsland D, et al. 2007. DLB and PDD boundary issues: Diagnosis, treatment, molecular pathology, and biomarkers. Neurology 68: 812–819.

    Article  CAS  PubMed  Google Scholar 

  • Litvan I, MacIntyre A, Goetz CG, Wenning GK, Jellinger K, et al. 1998. Accuracy of the clinical diagnoses of Lewy body disease, Parkinson disease, and dementia with Lewy bodies: A clinicopathologic study. Arch Neurol 55: 969–978.

    Article  CAS  PubMed  Google Scholar 

  • Lo Bianco C, Ridet JL, Schneider BL, Deglon N, Aebischer P. 2002. α-Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson’s disease. Proc Natl Acad Sci USA 99: 10813–10818.

    Article  CAS  PubMed  Google Scholar 

  • Majeski AE, Dice JF. 2004. Mechanisms of chaperone-mediated autophagy. Int J Biochem Cell Biol 36: 2435–2444.

    Article  CAS  PubMed  Google Scholar 

  • Masliah E, Rockenstein E, Adame A, Alford M, Crews L, et al. 2005. Effects of alpha-Synuclein immunization in a mouse model of Parkinson’s disease. Neuron 46: 857–868.

    Article  CAS  PubMed  Google Scholar 

  • Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, et al. 2000. Dopaminergic loss and inclusion body formation in alpha-synuclein mice: Implications for neurodegenerative disorders. Science 287: 1265–1269.

    Article  CAS  PubMed  Google Scholar 

  • McKeith I, Galasko D, Kosaka K, Perry E, Dickson D, et al. 1996. Clinical and pathological diagnosis of dementia with Lewy bodies (DLB): Report of the CDLB International Workshop. Neurology 47: 1113–1124.

    CAS  PubMed  Google Scholar 

  • McKeith IG. 2000. Spectrum of Parkinson’s disease, Parkinson’s dementia, and Lewy body dementia. Neurol Clin 18: 865–902.

    Article  CAS  PubMed  Google Scholar 

  • Meijer AJ, Codogno P. 2004. Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol 36: 2445–2462.

    Article  CAS  PubMed  Google Scholar 

  • Meredith GE, Totterdell S, Petroske E, Santa Cruz K, Callison RC Jr, et al. 2002. Lysosomal malfunction accompanies alpha-synuclein aggregation in a progressive mouse model of Parkinson’s disease. Brain Res 956: 156–165.

    Article  CAS  PubMed  Google Scholar 

  • Morgan D, Diamond DM, Gottschall PE, Ugen KE, Dickey C, et al. 2000. A beta peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 408: 982–985.

    Article  CAS  PubMed  Google Scholar 

  • Murphy D, Reuter S, Trojanowski J, Lee V-Y. 2000. Synucleins are developmentally expressed, and a-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J Neurosci 20: 3214–3220.

    CAS  PubMed  Google Scholar 

  • Nakajima T, Takauchi S, Ohara K, Kokai M, Nishii R, et al. 2005. Alpha-synuclein-positive structures induced in leupeptin-infused rats. Brain Res 1040: 73–80.

    Article  CAS  PubMed  Google Scholar 

  • Narhi L, Wood SJ, Steavenson S, Jiang Y, Wu GM, et al. 1999. Both familial Parkinson’s disease mutations accelerate alpha-synuclein aggregation. J Biol Chem 274: 9843–9846.

    Article  CAS  PubMed  Google Scholar 

  • Nieto M, Gil-Bea FJ, Dalfo E, Cuadrado M, Cabodevilla F, et al. 2006. Increased sensitivity to MPTP in human alpha-synuclein A30P transgenic mice. Neurobiol Aging 27: 848–856.

    Article  CAS  PubMed  Google Scholar 

  • Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, et al. 2005. Extensive involvement of autophagy in Alzheimer disease: An immuno-electron microscopy study. J Neuropathol Exp Neurol 64: 113–122.

    PubMed  Google Scholar 

  • Paludan C, Schmid D, Landthaler M, Vockerodt M, Kube D, et al. 2005. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307: 593–596.

    Article  CAS  PubMed  Google Scholar 

  • Polymeropoulos M, Lavedan C, Leroy E, Ide S, Dehejia A, et al. 1997. Mutation in the a-synuclein gene identified in families with Parkinson’s disease. Science 276: 2045–2047.

    Article  CAS  PubMed  Google Scholar 

  • Ravikumar B, Duden R, Rubinsztein DC. 2002. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 11: 1107–1117.

    Article  CAS  PubMed  Google Scholar 

  • Reynolds AD, Banerjee R, Liu J, Gendelman HE, Mosley RL. 2007. Neuroprotective activities of CD4+CD25+regulatory T cells in an animal model of Parkinson’s disease. J Leukoc Biol 82: 1083–1094.

    Article  CAS  PubMed  Google Scholar 

  • Richfield EK, Thiruchelvam MJ, Cory-Slechta DA, Wuertzer C, Gainetdinov RR, et al. 2002. Behavioral and neurochemical effects of wild-type and mutated human alpha-synuclein in transgenic mice. Exp Neurol 175: 35–48.

    Article  CAS  PubMed  Google Scholar 

  • Rideout HJ, Lang-Rollin I, Stefanis L. 2004. Involvement of macroautophagy in the dissolution of neuronal inclusions. Int J Biochem Cell Biol 36: 2551–2562.

    Article  CAS  PubMed  Google Scholar 

  • Rochet JC, Outeiro TF, Conway KA, Ding TT, Volles MJ, et al. 2004. Interactions among alpha-synuclein, dopamine, and biomembranes: Some clues for understanding neurodegeneration in Parkinson’s disease. J Mol Neurosci 23: 23–34.

    Article  CAS  PubMed  Google Scholar 

  • Rockenstein E, Mallory M, Hashimoto M, Song D, Shults CW, et al. 2002. Differential neuropathological alterations in transgenic mice expressing alpha-synuclein from the platelet-derived growth factor and Thy-1 promoters. J Neurosci Res 68: 568–578.

    Article  CAS  PubMed  Google Scholar 

  • Rockenstein E, Schwach G, Ingolic E, Adame A, Crews L, et al. 2005. Lysosomal pathology associated with alpha-synuclein accumulation in transgenic models using an eGFP fusion protein. J Neurosci Res 80: 247–259.

    Article  CAS  PubMed  Google Scholar 

  • Saito Y, Suzuki K, Hulette C, Murayama S. 2004. Aberrant phosphorylation of alpha-synuclein in human Niemann-Pick type C1 disease. J Neuropathol Exp Neurol 63: 323–328.

    CAS  PubMed  Google Scholar 

  • Salmon D, Hansen L, Masliah E, Galasko D, Butters N, et al. 1989. Neurophsychological characteristics of a Lewy body variant of Alzheimer’s disease. Soc Neurosci Abstr 15: 863.

    Google Scholar 

  • Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC. 2007. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein. J Biol Chem 282: 5641–5652.

    Article  CAS  PubMed  Google Scholar 

  • Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, et al. 2005. Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 170: 1101–1111.

    Article  CAS  PubMed  Google Scholar 

  • Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, et al. 1999. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400: 173–177.

    Article  CAS  PubMed  Google Scholar 

  • Schenk DB, Seubert P, Lieberburg I, Wallace J. 2000. β-Peptide immunization: A possible new treatment for Alzheimer disease. Arch Neurol 57: 934–936.

    Article  CAS  PubMed  Google Scholar 

  • Shastry BS. 2001. Parkinson disease: Etiology, pathogenesis and future of gene therapy. Neurosci Res 41: 5–12.

    Article  CAS  PubMed  Google Scholar 

  • Shintani T, Klionsky DJ. 2004. Autophagy in health and disease: A double-edged sword. Science 306: 990–995.

    Article  CAS  PubMed  Google Scholar 

  • Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, et al. 2003. alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302: 841.

    Article  CAS  PubMed  Google Scholar 

  • Song DD, Shults CW, Sisk A, Rockenstein E, Masliah E. 2004. Enhanced substantia nigra mitochondrial pathology in human alpha-synuclein transgenic mice after treatment with MPTP. Exp Neurol 186: 158–172.

    Article  CAS  PubMed  Google Scholar 

  • Spillantini M, Schmidt M, Lee V-Y, Trojanowski J, Jakes R, et al. 1997. α-Synuclein in Lewy bodies. Nature 388: 839–840.

    Article  CAS  PubMed  Google Scholar 

  • Stefanis L, Larsen KE, Rideout HJ, Sulzer D, Greene LA. 2001. Expression of A53T mutant but not wild-type alpha-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J Neurosci 21: 9549–9560.

    CAS  PubMed  Google Scholar 

  • Takeda A, Mallory M, Sundsmo M, Honer W, Hansen L, et al. 1998. Abnormal accumulation of NACP/a-synuclein in neurodegenerative disorders. Am J Pathol 152: 367–372.

    CAS  PubMed  Google Scholar 

  • Tayebi N, Callahan M, Madike V, Stubblefield BK, Orvisky E, et al. 2001. Gaucher disease and parkinsonism: A phenotypic and genotypic characterization. Mol Genet Metab 73: 313–321.

    Article  CAS  PubMed  Google Scholar 

  • Thomas B, Beal MF. 2007. Parkinson’s disease. Hum Mol Genet 16 (Spec No. 2): R183–R194.

    Article  CAS  PubMed  Google Scholar 

  • Trojanowski J, Goedert M, Iwatsubo T, Lee V. 1998. Fatal attractions: Abnormal protein aggregation and neuron death in Parkinson’s disease and lewy body dementia. Cell Death Differ 5: 832–837.

    Article  CAS  PubMed  Google Scholar 

  • Trojanowski J, Lee V. 1998. Aggregation of neurofilament and alpha-synuclein proteins in Lewy bodies: Implications for pathogenesis of Parkinson disease and Lewy body dementia. Arch Neurol 55: 151–152.

    Article  CAS  PubMed  Google Scholar 

  • Trojanowski JQ, Lee VM. 2000. “Fatal attractions” of proteins. A comprehensive hypothetical mechanism underlying Alzheimer’s disease and other neurodegenerative disorders. Ann NY Acad Sci 924: 62–67.

    Article  CAS  PubMed  Google Scholar 

  • Tsigelny IF, Bar-On P, Sharikov Y, Crews L, Hashimoto M, et al. 2007. Dynamics of alpha-synuclein aggregation and inhibition of pore-like oligomer development by beta-synuclein. FEBS J 274: 1862–1877.

    Article  CAS  PubMed  Google Scholar 

  • Ulmer TS, Bax A, Cole NB, Nussbaum RL. 2005. Structure and dynamics of micelle-bound human alpha-synuclein. J Biol Chem 280: 9595–9603.

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN, Lee HJ, Li J, Fink AL, Lee SJ. 2001. Stabilization of partially folded conformation during alpha-synuclein oligomerization in both purified and cytosolic preparations. J Biol Chem 276: 43495–43498.

    Article  CAS  PubMed  Google Scholar 

  • Uversky VN, Li J, Souillac P, Millett IS, Doniach S, et al. 2002. Biophysical properties of the synucleins and their propensities to fibrillate: Inhibition of alpha-synuclein assembly by beta- and gamma-synucleins. J Biol Chem 277: 11970–11978.

    Article  CAS  PubMed  Google Scholar 

  • van der Putten H, Wiederhold KH, Probst A, Barbieri S, Mistl C, et al. 2000. Neuropathology in mice expressing human alpha-synuclein. J Neurosci 20: 6021–6029.

    CAS  PubMed  Google Scholar 

  • Varkonyi J, Rosenbaum H, Baumann N, MacKenzie JJ, Simon Z, et al. 2003. Gaucher disease associated with parkinsonism: Four further case reports. Am J Med Genet A 116: 348–351.

    Article  Google Scholar 

  • Volles MJ, Lansbury PT Jr. 2002. Vesicle permeabilization by protofibrillar alpha-synuclein is sensitive to Parkinson’s disease-linked mutations and occurs by a pore-like mechanism. Biochemistry 41: 4595–4602.

    Article  CAS  PubMed  Google Scholar 

  • Wakabayashi K, Matsumoto K, Takayama K, Yoshimoto M, Takahashi H. 1997. NACP, a presynaptic protein, immunoreactivity in Lewy bodies in Parkinson’s disease. Neurosci Lett 239: 45–48.

    Article  CAS  PubMed  Google Scholar 

  • Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC. 2003. Alpha-Synuclein is degraded by both autophagy and the proteasome. J Biol Chem 278: 25009–25013.

    Article  CAS  PubMed  Google Scholar 

  • Williams A, Jahreiss L, Sarkar S, Saiki S, Menzies FM, et al. 2006. Aggregate-prone proteins are cleared from the cytosol by autophagy: Therapeutic implications. Curr Top Dev Biol 76: 89–101.

    Article  CAS  PubMed  Google Scholar 

  • Wright PE, Dyson HJ. 1999. Intrinsically unstructured proteins: Re-assessing the protein structure-function paradigm. J Mol Biol 293: 321–331.

    Article  CAS  PubMed  Google Scholar 

  • Yu WH, Matsuoka Y, Sziraki I, Hashim A, Lafrancois J, et al. 2008. Increased dopaminergic neuron sensitivity to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in transgenic mice expressing mutant A53T alpha-synuclein. Neurochem Res 33: 902–911.

    Article  CAS  PubMed  Google Scholar 

  • Zhou C, Emadi S, Sierks MR, Messer A. 2004. A human single-chain Fv intrabody blocks aberrant cellular effects of overexpressed alpha-synuclein. Mol Ther 10: 1023–1031.

    Article  CAS  PubMed  Google Scholar 

  • Zhu M, Li J, Fink AL. 2003. The association of alpha-synuclein with membranes affects bilayer structure, stability, and fibril formation. J Biol Chem 278: 40186–40197.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH Grants AG18440, AG022074, and AG10435.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Crews, L., Spencer, B., Masliah, E. (2009). Immunotherapy Strategies for Lewy Body and Parkinson's Diseases. In: Lajtha, A., Banik, N., Ray, S.K. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30375-8_26

Download citation

Publish with us

Policies and ethics