Skip to main content

Pediatric Biomechanics

  • Chapter
Accidental Injury

Abstract

The literature is replete with studies dealing with the responses of the adult human load-bearing systems under physiologic and traumatic loading. These include prospective and retrospective clinical, epidemiologic, experimental (biologic and physical), and mathematical studies. Early work on the cranium and its contents has formed a basis for the widely used head injury criteria.45,46,131 Biomechanical investigations have been conducted to delineate facial tolerance secondary to impact.55,121,136,148,149,151,157 Similarly, human vertebral column studies including the spinal cord have focused on adult tolerances and injury mechanisms under various modes of to a ding.6, 106,108,109,140,143,146,150,155,156 Investigations describing the tolerance of the adult human thorax/chest under frontal and side-impact loading modalities also exist.7,20–22,36,37,91,93,138,139,141,145,153,154,158 Likewise, the tolerances of the upper and lower extremities have been explored for the adult structure.l0,11,64,92,105,144 The cited reference list is not inclusive. Despite these efforts, biomechanical data remain sparse for the growing pediatric group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 279.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 359.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Code of Federal Regulations, 49 CFR 400–999, pp. 1111, 1995.

    Google Scholar 

  2. Agur AMR, Lee ML. Grant’s atlas of anatomy, 9th ed. Williams Wilkins, Baltimore, 1991.

    Google Scholar 

  3. AIS. The Abbreviated Injury Scale. American Association for Automotive Medicine, Arlington Heights, IL, 1990.

    Google Scholar 

  4. Allen BL Jr, Ferguson RL. Cervical spine trauma in children. In: Bradford D, Hensinger R, eds. The pediatric spine. Thieme, New York, pp. 89–104, 1985.

    Google Scholar 

  5. Arbogast KB, Thibault KL, Margulies SS. A high-frequency shear device for testing soft biological tissues. J Biomech 1997;30(7):757759.

    Google Scholar 

  6. Backaitis SH, ed. Biomechanics of impact injury and injury tolerances of the head-neck complex, vol PT43. Society of Automotive Engineers, Warrendale, PA, 1993.

    Google Scholar 

  7. Backaitis SH. Biomechanics of impact injury and injury tolerances of the thorax-shoulder complex, vol PT-45. Society of Automotive Engineers, Warrendale, PA, 1995.

    Google Scholar 

  8. Backaitis SH, Mertz HJ, eds. Hybrid III: the first human-like crash test dummy, vol PT44. Society of Automotive Engineers, Warrendale, PA, 1994.

    Google Scholar 

  9. Bailey D. Normal cervical spine in infants and children. Radiology 1952; 59: 712–719.

    PubMed  CAS  Google Scholar 

  10. Begeman P, Aekbote K, Levine R, King A. Human ankle response in internal and external rotation. Proceedings of the 4th Annual Injury Prevention Through Biomechanics Sympo sium, Detroit, MI, May 1994.

    Google Scholar 

  11. Begeman PC, Aekbote K. Axial load strength and some ligament properties of the ankle joint. Proceedings of the 6th Injury Prevention Through Biomechanics Symposium, Detroit, MI, May 1996.

    Google Scholar 

  12. Behrman RE, Vaughan VC III. Developmental pediatrics: growth and development. In: Nelson W, ed. Nelson textbook of pediatrics, 13th ed. WB Saunders, Philadelphia, pp. 6–35, 1987.

    Google Scholar 

  13. Bick E, Copel J. Longitudinal growth of the human vertebra: contribution to human osteogeny. J Bone Joint Surg 1950; 32A (4): 803–814.

    PubMed  CAS  Google Scholar 

  14. Bick EM. Vertebral growth: its relation to spinal abnormalities in children. Clin Orthop 1961; 21: 43–48.

    PubMed  CAS  Google Scholar 

  15. Bonadio WA. Cervical spine trauma in children: part I: general concepts, normal anatomy, radiographic evaluation. Am J Emerg Med 1993; 11 (2): 158–165.

    Article  PubMed  CAS  Google Scholar 

  16. Bonadio WA. Cervical spine trauma in children: part II: mechanisms and manifesta tions of injury, therapeutic considerations. Am J Emerg Med 1993; 11 (3): 256–278.

    Article  PubMed  CAS  Google Scholar 

  17. Boreadis AG, Gershon-Cohen J. Luschka joints of cervical spine. Radiology 1956; 66: 181–187.

    PubMed  CAS  Google Scholar 

  18. Carpenter EB. Normal and abnormal growth of the spine. Clin Orthop 1961; 21 (1): 49–55.

    PubMed  CAS  Google Scholar 

  19. Cattell H, Filtzer D. Pseudosubluxation and other normal variations in cervical spine of children. J Bone Joint Surg 1965; 47A (7): 1295–1309.

    PubMed  CAS  Google Scholar 

  20. Cavanaugh JM, Nyquist GW, Goldberg SJ, King AI. Lower abdominal tolerance and response. Proceedings of the 30th Stapp Car Crash Conference, San Diego, CA, October 1986.

    Google Scholar 

  21. Cavanaugh JM, Walilko T, Walbridge A, Huang Y, King AI. An evaluation of TTI and ASA in SID side impact sled tests. Proceedings of the 38th Stapp Car Crash Conference, Fort Lauderdale, FL, October 1994.

    Google Scholar 

  22. Cavanaugh JM, Walilko TJ, Malhotra A, Zhu Y, King AI. Biomechanical response and injury tolerance of the pelvis in twelve sled side impacts. Proceedings of the 34th Stapp Car Crash Conference, Orlando, FL, November 1990.

    Google Scholar 

  23. Chandraraj S, Briggs C. Muliple growth cartilages in the neural arch. Anat Rec 1991; 230: 114–120.

    Article  PubMed  CAS  Google Scholar 

  24. Chung M, Batterman S, Brighton C. Shear strength of human femoral capital epiphyseal plate. J Bone Joint Surg 1976; 58A (1): 94–103.

    PubMed  CAS  Google Scholar 

  25. Clark CR, Ducker TB, Dvorak J, et al. The cervical spine, 3rd ed. Lippincott-Raven, Philadelphia, 1998.

    Google Scholar 

  26. Compere E, Tachdjian M, Kernahan W. Luschka joints: their anatomy, physiology and pathology. Orthopaedics 1959; 1: 159–168.

    Google Scholar 

  27. Coursin DB. Malnutrition, brain development, and behavior: anatomic, biochemical, and electrophysiologic constructs. In: Brazier MA, ed. Growth and development of the brain. Raven Press, New York, 1975.

    Google Scholar 

  28. Coventry M, Ghormley R, Kernohan J. Intervertebral disc: its microscopic anatomy and pathology. Part I. Anatomy, development, and physiology. J Bone Joint Surg 1945; 27 (1): 105–112.

    Google Scholar 

  29. Coventry M, Ghormley R, Kernohan J. Intervertebral disc: its microscopic anatomy and pathology. Part II. Changes in the intervertebral disc concomitant with age. J Bone Joint Surg 1945; 27 (2): 233–247.

    Google Scholar 

  30. Crandall JR, Pilkey WD, Klopp GS, et al. A comparison of two and three point belt restraint systems. Advances in Occupant Restraint Technologies: Joint AAAM-IRCOBI Special Session, Lyon, France, 1994.

    Google Scholar 

  31. Currey JD, Butler G. Mechanical properties of bone tissue in children. J Bone Joint Surg 1975; 57A (6): 810–814.

    PubMed  CAS  Google Scholar 

  32. Dickerson J, Dobbing J. Prenatal and postnatal growth and development of the central nervous system of the pig. Proc R Soc Lond 1966; 166B: 384–395.

    Article  Google Scholar 

  33. Dobbing J, Sands J. Quantitative growth and development of human brain. Arch Dis Child 1973; 48: 757–767.

    Article  PubMed  CAS  Google Scholar 

  34. Duhaime AC, Gennarelli TA, Thibault LE, Bruce DA, Margulies SS, Wiser R. The shaken baby syndrome-a clinical pathological, and biomechanical study. J Neurosurg 1987; 66: 409–415.

    Article  PubMed  CAS  Google Scholar 

  35. Duncan J. Laboratory note: on tensile strength of fresh adult foetus. Br Med J 1874; 2: 763–764.

    Article  PubMed  CAS  Google Scholar 

  36. Eppinger RH. Prediction of thoracic injury using measurable experimental parameters. Sixth International Conference on Experimental Safety Vehicles, Washington, DC, 1976.

    Google Scholar 

  37. Eppinger RH, Augustyn K, Robbins DH. Development of a promising universal thoracic trauma prediction methodology. Proceedings of the 22nd Stapp Car Crash Conference, Ann Arbor, MI, October 1978.

    Google Scholar 

  38. Evans D, Bethem D. Cervical spine injuries in children. J Pediatr Orthop 1985; 9: 563568.

    Google Scholar 

  39. Fitzgerald E, Freeland A. Viscoelastic response of intervertebral discs at audio-frequencies. Med Biol Eng 1970; 9: 459–478.

    Article  Google Scholar 

  40. Ford D, McFadden K, Bagnall K. Sequence of ossification in human vertebral neural arch centers. Anat Rec 1982; 203: 175–178.

    Article  PubMed  CAS  Google Scholar 

  41. Gennarelli TA. The spectrum of traumatic axonal injury. Neuropathol Appl Neurobiol 1996; 22: 509–513.

    Article  PubMed  CAS  Google Scholar 

  42. Gennarelli TA, Meaney DE Mechanisms of primary head injury. In: Wilkins R, Rengachary S, eds. Neurosurgery, vol 2, 2nd ed. McGraw Hill, New York, pp. 2611–2621, 1996.

    Google Scholar 

  43. Gilsanz V, Gibbens D, Roe T, et al. Vertebral bone density in children: effect of puberty. Radiology 1988; 166 (3): 847–850.

    PubMed  CAS  Google Scholar 

  44. Gooding C, Neuhauser E. Growth and development of vertebral body in presence and absence of normal stress. AJR 1965; 93: 388394.

    Google Scholar 

  45. Gurdjian ES. Impact Head Injury, Mechanistic, Clinical and Preventive Correlations. Charles C Thomas, Springfield, IL, 1975.

    Google Scholar 

  46. Gurdjian ES, Lissner HR, Evans FG, Patrick LM, Hardy WG. Intracranial pressure and acceleration accompanying head impacts in human cadavers. Surg Gynecol Obstet 1961; 113: 185–190.

    PubMed  CAS  Google Scholar 

  47. Haas SL. Growth in length of vertebrae. Arch Surg 1939; 38: 245–249.

    Article  Google Scholar 

  48. Hadley M, Zabramski J, Browner C, Rekate H, Sonntag V. Pediatric spinal trauma. Review of 122 cases of spinal cord and vertebral column injuries. J Neurosurg 1988; 68: 1824.

    Google Scholar 

  49. Hall MC. Luschka’s joint. Springfield, IL: Charles C Thomas, 1965.

    Google Scholar 

  50. Hallen A. Collagen and ground substance of human intervertebral disc at different ages. Acta Chem Scand 1962; 16 (3): 705–710.

    Article  CAS  Google Scholar 

  51. Hayashi K, Yabuki T. Origin of the uncus and of Luschka’s joint in the cervical spine. J Bone Joint Surg 1985; 67A (5): 788–791.

    PubMed  CAS  Google Scholar 

  52. Hayes W, Bodine A. Flow-independent viscoelastic properties of articular cartilage matrix. J Biomech 1978; 11: 407–419.

    Article  PubMed  CAS  Google Scholar 

  53. Hinck V, Hopkins C, Savara B. Sagittal diameter of the cervical spinal canal in children. Radiology 1962; 79: 97–108.

    PubMed  CAS  Google Scholar 

  54. Hirsch C, Schajowicz F, Galante J. Structural changes in the cervical spine: a study on autopsy specimens in different age groups. Acta Orthop Scand 1967; S109.

    Google Scholar 

  55. Hodgson VR, Thomas LM. Breaking strength of the human skull vs. impact surface curvature. Springfield, VA: US Department of Transportation, 1971.

    Google Scholar 

  56. Hubbard RE. Flexure of layered cranial bone. J Biomech 1971; 4: 251–263.

    Article  PubMed  CAS  Google Scholar 

  57. Jaslow CR. Mechanical properties of cranial sutures. J Biomech 1990; 23 (4): 313–321.

    Article  PubMed  CAS  Google Scholar 

  58. Kallieris D, Stein KM, Mattem R, Morgan R, Eppinger RH. The performance of active and passive driver restraint systems in simulated frontal collisions. Proceedings of the 38th Stapp Car Crash Conference, Ft. Lauderdale, FL, October 1994.

    Google Scholar 

  59. Kasai T. Growth of neck muscle in normal children at MR imaging. Personal Communication, 1998.

    Google Scholar 

  60. Kasai T, Ikata T, Katoh S, Miyake R, Tsubo M. Growth of cervical spine with special reference to its lordosis and mobility. Spine 1996; 21 (18): 2067–2073.

    Article  PubMed  CAS  Google Scholar 

  61. Kleinberger M. Personal communication, 1999.

    Google Scholar 

  62. Kleinberger M, Sun E, Eppinger R, Kuppa S, Saul R. Development of improved injury criteria for the assessment of advanced automotive restraint systems. Washington, DC: NHTSA, 1998.

    Google Scholar 

  63. Kleinberger M, Yoganandan N, Kumaresan S. Biomechanical considerations for child occupant protection. 42nd AAAM Conference, Charlottesville, VA, October 1998.

    Google Scholar 

  64. Klopp G, Crandall J, Hall G, Pilkey W, Hurwitz S, Kuppa S. Mechanisms of injury and injury criteria for the human foot and ankle in dynamic axial impacts to the foot. IRCOBI Conference, Hanover, Germany, September 1997.

    Google Scholar 

  65. Knutsson E Growth and differentiation of postnatal vertebra. Acta Radiol 1961; 55: 40 1408.

    Google Scholar 

  66. Kriewall TJ. Structural, mechanical, and material properties of fetal cranial bone. Am J Obstet Gynecol 1982; 143: 707–714.

    PubMed  CAS  Google Scholar 

  67. Kriewall TJ, McPherson GK, Tsai A. Bending properties and ash content of fetal cranial bone. J Biomech 1981; 14: 73–79.

    Article  PubMed  CAS  Google Scholar 

  68. Kumaresan S, Yoganandan N, Pintar E Age-specific pediatric cervical spine biomechanical responses: three-dimensional nonlinear finite element models. Proceedings of the 41st Stapp Car Crash Conference, Orlando, FL, November 1997.

    Book  Google Scholar 

  69. Kumaresan S, Yoganandan N, Pintar FA. Adult and pediatric human cervical spine finite element analyses. ASME Adv Bioeng 1997; 35 (BED): 515–516.

    Google Scholar 

  70. Kumaresan S, Yoganandan N, Pintar FA. Biomechanical responses of pediatric cervical spine using nonlinear finite element approach. ASME Adv Bioeng 1999; 42 (BED): 143–144.

    Google Scholar 

  71. Kumaresan S, Yoganandan N, Pintar FA. Finite element modeling approaches of human cervical spine facet joint capsule. J Biomech 1998; 31: 371–376.

    Article  PubMed  CAS  Google Scholar 

  72. Kumaresan S, Yoganandan N, Pintar FA. Methodology to quantify the uncovertebral joint in the human cervical spine. J Musculoskeletal Res 1997; 1 (2): 1–9.

    Article  Google Scholar 

  73. Kumaresan S, Yoganandan N, Pintar FA. Pediatric neck modeling using finite element analysis. Int J Crashworthiness 1997;2(4):367377.

    Google Scholar 

  74. Kumaresan S, Yoganandan N, Pintar FA. Summary of pediatric biomechanical responses. ASME ADV Bioeng 1999; 42 (BED): 765–766.

    Google Scholar 

  75. Maiman DJ, Yoganandan N. Biomechanics of cervical spine trauma. In: Black P, ed. Clinical neurosurgery, vol 37. Williams Wilkins, Baltimore, pp. 543–570, 1991.

    Google Scholar 

  76. Markuske H. Sagittal diameter measurements of bony cervical spinal canal in children. Pediatr Radiol 1977; 6: 129–131.

    Article  PubMed  CAS  Google Scholar 

  77. McElhaney JH, Fogle JL, Melvin JW, Haynes RR, Roberts VL, Alem NM. Mechanical properties of cranial bone. J Biomech 1970; 3: 495–512.

    Article  PubMed  CAS  Google Scholar 

  78. McElhaney JH, Roberts VL, Hilyard JF, eds. Handbook of human tolerance. Japan Automobile Research Institute, Tokyo, 1976.

    Google Scholar 

  79. McElhaney JH, Stalnaker RL, Roberts VL. Biomechanical aspects of head injury. In: King WF, Mertz HJ, eds. Human impact response. Plenum Press, New York, pp. 85–112, 1973.

    Google Scholar 

  80. McElhaney JH, Stalnaker RL, Estes MS. Dynamic mechanical properties of scalp and brain. Proceedings of the 6th Rocky Mountain Bioengineering symposium, Denver, Co, April 1970.

    Google Scholar 

  81. McGowan D, Voo L, Liu Y. Distraction failure of immature spine. ASME Adv Bioeng 1993; 24 (BED): 24–25.

    Google Scholar 

  82. McPherson G, Kriewall T. Elastic modulus of fetal cranial bone: first step toward an understanding of biomechanics of fetal head molding. J Biomech 1979; 13 (1): 9–16.

    Article  Google Scholar 

  83. Melvin JW. Injury assessment reference values for the CRABI 6-month infant dummy in a rear-facing infant restraint with airbag deployment. SAE Congress and Exposition, Detroit, MI, February 1995.

    Book  Google Scholar 

  84. Melvin JW, Evans FG. A strain energy approach to the mechanics of skull fracture. Proceedings of the 15th Stapp Car Crash Conference, Coronado, CA, November 1971.

    Google Scholar 

  85. Mertz H, Driscoll G, Lenox J, Nyquist G, Weber D. Responses of animals exposed to deployment of various passenger inflatable restraint system concepts for a variety of collision severities and animal positions. 9th International Technical Conference on Experimental Safety Vehicles, Kyoto, Japan, 1982.

    Google Scholar 

  86. Mertz HJ. The kinematics and kinetics of whiplash. Ph.D. Dissertation, Wayne State University, 1967.

    Book  Google Scholar 

  87. Mertz HJ, Patrick LM. Strength and response of the human neck. Proceedings of the 15th Stapp Car Crash Conference, Coronado, CA, November 1971.

    Google Scholar 

  88. Mertz HJ, Weber DA. Interpretations of the impact responses of a 3-year-old child dummy relative to child injury potential. 9th International Technical Conference on Experimental Safety Vehicles, Kyoto, Japan, 1982.

    Google Scholar 

  89. Messerer O. Uber Elasticitat and Festigkeit der Menschlichen Knochen. Stuttgart, Germany, 1880.

    Google Scholar 

  90. Metz HJ, McElhaney JH, Ommaya A. A comparison of the elasticity of live, dead, and fixed brain tissue. J Biomech 1970;3(4):453458.

    Google Scholar 

  91. Morgan RM, Eppinger RH, Haffner MP, Yoganandan N, Pintar FA, Sances A Jr. Thoracic trauma assessment formulations for restrained drivers in frontal impact. Proceedings of the 38th Stapp Car Crash Conference, Ft. Lauderdale, FL, October 1994.

    Google Scholar 

  92. Morgan RM, Eppinger RH, Hennesey BC. Ankle joint injury mechanism for adults in frontal automotive impact. Proceedings of the 35th Stapp Car Crash Conf, San Diego, CA, November 1991.

    Google Scholar 

  93. Morgan RM, Marcus JH, Eppinger RH. Side impact-the biofidelity of NHTSA’s proposed ATD and efficacy of III. Proceedings of the 30th Stapp Car Crash Conf, San Diego, CA, October 1986.

    Google Scholar 

  94. Myklebust JB, Pintar FA, Yoganandan N, et al. Tensile strength of spinal ligaments. Spine 1988; 13 (5): 526–531.

    Article  PubMed  CAS  Google Scholar 

  95. Nahum AM, Melvin JW, eds. Accidental injury: biomechanics and prevention. Springer-Verlag, New York, 1993.

    Google Scholar 

  96. Nightingale RW, McElhaney JH, Camacho DL, Kleinberger M, Winkelstein BA, Myers BA. The dynamic responses of the cervical spine: buckling, end conditions, and tolerance in compressive impacts. Proceedings of the 41st Stapp Car Crash Conference, Orlando, FL, November 1997.

    Google Scholar 

  97. O’Rahilly R, Benson D. Development of vertebral column. In: Bradford D, Hensinger R, eds. The pediatric spine. Thieme, New York, pp. 3–17, 1985.

    Google Scholar 

  98. Oda J, Tanaka H, Tsuzuki N. Intervertebral disc changes with aging of human cervical vertebra-from neonate to 80s. Spine 1988; 13 (11): 1205–1211.

    Article  PubMed  CAS  Google Scholar 

  99. Ogden J, Ganey T, Sasse J, Neame P, Hilbelink D. Development and maturation of the axial skeleton. In: Weinstein S, ed. The pediatric spine: principles and practice. Raven Press, New York, pp. 1959, 1994.

    Google Scholar 

  100. Ogden JA, Grogan DP, Light TR. Postnatal development and growth of musculoskeletal system. In: Albright J, Brand R, eds. The scientific basis of orthopaedics. Appleton Lange, Norwalk, CT, pp. 526, 1987.

    Google Scholar 

  101. Ommaya A, Yarnell P, Hirsch A, Harris E. Scaling of experimental data on cerebral concussion in sub-human primates to concussion threshold in man. 10th Stapp Car Crash Conference, November 1967.

    Google Scholar 

  102. Ommaya AK. Mechanical properties of tissues of the nervous system. J Biomech 1968; 1: 127138.

    Google Scholar 

  103. Peacock A. Observations on postnatal structure of intervertebral disc in man. J Anat 1956; 86 (part 2): 162–179.

    Google Scholar 

  104. Pincemaille Y, Trosseille X, Mack P, Tarriere C, Breton F, Renault B. Some new data related to human tolerance obtained from volunteer boxers. Proceedings of the 33rd Stapp Car Crash Conference, Washington, DC, October 1989.

    Google Scholar 

  105. Pintar ‘F, Yoganandan N, Eppinger RH. Response and tolerance of the human forearm to impact loading. Proceedings of the 42nd Stapp Car Crash Conference, Tempe, AZ, November 1998.

    Google Scholar 

  106. Pintar FA, Schlick MB, Yoganandan N, Maiman DJ. Instrumented artificial spinal cord for human cervical pressure measurement. Bio Med Mater Eng 1996; 6 (2): 219–229.

    CAS  Google Scholar 

  107. Pintar FA, Yoganandan N. Head-neck tension biomechanical models for pediatric and small female populations. 43rd AAAM Conference, Barcelona, Spain, in press.

    Google Scholar 

  108. Pintar FA, Yoganandan N, Voo L. Effect of age and loading rate on human cervical spine injury threshold. Spine 1998; 23 (18): 1957–1962.

    Article  PubMed  CAS  Google Scholar 

  109. Pintar FA, Yoganandan N, Voo LM, Cusick JF, Maiman DJ, Sances A Jr. Dynamic characteristics of the human cervical spine. SAE Trans 1995; 104 (6): 3087–3094.

    Google Scholar 

  110. Prasad P, Daniel R. Biomechanical analysis of head, neck, and torso injuries to child surrogates due to sudden torso acceleration. Proceedings of the 28th Stapp Car Crash Conference, Chicago, IL, November 1984.

    Google Scholar 

  111. Prasad P, Mertz HJ. The position of the United States Delegation to the ISO Working Group 6 on the use of HIC in the automotive environment. Society of Automotive Engineers, Warrendale, PA, 1985.

    Book  Google Scholar 

  112. Roaf R. Vertebral growth and its mechanical control. J Bone Joint Surg 1960; 42B: 40–59.

    Google Scholar 

  113. Rothman RH, Simeone FA. The spine, vol 1, 3rd ed. WB Saunders, Philadelphia, 1992.

    Google Scholar 

  114. Runge CF, Youssef A, Thibault KL, Kurtz SM, Magram G, Thibault LE. Material properties of human infant skull and suture: experiments and numerical analysis. 9th Injury Prevention through Biomechanics Symposium, Detroit, MI, May 1998.

    Google Scholar 

  115. Saito T, Yamamuro T, Shikata J, Oka M, Tsutsumi S. Analysis and prevention of spinal column deformity following cervical laminectomy I: Pathogenetic analysis of postlaminectomy deformities. Spine 1991; 16 (5): 494–502.

    Article  PubMed  CAS  Google Scholar 

  116. Sances A Jr, Yoganandan N. Human head injury tolerance. In: Sances A Jr, Thomas DJ, Ewing CL, Larson SJ, Unterharnscheidt F, eds. Mechanisms of head and spine trauma. Aloray, Goshen, NY, pp. 189–218, 1986.

    Google Scholar 

  117. Sherk HH, Dunn EJ, Eismont FJ, et al. The cervical spine, 2nd ed. JB Lippincott, Philadelphia, 1989.

    Google Scholar 

  118. Snyder RG. Anthropometry of infants, children, and youths to age 18 for product safety design. University of Michigan, Ann Arbor, 1977.

    Google Scholar 

  119. Snyder RG, Foust DR, Bowman BM. Study of impact tolerance through free-fall investigation. University of Michigan, Ann Arbor, 1977.

    Google Scholar 

  120. Sturtz G. Biomechanical data of children. Proceedings of the 24th Stapp Car Crash Conference, Troy, MI, October 1980.

    Google Scholar 

  121. Swearingen JJ. Tolerances of the human face to crash impact. Office of Aviation Medicine, Federal Aviation Agency, Oklahoma City, 1965.

    Google Scholar 

  122. Tanner J. Growth at adolescence. Blackwell Scientific, Oxford, 1962.

    Google Scholar 

  123. Tanner J, Whitehouse R, Takaishi I. Standards from birth to maturity for height, weight, height velocity and weight velocity. Arch Dis Child 1966; 41: 454–471.

    Article  PubMed  CAS  Google Scholar 

  124. Taylor J. Growth of human intervertebral disc. J Anat 1970; 107: 183–184.

    PubMed  CAS  Google Scholar 

  125. Thibault KL. Pediatric head injuries: the influence of brain and skull mechanical properties. University of Pennsylvania, 1997.

    Google Scholar 

  126. Thibault KL, Kurtz SM, Margulies SS. Effect of the age-dependent properties of the braincase on the response of the infant brain to impact. AMSE Adv Bioeng 1997; 36 (BED): 137–138.

    Google Scholar 

  127. Thibault KL, Margulies SS. Age-dependent material properties of the porcine cerebrum: effect on pediatric head injury criteria. J Biomech 1998; 31: 1119–1126.

    Article  PubMed  CAS  Google Scholar 

  128. Tindall G, Cooper P, Barrow D. The practice of neurosurgery. Williams Wilkins, Baltimore, 1996.

    Google Scholar 

  129. Tulsi R. Growth of human vertebral column: osteological study. Acta Anat 1971; 79: 570–580.

    Article  PubMed  CAS  Google Scholar 

  130. Verbout A. Development of the vertebral column. Adv Anat Embryol Cell Biol 1985; 90: 1–100.

    Article  PubMed  CAS  Google Scholar 

  131. Versace J. A review of the severity index. Proceedings of the 15th Stapp Car Crash Conference, Coronado, CA, November 1971.

    Google Scholar 

  132. Walmsley R. Development and growth of the intervertebral disc. Edinb Med J 1953; 60 (8): 341–364.

    PubMed  CAS  Google Scholar 

  133. Weinstein S. Pediatric spine: principles and practice. Raven Press, New York, 1994.

    Google Scholar 

  134. Williams PL. Gray’s anatomy. Churchill Livingstone, New York, 1995.

    Google Scholar 

  135. Yamada H. Strength of biological materials. Williams Wilkins, Baltimore, 1970.

    Google Scholar 

  136. Yoganandan N, Haffner M, Pintar FA. Facial injury: a review of biomechanical studies and test procedures for facial injury assessment. J Biomech 1996; 29 (7): 985–986.

    Article  PubMed  CAS  Google Scholar 

  137. Yoganandan N, Kumaresan S, Pintar FA. Pediatric cervical spine biomechanics using finite element models. International Research Council on the Biomechanics of Impact, Goteborg (Sweden ), September 1998.

    Google Scholar 

  138. Yoganandan N, Morgan RM, Eppinger RH, Pintar FA, Sances A Jr, Williams A. Mechanism of thoracic injury in a frontal impact. J Biomech Eng 1996; 118: 595–597.

    Article  PubMed  CAS  Google Scholar 

  139. Yoganandan N, Morgan RM, Eppinger RH, Pintar FA, Skrade DA, Sances A Jr. Thoracic deformation and velocity analysis in frontal impact. J Biomech Eng 1995; 117: 48–52.

    Article  PubMed  CAS  Google Scholar 

  140. Yoganandan N, Myklebust JB, Ray G, Sances A Jr. Mathematical and finite element analysis of spinal injuries. CRC Rev Biomed Eng 1987; 15 (1): 29–93.

    CAS  Google Scholar 

  141. Yoganandan N, Pintar F. Biodynamic response of the human body in frontal impact. In: Leondes C, ed. Biomechanic systems, techniques and applications. Gordon Breach, Amsterdam, The Netherlands, 6–1 to 6–34, 2000.

    Google Scholar 

  142. Yoganandan N, Pintar FA. Biomechanics of the cranio-cervical region. In: Boeker D, ed. Craniocervical junction-anatomy, physiology, therapy. Biermann Verlag, GMBH, Köln, Germany, 2–14, 1999.

    Google Scholar 

  143. Yoganandan N, Pintar FA. Cervical vertebral and facet joint kinematics under whiplash. J Biomech Eng 1998; 120: 305–308.

    Article  PubMed  CAS  Google Scholar 

  144. Yoganandan N, Pintar FA, Boynton M, et al. Dynamic axial tolerance of the human foot-ankle complex. SAE Trans 1996; 105: 1887–1898.

    Google Scholar 

  145. Yoganandan N, Pintar FA, Kumaresan S, Haffner M, Kuppa S. Impact biomechanics of the human thorax-abdomen complex. Int J Crashworthiness 1997; 2 (2): 219–228.

    Article  Google Scholar 

  146. Yoganandan N, Pintar FA, Larson SJ, Sances A Jr, eds. Frontiers in head and neck trauma: clinical and biomechanical. IOS Press, Amsterdam, The Netherlands, 1998.

    Google Scholar 

  147. Yoganandan N, Pintar FA, Maiman DJ, Cusick JF, Sances A Jr, Walsh PR. Human head-neck biomechanics under axial tension. Med Eng Physics 1996; 18 (4): 289–294.

    Google Scholar 

  148. Yoganandan N, Pintar FA, Reinartz J, Sances A Jr. Human facial tolerance to steering wheel impact: a biomechanical study. J Safety Res 1993; 24 (2): 77–85.

    Article  Google Scholar 

  149. Yoganandan N, Pintar FA, Sances A Jr. Biodynamics of steering wheel induced facial trauma. J Safety Res 1991; 22: 179–190.

    Article  Google Scholar 

  150. Yoganandan N, Pintar FA, Sances A Jr, Maiman DJ. Strength and motion analysis of the human head-neck complex. J Spinal Disord 1991; 4 (1): 73–85.

    PubMed  CAS  Google Scholar 

  151. Yoganandan N, Pintar FA, Sances A Jr, et al. Steering wheel induced facial trauma. SAE Trans 1989; 97 (4): 1104–1128.

    Google Scholar 

  152. Yoganandan N, Pintar FA, Sances A Jr, et al. Biomechanics of skull fracture. J Neurotrauma 1995; 12 (4): 659–668.

    Article  PubMed  CAS  Google Scholar 

  153. Yoganandan N, Pintar FA, Skrade D, Chmiel W, Reinartz JM, Sances A Jr. Thoracic biomechanics with airbag restraint. Proceedings of the 37th Stapp Car Crash Conference, San Antonio, TX, November 1993.

    Google Scholar 

  154. Yoganandan N, Pintar FA, Skrade D, Sances A Jr. Evaluation of thoracic trauma in frontal impact. 14th International Conference on Enhanced Safety of Vehicles, Munich, Germany, May 1994.

    Google Scholar 

  155. Yoganandan N, Pintar FA, Wilson CR, Sances A Jr. In vitro biomechanical study of female geriatric cervical vertebral bodies. J Biomed Eng 1990; 12 (2): 97–101.

    Article  PubMed  CAS  Google Scholar 

  156. Yoganandan N, Sances A Jr, Maiman DJ, Myklebust JB, Pech P, Larson SJ. Experimental spinal injuries with vertical impact. Spine 1986; 11 (9): 855–860.

    Article  PubMed  CAS  Google Scholar 

  157. Yoganandan N, Sances A Jr, Pintar FA, et al. Traumatic facial injuries with steering wheel loading. J Trauma 1991; 31 (5): 699–710.

    Article  PubMed  CAS  Google Scholar 

  158. Yoganandan N, Skrade D, Pintar F, Reinartz J, Sances A Jr. Thoracic deformation contours in a frontal impact. Proceedings of the 35th Stapp Car Crash Conference, San Diego, CA, November 1991.

    Google Scholar 

  159. Yoganandan N, Kumaresan S, Pintar FA. Factors for pediatric scaling based on experimental data from spine structures. (Unpublished.)

    Google Scholar 

  160. Youman J. Neurological surgery. WB Saunders, Philadelphia, 1996.

    Google Scholar 

  161. Yousefzadeh D, El-Khoury G, Smith W. Normal sagittal diameter and variation in pediatric cervical spine. Pediatr Radiol 1982; 144 (2): 319–325.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yoganandan, N., Kumaresan, S., Pintar, F.A., Gennarelli, T.A. (2002). Pediatric Biomechanics. In: Nahum, A.M., Melvin, J.W. (eds) Accidental Injury. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21787-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21787-1_21

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3168-9

  • Online ISBN: 978-0-387-21787-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics