Skip to main content

Modeling of Fire Occurrence in the Boreal Forest Region of Canada

  • Chapter
Fire, Climate Change, and Carbon Cycling in the Boreal Forest

Part of the book series: Ecological Studies ((ECOLSTUD,volume 138))

Abstract

Fire is a significant component of most boreal forest ecosystems. It is important to understand its occurrence and spread to assess the potential impact of global climate change on boreal forest ecosystems. This chapter presents an overview of our understanding of the processes and models that have been developed and used to predict both people-caused and lightning-caused fire occurrences in the boreal forest. We draw heavily on our experience with fire occurrence in the boreal forest region of Canada, but some of our observations may be applicable to other parts of the circumpolar boreal forest as well as other biomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bergeron, Y., and M.D. Flannigan. 1995. Predicting the effects of climate change on fire frequency in the southeastern Canadian boreal forest. Water Air Soil Pollut. 82:437–444.

    Article  CAS  Google Scholar 

  • Blackmarr, W.H. 1972. Moisture Content Influences Ignitability of Slash Pine Litter Research Note SE-173. Southeastern Forest Experiment Station, U.S. Department of Agriculture, Forest Service, Asheville, NC.

    Google Scholar 

  • Blake, I.F. 1979. An Introduction to Applied Probability. John Wiley & Sons, New York.

    Google Scholar 

  • Bradshaw, L.S., J.E. Deeming, R.E. Burgan, and J.D. Cohen. 1984. The 1978 National Fire-Danger Rating System: Technical Documentation. General Technical Report INT 169. Intermountain Forest and Range Experiment Station, U.S. Department of Agriculture, Forest Service, Ogden, UT.

    Google Scholar 

  • Caya, D., R. Laprise, M. Giguère, G. Bergeron, J.P. Blanchet, B.J. Stocks, J.G. Boer, and N.A. McFarlane. 1995. Description of the Canadian regional climate model. Water Air Soil Pollut. 82:477–482.

    Article  CAS  Google Scholar 

  • Cunningham, A.A., and D.L. Martell. 1973. A stochastic model for the occurrence of mancaused forest fires. Can. J. For. Res. 3:282–287.

    Article  Google Scholar 

  • Cunningham, A.A., and D.L. Martell. 1976. The use of subjective probability assessments concerning forest fire occurrence. Can. J. For. Res. 6:348–356.

    Article  Google Scholar 

  • Flannigan, M.D., and J.B. Harrington.1988. A study of the relation of meteorological variables to monthly provincial area burned by wildfire in Canada (1953–80). J. Appl. Meteorol. 27:441–452.

    Article  Google Scholar 

  • Flannigan, M.D., and C.E. Van Wagner. 1991. Climate change and wildfire in Canada. Can. J. For. Res. 21:66–72.

    Article  Google Scholar 

  • Flannigan, M.D., Y. Bergeron, O. Engelmark, and B.M. Wotton. 1998. Future wildfire in northern forests: less than global warming would suggest? J. Veg. Sci. 9:469–476.

    Article  Google Scholar 

  • Forestry Canada Fire Danger Group. 1992. Development and Structure of the Canadian Forest Fire Behaviour Prediction System. Informal Report ST-X-3. Forestry Canada, Science and Sustainable Development Directorate, Ottawa, Ontario, Canada.

    Google Scholar 

  • Fuquay, D.M., R.G. Baughman, A.R. Taylor, and R.G. Hawe. 1967. Characteristics of seven lightning discharges that caused forest fires. J. Geophys. Res. 72:6371–6373.

    Article  Google Scholar 

  • Fuquay, D.M., A.R. Taylor, R.G. Hawe, and C.W. Schmid, Jr. 1972. Lightning discharges that caused forest fires. J. Geophys. Res. 77:2156–2158.

    Article  Google Scholar 

  • Fuquay, D.M., R.G. Baughman, and D.J. Latham. 1979. A Model for Predicting Lightning Fire Ignitions in Wildlands Fuels. Research Paper INT 217. USDA Forest Service, Intermountain Forest and Range Experiment Station, Ogden, Utah.

    Google Scholar 

  • Garcia, C., C. Vega, P.M. Woddard, S.J. Titus, W.L. Adamowicz, and B.S. Lee. 1995. A logistical model for predicting the daily occurrence of human caused forest fires. Int. J. Wildland Fire 5:101–111.

    Article  Google Scholar 

  • Harrell, F.E., Jr. 1986. The LOGIST procedure, pp. 269–293 in R.P. Hastings, ed. SUGI Supplemental Library User’s Guide. SAS Institute Inc., Cary, NC.

    Google Scholar 

  • Hartford, R.A. 1990. Smoldering combustion limits in peat as influenced by moisture, mineral content, and organic bulk density, pp. 282–286 in D.C. Maclver, H. Auld, and R. Whitewood, eds. Proceedings of the 10th Conference on Fire and Forest Meteorology, April 17–21, 1989, Ottawa, Ontario. AES, Downsview, Ontario, Canada.

    Google Scholar 

  • Higgins, D.G., and G.S. Ramsey. 1992. Canadian Forest Fire Statistics. Information Report PI-X-107. Forestry Canada, Petawawa National Forestry Institute.

    Google Scholar 

  • Houghton, J.T., G.J. Jenkins, and J.J. Ephraums, eds. 1990. Climate Change-The IPCC Scientific Assessment. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Kourtz, P., and B. Todd. 1991. Predicting the Daily Occurrence ofLightning-Caused Forest FiRes. Informal Report PI-X-112. Forestry Canada, Petawawa National Forestry Institute, Chalk River, Ontario, Canada.

    Google Scholar 

  • Latham, D.J. 1983. LLAFFS-A Lightning Locating and Fire-Forecasting System. Research Paper INT 315. USDA Forest Service Intermountain Forest and Range Experiment Station, Ogden, UT.

    Google Scholar 

  • Latham, D.J. 1987. Design and Construction ofan Electric Arc Generatorfor Fuel Ignition Studies. Research Paper INT 366. USDA Forest Service, Intermountain Forest and Range Experiment Station, Ogden, UT.

    Google Scholar 

  • Latham, D.J., and J.A. Schlieter. 1989. Ignition Probabilities of Wildland Fuels Based on Simulated Lightning Discharges. Research Paper INT 411. USDA Forest Service, Intermountain Forest and Range Experiment Station, Ogden, UT.

    Google Scholar 

  • Lee, E.T. 1980. Statistical Methods for Survival Data Analysis. Lifetime Learning Publications, Belmont, CA.

    Google Scholar 

  • Lupo, A.R., R.J. Oglesby, and I.I. Mokhov. 1997. Climatological features of blocking anticyclones: a study of Northern Hemisphere CCM1 model blocking events in presentday and double CO2 concentration atmospheres. Clim. Dyn. 13:181–195.

    Article  Google Scholar 

  • Martell, D.L. 1990. A Markov chain model of a forest fire danger rating index, pp. 225–231 in D.C. Maclver, H. Auld, and R. Whitewood, eds. Proceedings of the 10th Conference on Fire and Forest Meteorology, April 17–21, 1989, Ottawa, Ontario. AES, Downsview, Ontario, Canada.

    Google Scholar 

  • Martell, D.L., S. Otukol, and B.J. Stocks. 1987. A logistic model for predicting daily people-caused forest fire occurrence in Ontario. Can. J. For. Res. 17:394–401.

    Article  Google Scholar 

  • Martell, D.L., E. Bevilacqua, and B.J. Stocks. 1989. Modelling seasonal variation in daily people-caused forest fire occurrence. Can. J. For Res. 19:1555–1563.

    Article  Google Scholar 

  • Newark, M.J. 1975. The relationship between forest fire occurrence and 500 mb longwave ridging. Atmosphere 13:26–33.

    Google Scholar 

  • Overpeck, J.T., D. Rind, and R. Goldberg. 1990. Climate-induced changes in forest disturbance and vegetation. Nature 343:51–53.

    Article  Google Scholar 

  • Poulin-Costello, M. 1993. People-caused forest fire prediction using Poisson and logistic regression. MSc thesis, Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada.

    Google Scholar 

  • Price, C., and D. Rind. 1994. The impact of a 2 x CO2 climate on lightning-caused fires. J. Clim. 7:1484–1494.

    Article  Google Scholar 

  • Rothermel, R.C. 1972. A Mathematical Model for Predicting Fire Spread in Wildland Fuels. Research Paper INT 115. USDA Forest Service, Intermountain Forest and Range Experiment Station, Ogden, UT.

    Google Scholar 

  • Shindo, T., and M.A. Uman. 1989. Continuing current in negative cloud-to-ground lightning. J. Geophys. Res. 94:5189–5198.

    Article  Google Scholar 

  • Stocks, B.J., B.D. Lawson, M.E. Alexander, C.E. Van Wagner, R.S. McAlpine, T.J. Lynham, and D.E. Dube. 1989. The Canadian forest fire danger rating system: an overview. For Chron. 65:258–265.

    Google Scholar 

  • Stocks, B.J., M.A. Fosberg, T.J. Lynham, L. Mearns, B.M. Wotton, Q. Yang, J.-Z. Jin, K. Lawrence, G.R. Hartley, J.A. Mason, and D.W. McKenney. 1998. Climate change and forest fire potential in Russian and Canadian boreal forests. Clim. Change 38:1–13.

    Article  Google Scholar 

  • Uman, M.A. 1987. The Lightning Discharge. Academic Press, San Diego, CA.

    Google Scholar 

  • Van Wagner, C.E. 1987. Development and Structure of the Canadian Forest Fire Weather Index System. Forest Technical Report 35. Canadian Forestry Service, Ottawa, Ontario, Canada.

    Google Scholar 

  • Walker, W.E., J.M. Chaiken, and E.J. Ignall, eds. 1979. Fire Department Deployment Analysis: A Public Policy Analysis Case Study-The Rand Fire Project. North-Holland, New York.

    Google Scholar 

  • Weber, M.G., and M.D. Flannigan. 1997. Canadian boreal forest ecosystem structure and function in a changing climate: impact on fire regimes. Environ. Rev. 5:145–166.

    Article  CAS  Google Scholar 

  • Williams, E.R. 1992. The Schumann resonance-a global tropical thermometer. Science 256:1184–1187.

    Article  PubMed  CAS  Google Scholar 

  • Wotton, B.M., and M.D. Flannigan. 1993. Length of the fire season in a changing climate. For. Chron. 69:187–192.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Anderson, K., Martell, D.L., Flannigan, M.D., Wang, D. (2000). Modeling of Fire Occurrence in the Boreal Forest Region of Canada. In: Kasischke, E.S., Stocks, B.J. (eds) Fire, Climate Change, and Carbon Cycling in the Boreal Forest. Ecological Studies, vol 138. Springer, New York, NY. https://doi.org/10.1007/978-0-387-21629-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-21629-4_19

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-9532-4

  • Online ISBN: 978-0-387-21629-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics