Skip to main content

PAMPs of the Fungal Cell Wall and Mammalian PRRs

  • Chapter
  • First Online:
Book cover The Fungal Cell Wall

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 425))

Abstract

Fungi are opportunistic pathogens that infect immunocompromised patients and are responsible for an estimated 1.5 million deaths every year. The antifungal innate immune response is mediated through the recognition of pathogen-associated molecular patterns (PAMPs) by the host’s pattern recognition receptors (PRRs). PRRs are immune receptors that ensure the internalisation and the killing of fungal pathogens. They also mount the inflammatory response, which contributes to initiate and polarise the adaptive response, controlled by lymphocytes. Both the innate and adaptive immune responses are required to control fungal infections. The immune recognition of fungal pathogen primarily occurs at the interface between the membrane of innate immune cells and the fungal cell wall, which contains a number of PAMPs. This chapter will focus on describing the main mammalian PRRs that have been shown to bind to PAMPs from the fungal cell wall of the four main fungal pathogens: Candida albicans, Aspergillus fumigatus, Cryptococcus neoformans and Pneumocystis jirovecii. We will describe these receptors, their functions and ligands to provide the reader with an overview of how the immune system recognises fungal pathogens and responds to them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaron PA, Jamklang M, Uhrig JP et al (2018).The blood-brain barrier internalises Cryptococcus neoformans via the EphA2-tyrosine kinase receptor. Cell Microbiol 20(3)

    Google Scholar 

  • Acharya M, Borland G, Edkins AL et al (2010) CD23/FcepsilonRII: molecular multi-tasking. Clin Exp Immunol 162(1):12–23

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aimanianda V, Bayry J, Bozza S et al (2009) Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature 460(7259):1117–1121

    CAS  PubMed  Google Scholar 

  • Annane D, Bellissant E, Cavaillon JM (2005) Septic shock. Lancet 365(9453):63–78

    CAS  PubMed  Google Scholar 

  • Arthur JS, Ley SC (2013) Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol 13(9):679–692

    CAS  PubMed  Google Scholar 

  • Ballou ER, Avelar GM, Childers DS et al (2016) Lactate signalling regulates fungal beta-glucan masking and immune evasion. Nat Microbiol 2:16238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balloy V, Si-Tahar M, Takeuchi O et al (2005) Involvement of toll-like receptor 2 in experimental invasive pulmonary aspergillosis. Infect Immun 73(9):5420–5425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beavil RL, Graber P, Aubonney N et al (1995) CD23/Fc epsilon RII and its soluble fragments can form oligomers on the cell surface and in solution. Immunology 84(2):202–206

    CAS  PubMed  PubMed Central  Google Scholar 

  • Becker KL, Aimanianda V, Wang X et al (2016) Aspergillus cell wall chitin induces anti- and proinflammatory cytokines in human pbmcs via the fc-gamma receptor/Syk/PI3K pathway. mBio 7(3)

    Google Scholar 

  • Bello-Irizarry SN, Wang J, Olsen K et al (2012) The alveolar epithelial cell chemokine response to pneumocystis requires adaptor molecule MyD88 and interleukin-1 receptor but not toll-like receptor 2 or 4. Infect Immun 80(11):3912–3920

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bellocchio S, Montagnoli C, Bozza S et al (2004) The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J Immunol 172(5):3059–3069

    CAS  PubMed  Google Scholar 

  • Bigley V, McGovern N, Milne P et al (2015) Langerin-expressing dendritic cells in human tissues are related to CD1c + dendritic cells and distinct from Langerhans cells and CD141high XCR1 + dendritic cells. J Leukoc Biol 97(4):627–634

    CAS  PubMed  Google Scholar 

  • Biondo C, Midiri A, Gambuzza M et al (2008) IFN-alpha/beta signaling is required for polarization of cytokine responses toward a protective type 1 pattern during experimental cryptococcosis. J Immunol 181(1):566–573

    CAS  PubMed  Google Scholar 

  • Biondo C, Signorino G, Costa A et al (2011) Recognition of yeast nucleic acids triggers a host-protective type I interferon response. Eur J Immunol 41(7):1969–1979

    CAS  PubMed  Google Scholar 

  • Bochud PY, Chien JW, Marr KA et al (2008) Toll-like receptor 4 polymorphisms and aspergillosis in stem-cell transplantation. N Engl J Med 359(17):1766–1777

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bose N, Wurst LR, Chan AS et al (2014) Differential regulation of oxidative burst by distinct beta-glucan-binding receptors and signaling pathways in human peripheral blood mononuclear cells. Glycobiology 24(4):379–391

    CAS  PubMed  Google Scholar 

  • Branzk N, Lubojemska A, Hardison SE et al (2014) Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol 15(11):1017–1025

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown GD (2006) Dectin-1: a signalling non-TLR pattern-recognition receptor. Nat Rev Immunol 6(1):33–43

    CAS  PubMed  Google Scholar 

  • Brown GD, Denning DW, Gow NA et al (2012) Hidden killers: human fungal infections. Sci Transl Med 4(165):165rv113

    Google Scholar 

  • Brown GD, Gordon S (2001) Immune recognition. A new receptor for beta-glucans. Nature 413(6851):36–37

    CAS  PubMed  Google Scholar 

  • Brown GD, Herre J, Williams DL et al (2003) Dectin-1 mediates the biological effects of beta-glucans. J Exp Med 197(9):1119–1124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown GD, Willment JA, Whitehead L (2018) C-type lectins in immunity and homeostasis. Nat Rev Immunol 18(6):374–389

    CAS  PubMed  Google Scholar 

  • Brubaker SW, Bonham KS, Zanoni I et al (2015) Innate immune pattern recognition: a cell biological perspective. Annu Rev Immunol 33:257–290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brummer E, Stevens DA (2010) Collectins and fungal pathogens: roles of surfactant proteins and mannose binding lectin in host resistance. Med Mycol 48(1):16–28

    CAS  PubMed  Google Scholar 

  • Bugarcic A, Hitchens K, Beckhouse AG et al (2008) Human and mouse macrophage-inducible C-type lectin (Mincle) bind Candida albicans. Glycobiology 18(9):679–685

    CAS  PubMed  Google Scholar 

  • Camilli G, Eren E, Williams DL et al (2018) Impaired phagocytosis directs human monocyte activation in response to fungal derived beta-glucan particles. Eur J Immunol 48(5):757–770

    CAS  PubMed  PubMed Central  Google Scholar 

  • Campos CF, van de Veerdonk FL, Goncalves SM et al (2019) Host genetic signatures of susceptibility to fungal disease. Curr Top Microbiol Immunol 422:237–263

    CAS  PubMed  Google Scholar 

  • Campuzano A, Castro-Lopez N, Wozniak KL et al (2017) Dectin-3 Is not required for protection against Cryptococcus neoformans infection. PLoS ONE 12(1):e0169347

    PubMed  PubMed Central  Google Scholar 

  • Carrion Sde J, Leal SM Jr, Ghannoum MA et al (2013) The RodA hydrophobin on Aspergillus fumigatus spores masks dectin-1- and dectin-2-dependent responses and enhances fungal survival in vivo. J Immunol 191(5):2581–2588

    PubMed  Google Scholar 

  • Carvalho A, De Luca A, Bozza S et al (2012) TLR3 essentially promotes protective class I-restricted memory CD8(+) T-cell responses to Aspergillus fumigatus in hematopoietic transplanted patients. Blood 119(4):967–977

    CAS  PubMed  Google Scholar 

  • Carvalho A, Pasqualotto AC, Pitzurra L et al (2008) Polymorphisms in toll-like receptor genes and susceptibility to pulmonary aspergillosis. J Infect Dis 197(4):618–621

    CAS  PubMed  Google Scholar 

  • Cavalieri D, Di Paola M, Rizzetto L et al (2017) Genomic and phenotypic variation in morphogenetic networks of two Candida albicans isolates subtends their different pathogenic potential. Front Immunol 8:1997

    PubMed  Google Scholar 

  • Cheng SC, Quintin J, Cramer RA et al (2014) mTOR- and HIF-1alpha-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345(6204):1250684

    PubMed  PubMed Central  Google Scholar 

  • Clark HL, Abbondante S, Minns MS et al (2018) Protein deiminase 4 and CR3 regulate Aspergillus fumigatus and beta-glucan-induced neutrophil extracellular trap formation, but hyphal killing is dependent Only on CR3. Front Immunol 9:1182

    PubMed  PubMed Central  Google Scholar 

  • Da Silva CA, Chalouni C, Williams A et al (2009) Chitin is a size-dependent regulator of macrophage TNF and IL-10 production. J Immunol 182(6):3573–3582

    PubMed  Google Scholar 

  • Dan JM, Kelly RM, Lee CK et al (2008) Role of the mannose receptor in a murine model of Cryptococcus neoformans infection. Infect Immun 76(6):2362–2367

    CAS  PubMed  PubMed Central  Google Scholar 

  • Darling TK, Lamb TJ (2019) Emerging roles for Eph receptors and Ephrin Ligands in immunity. Front Immunol 10:1473

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Jesus M, Ostroff GR, Levitz SM et al (2014) A population of Langerin-positive dendritic cells in murine Peyer’s patches involved in sampling beta-glucan microparticles. PLoS ONE 9(3):e91002

    PubMed  PubMed Central  Google Scholar 

  • de Jong MA, Vriend LE, Theelen B et al (2010) C-type lectin Langerin is a beta-glucan receptor on human Langerhans cells that recognizes opportunistic and pathogenic fungi. Mol Immunol 47(6):1216–1225

    PubMed  PubMed Central  Google Scholar 

  • del Fresno C, Soulat D, Roth S et al (2013) Interferon-beta production via Dectin-1-Syk-IRF5 signaling in dendritic cells is crucial for immunity to C. albicans. Immunity 38(6):1176–1186

    PubMed  Google Scholar 

  • den Dunnen J, Gringhuis SI, Geijtenbeek TB (2009) Innate signaling by the C-type lectin DC-SIGN dictates immune responses. Cancer Immunol Immunother 58(7):1149–1157

    Google Scholar 

  • Deng Z, Ma S, Zhou H et al (2015) Tyrosine phosphatase SHP-2 mediates C-type lectin receptor-induced activation of the kinase Syk and anti-fungal TH17 responses. Nat Immunol 16(6):642–652

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dennehy KM, Ferwerda G, Faro-Trindade I et al (2008) Syk kinase is required for collaborative cytokine production induced through Dectin-1 and Toll-like receptors. Eur J Immunol 38(2):500–506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding K, Shibui A, Wang Y et al (2005) Impaired recognition by Toll-like receptor 4 is responsible for exacerbated murine Pneumocystis pneumonia. Microbes Infect 7(2):195–203

    CAS  PubMed  Google Scholar 

  • Dong ZM, Murphy JW (1997) Cryptococcal polysaccharides bind to CD18 on human neutrophils. Infect Immun 65(2):557–563

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drewniak A, Gazendam RP, Tool AT et al (2013) Invasive fungal infection and impaired neutrophil killing in human CARD9 deficiency. Blood 121(13):2385–2392

    CAS  PubMed  Google Scholar 

  • Drummond RA, Dambuza IM, Vautier S et al (2016) CD4(+) T-cell survival in the GI tract requires dectin-1 during fungal infection. Mucosal Immunol 9(2):492–502

    CAS  PubMed  Google Scholar 

  • Drummond RA, Swamydas M, Oikonomou V et al (2019) CARD9(+) microglia promote antifungal immunity via IL-1beta- and CXCL1-mediated neutrophil recruitment. Nat Immunol 20(5):559–570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dubourdeau M, Athman R, Balloy V et al (2006) Aspergillus fumigatus induces innate immune responses in alveolar macrophages through the MAPK pathway independently of TLR2 and TLR4. J Immunol 177(6):3994–4001

    CAS  PubMed  Google Scholar 

  • Erdei A, Lukacsi S, Macsik-Valent B et al (2019) Non-identical twins: different faces of CR3 and CR4 in myeloid and lymphoid cells of mice and men. Semin Cell Dev Biol 85:110–121

    CAS  PubMed  Google Scholar 

  • Erwig LP, Gow NA (2016) Interactions of fungal pathogens with phagocytes. Nat Rev Microbiol 14(3):163–176

    CAS  PubMed  Google Scholar 

  • Farhat K, Riekenberg S, Heine H et al (2008) Heterodimerization of TLR2 with TLR1 or TLR6 expands the ligand spectrum but does not lead to differential signaling. J Leukoc Biol 83(3):692–701

    CAS  PubMed  Google Scholar 

  • Faro-Trindade I, Willment JA, Kerrigan AM et al (2012) Characterisation of innate fungal recognition in the lung. PLoS ONE 7(4):e35675

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feinberg H, Jegouzo SAF, Rex MJ et al (2017) Mechanism of pathogen recognition by human dectin-2. J Biol Chem 292(32):13402–13414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fonseca FL, Nohara LL, Cordero RJ et al (2010) Immunomodulatory effects of serotype B glucuronoxylomannan from Cryptococcus gattii correlate with polysaccharide diameter. Infect Immun 78(9):3861–3870

    PubMed  PubMed Central  Google Scholar 

  • Fraser IP, Takahashi K, Koziel H et al (2000) Pneumocystis carinii enhances soluble mannose receptor production by macrophages. Microbes Infect 2(11):1305–1310

    CAS  PubMed  Google Scholar 

  • Frison N, Taylor ME, Soilleux E et al (2003) Oligolysine-based oligosaccharide clusters: selective recognition and endocytosis by the mannose receptor and dendritic cell-specific intercellular adhesion molecule 3 (ICAM-3)-grabbing nonintegrin. J Biol Chem 278(26):23922–23929

    CAS  PubMed  Google Scholar 

  • Fuchs K, Cardona Gloria Y, Wolz OO et al (2018) The fungal ligand chitin directly binds TLR2 and triggers inflammation dependent on oligomer size. EMBO Rep 19(12)

    Google Scholar 

  • Funk SD, Orr AW (2013) Ephs and ephrins resurface in inflammation, immunity, and atherosclerosis. Pharmacol Res 67(1):42–52

    CAS  PubMed  Google Scholar 

  • Gantner BN, Simmons RM, Canavera SJ et al (2003) Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J Exp Med 197(9):1107–1117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gantner BN, Simmons RM, Underhill DM (2005) Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J 24(6):1277–1286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao X, Zhao G, Li C et al (2016) LOX-1 and TLR4 affect each other and regulate the generation of ROS in A. fumigatus keratitis. Int Immunopharmacol 40:392–399

    CAS  PubMed  Google Scholar 

  • Gasparoto TH, Tessarolli V, Garlet TP et al (2010) Absence of functional TLR4 impairs response of macrophages after Candida albicans infection. Med Mycol 48(8):1009–1017

    CAS  PubMed  Google Scholar 

  • Gavino AC, Chung JS, Sato K et al (2005) Identification and expression profiling of a human C-type lectin, structurally homologous to mouse dectin-2. Exp Dermatol 14(4):281–288

    CAS  PubMed  Google Scholar 

  • Gay NJ, Symmons MF, Gangloff M et al (2014) Assembly and localization of Toll-like receptor signalling complexes. Nat Rev Immunol 14(8):546–558

    CAS  PubMed  Google Scholar 

  • Gazendam RP, van Hamme JL, Tool AT et al (2016) Human neutrophils use different mechanisms to kill Aspergillus fumigatus conidia and hyphae: evidence from phagocyte defects. J Immunol 196(3):1272–1283

    CAS  PubMed  Google Scholar 

  • Gazendam RP, van Hamme JL, Tool AT et al (2014) Two independent killing mechanisms of Candida albicans by human neutrophils: evidence from innate immunity defects. Blood 124(4):590–597

    CAS  PubMed  Google Scholar 

  • Gazi U, Rosas M, Singh S et al (2011) Fungal recognition enhances mannose receptor shedding through dectin-1 engagement. J Biol Chem 286(10):7822–7829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gersuk GM, Underhill DM, Zhu L et al (2006) Dectin-1 and TLRs permit macrophages to distinguish between different Aspergillus fumigatus cellular states. J Immunol 176(6):3717–3724

    CAS  PubMed  Google Scholar 

  • Glocker EO, Hennigs A, Nabavi M et al (2009) A homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med 361(18):1727–1735

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goodridge HS, Reyes CN, Becker CA et al (2011) Activation of the innate immune receptor Dectin-1 upon formation of a ‘phagocytic synapse’. Nature 472(7344):471–475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gow NAR, Latge JP Munro CA (2017) The fungal cell wall: structure, biosynthesis, and function. Microbiol Spectr 5(3)

    Google Scholar 

  • Graham LM, Gupta V, Schafer G et al (2012) The C-type lectin receptor CLECSF8 (CLEC4D) is expressed by myeloid cells and triggers cellular activation through Syk kinase. J Biol Chem 287(31):25964–25974

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gresnigt MS, Becker KL, Smeekens SP et al (2013) Aspergillus fumigatus-induced IL-22 is not restricted to a specific Th cell subset and is dependent on complement receptor 3. J Immunol 190(11):5629–5639

    CAS  PubMed  Google Scholar 

  • Gringhuis SI, den Dunnen J, Litjens M et al (2009) Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-kappaB activation through Raf-1 and Syk. Nat Immunol 10(2):203–213

    CAS  PubMed  Google Scholar 

  • Gringhuis SI, den Dunnen J, Litjens M et al (2007) C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-kappaB. Immunity 26(5):605–616

    CAS  PubMed  Google Scholar 

  • Gringhuis SI, Wevers BA, Kaptein TM et al (2011) Selective C-Rel activation via Malt1 controls anti-fungal T(H)-17 immunity by dectin-1 and dectin-2. PLoS Pathog 7(1):e1001259

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gross O, Gewies A, Finger K et al (2006) Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 442(7103):651–656

    CAS  PubMed  Google Scholar 

  • Gross O, Poeck H, Bscheider M et al (2009) Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459(7245):433–436

    CAS  PubMed  Google Scholar 

  • Guo Y, Chang Q, Cheng L et al (2018) C-Type lectin receptor CD23 Is required for host defense against Candida albicans and Aspergillus fumigatus infection. J Immunol 201(8):2427–2440

    CAS  PubMed  Google Scholar 

  • Haider M, Dambuza IM, Asamaphan P et al (2019) The pattern recognition receptors dectin-2, mincle, and FcRgamma impact the dynamics of phagocytosis of Candida, Saccharomyces, Malassezia, and Mucor species. PLoS ONE 14(8):e0220867

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanna S, Etzioni A (2012) Leukocyte adhesion deficiencies. Ann N Y Acad Sci 1250:50–55

    CAS  PubMed  Google Scholar 

  • He K, Yue LH, Zhao GQ et al (2016) The role of LOX-1 on innate immunity against Aspergillus keratitis in mice. Int J Ophthalmol 9(9):1245–1250

    PubMed  PubMed Central  Google Scholar 

  • Heinsbroek SE, Taylor PR, Martinez FO et al (2008) Stage-specific sampling by pattern recognition receptors during Candida albicans phagocytosis. PLoS Pathog 4(11):e1000218

    PubMed  PubMed Central  Google Scholar 

  • Herbst S, Shah A, Mazon Moya M et al (2015) Phagocytosis-dependent activation of a TLR9-BTK-calcineurin-NFAT pathway co-ordinates innate immunity to Aspergillus fumigatus. EMBO Mol Med 7(3):240–258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hernanz-Falcon P, Joffre O, Williams DL et al (2009) Internalization of Dectin-1 terminates induction of inflammatory responses. Eur J Immunol 39(2):507–513

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hole CR, Leopold Wager CM, Mendiola AS et al (2016) Antifungal activity of plasmacytoid dendritic cells against cryptococcus neoformans in vitro requires expression of Dectin-3 (CLEC4D) and reactive oxygen species. Infect Immun 84(9):2493–2504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hopke A, Brown AJP, Hall RA et al (2018) Dynamic fungal cell wall architecture in stress adaptation and immune evasion. Trends Microbiol 26(4):284–295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu XP, Wang RY, Wang X et al (2015) Dectin-2 polymorphism associated with pulmonary cryptococcosis in HIV-uninfected Chinese patients. Med Mycol 53(8):810–816

    CAS  PubMed  Google Scholar 

  • Huang JH, Lin CY, Wu SY et al (2015) CR3 and Dectin-1 collaborate in macrophage cytokine response through association on lipid rafts and activation of Syk-JNK-AP-1 pathway. PLoS Pathog 11(7):e1004985

    PubMed  PubMed Central  Google Scholar 

  • Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110(6):673–687

    CAS  PubMed  Google Scholar 

  • Icenhour CR, Kottom TJ, Limper AH (2003) Evidence for a melanin cell wall component in Pneumocystis carinii. Infect Immun 71(9):5360–5363

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ifrim DC, Joosten LA, Kullberg BJ et al (2013) Candida albicans primes TLR cytokine responses through a Dectin-1/Raf-1-mediated pathway. J Immunol 190(8):4129–4135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ifrim DC, Quintin J, Courjol F et al (2016) The role of dectin-2 for host defense against disseminated candidiasis. J Interferon Cytokine Res 36(4):267–276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Igyarto BZ, Haley K, Ortner D et al (2011) Skin-resident murine dendritic cell subsets promote distinct and opposing antigen-specific T helper cell responses. Immunity 35(2):260–272

    CAS  PubMed  Google Scholar 

  • Jaeger M, van der Lee R, Cheng SC et al (2015) The RIG-I-like helicase receptor MDA5 (IFIH1) is involved in the host defense against candida infections. Eur J Clin Microbiol Infect Dis 34(5):963–974

    CAS  PubMed  PubMed Central  Google Scholar 

  • Janeway CA Jr (1989) Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol 54(Pt 1):1–13

    CAS  PubMed  Google Scholar 

  • Jhingran A, Mar KB, Kumasaka DK et al (2012) Tracing conidial fate and measuring host cell antifungal activity using a reporter of microbial viability in the lung. Cell Rep 2(6):1762–1773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jouault T, Ibata-Ombetta S, Takeuchi O et al (2003) Candida albicans phospholipomannan is sensed through toll-like receptors. J Infect Dis 188(1):165–172

    CAS  PubMed  Google Scholar 

  • Kasperkovitz PV, Khan NS, Tam JM et al (2011) Toll-like receptor 9 modulates macrophage antifungal effector function during innate recognition of Candida albicans and Saccharomyces cerevisiae. Infect Immun 79(12):4858–4867

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11(5):373–384

    CAS  PubMed  Google Scholar 

  • Kerscher B, Wilson GJ, Reid DM et al (2016) Mycobacterial receptor, Clec4d (CLECSF8, MCL), is coregulated with Mincle and upregulated on mouse myeloid cells following microbial challenge. Eur J Immunol 46(2):381–389

    CAS  PubMed  Google Scholar 

  • Kesh S, Mensah NY, Peterlongo P et al (2005) TLR1 and TLR6 polymorphisms are associated with susceptibility to invasive aspergillosis after allogeneic stem cell transplantation. Ann N Y Acad Sci 1062:95–103

    CAS  PubMed  Google Scholar 

  • Kilmon MA, Shelburne AE, Chan-Li Y et al (2004) CD23 trimers are preassociated on the cell surface even in the absence of its ligand, IgE. J Immunol 172(2):1065–1073

    CAS  PubMed  Google Scholar 

  • Koldehoff M, Beelen DW, Elmaagacli AH (2013) Increased susceptibility for aspergillosis and post-transplant immune deficiency in patients with gene variants of TLR4 after stem cell transplantation. Transpl Infect Dis 15(5):533–539

    CAS  PubMed  Google Scholar 

  • Kosmidis C, Denning DW (2015) The clinical spectrum of pulmonary aspergillosis. Thorax 70(3):270–277

    PubMed  Google Scholar 

  • Kottom TJ, Hebrink DM, Jenson PE et al (2018) Dectin-2 is a C-type lectin receptor that recognizes pneumocystis and participates in innate immune responses. Am J Respir Cell Mol Biol 58(2):232–240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kottom TJ, Hebrink DM, Jenson PE et al (2017) The interaction of pneumocystis with the C-type lectin receptor mincle exerts a significant role in host defense against infection. J Immunol 198(9):3515–3525

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kottom TJ, Hebrink DM, Monteiro JT et al (2019) Myeloid C-type lectin receptors that recognize fungal mannans interact with Pneumocystis organisms and major surface glycoprotein. J Med Microbiol 68(11):1649–1654

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon-Chung KJ, Fraser JA, Doering TL et al (2014) Cryptococcus neoformans and Cryptococcus gattii, the etiologic agents of cryptococcosis. Cold Spring Harb Perspect Med 4(7):a019760

    PubMed  PubMed Central  Google Scholar 

  • Lam JS, Huang H, Levitz SM (2007) Effect of differential N-linked and O-linked mannosylation on recognition of fungal antigens by dendritic cells. PLoS ONE 2(10):e1009

    PubMed  PubMed Central  Google Scholar 

  • Lanternier F, Cypowyj S, Picard C et al (2013) Primary immunodeficiencies underlying fungal infections. Curr Opin Pediatr 25(6):736–747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Latge JP, Beauvais A, Chamilos G (2017) The cell wall of the human fungal pathogen Aspergillus fumigatus: biosynthesis, organization, immune response, and virulence. Annu Rev Microbiol 71:99–116

    CAS  PubMed  Google Scholar 

  • Lee SJ, Zheng NY, Clavijo M et al (2003) Normal host defense during systemic candidiasis in mannose receptor-deficient mice. Infect Immun 71(1):437–445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Zhao G, Che C et al (2015) The role of LOX-1 in innate immunity to Aspergillus fumigatus in corneal epithelial cells. Invest Ophthalmol Vis Sci 56(6):3593–3603

    CAS  PubMed  Google Scholar 

  • Li LY, Zhang HR, Jiang ZL et al (2018) Overexpression of dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin in dendritic cells protecting against Aspergillosis. Chin Med J (Engl) 131(21):2575–2582

    Google Scholar 

  • Li X, Cullere X, Nishi H et al (2016) PKC-delta activation in neutrophils promotes fungal clearance. J Leukoc Biol 100(3):581–588

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Utomo A, Cullere X et al (2011) The beta-glucan receptor Dectin-1 activates the integrin Mac-1 in neutrophils via Vav protein signaling to promote Candida albicans clearance. Cell Host Microbe 10(6):603–615

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lim J, Coates CJ, Seoane PI et al (2018) Characterizing the mechanisms of nonopsonic uptake of cryptococci by macrophages. J Immunol 200(10):3539–3546

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loures FV, Rohm M, Lee CK et al (2015) Recognition of Aspergillus fumigatus hyphae by human plasmacytoid dendritic cells is mediated by dectin-2 and results in formation of extracellular traps. PLoS Pathog 11(2):e1004643

    PubMed  PubMed Central  Google Scholar 

  • Lowell CA (2011). Src-family and Syk kinases in activating and inhibitory pathways in innate immune cells: signaling cross talk. Cold Spring Harb Perspect Biol 3(3)

    Google Scholar 

  • Lowman DW, Greene RR, Bearden DW et al (2014) Novel structural features in Candida albicans hyphal glucan provide a basis for differential innate immune recognition of hyphae versus yeast. J Biol Chem 289(6):3432–3443

    CAS  PubMed  Google Scholar 

  • Ma J, Becker C, Lowell CA et al (2012) Dectin-1-triggered recruitment of light chain 3 protein to phagosomes facilitates major histocompatibility complex class II presentation of fungal-derived antigens. J Biol Chem 287(41):34149–34156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mambula SS, Sau K, Henneke P et al (2002) Toll-like receptor (TLR) signaling in response to Aspergillus fumigatus. J Biol Chem 277(42):39320–39326

    CAS  PubMed  Google Scholar 

  • Mansour MK, Latz E, Levitz SM (2006) Cryptococcus neoformans glycoantigens are captured by multiple lectin receptors and presented by dendritic cells. J Immunol 176(5):3053–3061

    CAS  PubMed  Google Scholar 

  • Mansour MK, Tam JM, Khan NS et al (2013) Dectin-1 activation controls maturation of beta-1,3-glucan-containing phagosomes. J Biol Chem 288(22):16043–16054

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marakalala MJ, Vautier S, Potrykus J et al (2013) Differential adaptation of Candida albicans in vivo modulates immune recognition by dectin-1. PLoS Pathog 9(4):e1003315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marcos CM, de Oliveira HC, de Melo WC et al (2016) Anti-immune strategies of pathogenic fungi. Front Cell Infect Microbiol 6:142

    PubMed  PubMed Central  Google Scholar 

  • Martinez-Pomares L (2012) The mannose receptor. J Leukoc Biol 92(6):1177–1186

    CAS  PubMed  Google Scholar 

  • McCloskey N, Hunt J, Beavil RL et al (2007) Soluble CD23 monomers inhibit and oligomers stimulate IGE synthesis in human B cells. J Biol Chem 282(33):24083–24091

    CAS  PubMed  Google Scholar 

  • McGreal EP, Rosas M, Brown GD et al (2006) The carbohydrate-recognition domain of Dectin-2 is a C-type lectin with specificity for high mannose. Glycobiology 16(5):422–430

    CAS  PubMed  Google Scholar 

  • Means TK, Mylonakis E, Tampakakis E et al (2009) Evolutionarily conserved recognition and innate immunity to fungal pathogens by the scavenger receptors SCARF1 and CD36. J Exp Med 206(3):637–653

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miro MS, Rodriguez E, Vigezzi C et al (2018) Contribution of TLR2 pathway in the pathogenesis of vulvovaginal candidiasis. Pathog Dis 76(5)

    Google Scholar 

  • Mitchell DA, Fadden AJ, Drickamer K (2001) A novel mechanism of carbohydrate recognition by the C-type lectins DC-SIGN and DC-SIGNR. Subunit organization and binding to multivalent ligands. J Biol Chem 276(31):28939–28945

    CAS  PubMed  Google Scholar 

  • Mitchell S, Vargas J, Hoffmann A (2016) Signaling via the NFkappaB system. Wiley Interdiscip Rev Syst Biol Med 8(3):227–241

    CAS  PubMed  Google Scholar 

  • Miyazato A, Nakamura K, Yamamoto N et al (2009) Toll-like receptor 9-dependent activation of myeloid dendritic cells by Deoxynucleic acids from Candida albicans. Infect Immun 77(7):3056–3064

    CAS  PubMed  PubMed Central  Google Scholar 

  • Monari C, Bistoni F, Casadevall A et al (2005) Glucuronoxylomannan, a microbial compound, regulates expression of costimulatory molecules and production of cytokines in macrophages. J Infect Dis 191(1):127–137

    CAS  PubMed  Google Scholar 

  • Moreira AP, Cavassani KA, Ismailoglu UB et al (2011) The protective role of TLR6 in a mouse model of asthma is mediated by IL-23 and IL-17A. J Clin Invest 121(11):4420–4432

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mukaremera L, Lee KK, Wagener J et al (2018) Titan cell production in Cryptococcus neoformans reshapes the cell wall and capsule composition during infection. Cell Surf 1:15–24

    CAS  PubMed  PubMed Central  Google Scholar 

  • Munoz JF, Delorey T, Ford CB et al (2019) Coordinated host-pathogen transcriptional dynamics revealed using sorted subpopulations and single macrophages infected with Candida albicans. Nat Commun 10(1):1607

    PubMed  PubMed Central  Google Scholar 

  • Myers RC, Dunaway CW, Nelson MP et al (2013) STAT4-dependent and -independent Th2 responses correlate with protective immunity against lung infection with Pneumocystis murina. J Immunol 190(12):6287–6294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura K, Kinjo T, Saijo S et al (2007) Dectin-1 is not required for the host defense to Cryptococcus neoformans. Microbiol Immunol 51(11):1115–1119

    CAS  PubMed  Google Scholar 

  • Nakamura K, Miyagi K, Koguchi Y et al (2006) Limited contribution of Toll-like receptor 2 and 4 to the host response to a fungal infectious pathogen, Cryptococcus neoformans. FEMS Immunol Med Microbiol 47(1):148–154

    CAS  PubMed  Google Scholar 

  • Nakamura K, Miyazato A, Xiao G et al (2008) Deoxynucleic acids from Cryptococcus neoformans activate myeloid dendritic cells via a TLR9-dependent pathway. J Immunol 180(6):4067–4074

    CAS  PubMed  Google Scholar 

  • Nakamura Y, Sato K, Yamamoto H et al (2015) Dectin-2 deficiency promotes Th2 response and mucin production in the lungs after pulmonary infection with Cryptococcus neoformans. Infect Immun 83(2):671–681

    PubMed  PubMed Central  Google Scholar 

  • Netea MG, Gow NA, Joosten LA et al (2010) Variable recognition of Candida albicans strains by TLR4 and lectin recognition receptors. Med Mycol 48(7):897–903

    CAS  PubMed  Google Scholar 

  • Netea MG, Gow NA, Munro CA et al (2006) Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J Clin Invest 116(6):1642–1650

    CAS  PubMed  PubMed Central  Google Scholar 

  • Netea MG, Sutmuller R, Hermann C et al (2004) Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J Immunol 172(6):3712–3718

    CAS  PubMed  Google Scholar 

  • Netea MG, Warris A, Van der Meer JW et al (2003) Aspergillus fumigatus evades immune recognition during germination through loss of toll-like receptor-4-mediated signal transduction. J Infect Dis 188(2):320–326

    CAS  PubMed  Google Scholar 

  • Oliveira-Nascimento L, Massari P, Wetzler LM (2012) The role of TLR2 in infection and immunity. Front Immunol 3:79

    PubMed  PubMed Central  Google Scholar 

  • Overton NL, Simpson A, Bowyer P et al (2017) Genetic susceptibility to severe asthma with fungal sensitization. Int J Immunogenet 44(3):93–106

    CAS  PubMed  Google Scholar 

  • Palaniyandi S, Tomei E, Li Z et al (2011) CD23-dependent transcytosis of IgE and immune complex across the polarized human respiratory epithelial cells. J Immunol 186(6):3484–3496

    CAS  PubMed  Google Scholar 

  • Papayannopoulos V (2018) Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol 18(2):134–147

    CAS  PubMed  Google Scholar 

  • Park CG, Takahara K, Umemoto E et al (2001) Five mouse homologues of the human dendritic cell C-type lectin, DC-SIGN. Int Immunol 13(10):1283–1290

    CAS  PubMed  Google Scholar 

  • Patel VI, Booth JL, Duggan ES et al (2017) Transcriptional classification and functional characterization of human airway macrophage and dendritic cell subsets. J Immunol 198(3):1183–1201

    CAS  PubMed  Google Scholar 

  • Picard C, Puel A, Bonnet M et al (2003) Pyogenic bacterial infections in humans with IRAK-4 deficiency. Science 299(5615):2076–2079

    CAS  PubMed  Google Scholar 

  • Pietrella D, Bistoni G, Corbucci C et al (2006) Candida albicans mannoprotein influences the biological function of dendritic cells. Cell Microbiol 8(4):602–612

    CAS  PubMed  Google Scholar 

  • Powlesland AS, Ward EM, Sadhu SK et al (2006) Widely divergent biochemical properties of the complete set of mouse DC-SIGN-related proteins. J Biol Chem 281(29):20440–20449

    CAS  PubMed  Google Scholar 

  • Prieto D, Carpena N, Maneu V et al (2016) TLR2 modulates gut colonization and dissemination of Candida albicans in a murine model. Microbes Infect 18(10):656–660

    CAS  PubMed  Google Scholar 

  • Qiu Y, Zeltzer S, Zhang Y et al (2012) Early induction of CCL7 downstream of TLR9 signaling promotes the development of robust immunity to cryptococcal infection. J Immunol 188(8):3940–3948

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quintin J, Saeed S, Martens JHA et al (2012) Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe 12(2):223–232

    CAS  PubMed  Google Scholar 

  • Rajaram MVS, Arnett E, Azad AK et al (2017) M. tuberculosis-initiated human mannose receptor signaling regulates macrophage recognition and vesicle trafficking by FcRgamma-Chain, Grb2, and SHP-1. Cell Rep 21(1):126–140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramaprakash H, Ito T, Standiford TJ et al (2009) Toll-like receptor 9 modulates immune responses to Aspergillus fumigatus conidia in immunodeficient and allergic mice. Infect Immun 77(1):108–119

    CAS  PubMed  Google Scholar 

  • Robinson MJ, Osorio F, Rosas M et al (2009) Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infection. J Exp Med 206(9):2037–2051

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers NC, Slack EC, Edwards AD et al (2005) Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity 22(4):507–517

    CAS  PubMed  Google Scholar 

  • Romani L (2011) Immunity to fungal infections. Nat Rev Immunol 11(4):275–288

    CAS  PubMed  Google Scholar 

  • Rosentul DC, Delsing CE, Jaeger M et al (2014) Gene polymorphisms in pattern recognition receptors and susceptibility to idiopathic recurrent vulvovaginal candidiasis. Front Microbiol 5:483

    PubMed  PubMed Central  Google Scholar 

  • Ross GD, Cain JA, Myones BL et al (1987) Specificity of membrane complement receptor type three (CR3) for beta-glucans. Complement 4(2):61–74

    CAS  PubMed  Google Scholar 

  • Roth S, Bergmann H, Jaeger M et al (2016) Vav proteins are key regulators of card9 signaling for innate antifungal immunity. Cell Rep 17(10):2572–2583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saeed S, Quintin J, Kerstens HH et al (2014) Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity. Science 345(6204):1251086

    PubMed  PubMed Central  Google Scholar 

  • Saijo S, Fujikado N, Furuta T et al (2007) Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans. Nat Immunol 8(1):39–46

    CAS  PubMed  Google Scholar 

  • Saijo S, Ikeda S, Yamabe K et al (2010) Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity 32(5):681–691

    CAS  PubMed  Google Scholar 

  • Sainz J, Lupianez CB, Segura-Catena J et al (2012) Dectin-1 and DC-SIGN polymorphisms associated with invasive pulmonary Aspergillosis infection. PLoS ONE 7(2):e32273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sancho D, Reis e Sousa C (2012) Signaling by myeloid C-type lectin receptors in immunity and homeostasis. Annu Rev Immunol 30:491–529

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sato K, Yang XL, Yudate T et al (2006) Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor gamma chain to induce innate immune responses. J Biol Chem 281(50):38854–38866

    CAS  PubMed  Google Scholar 

  • Sattler S, Reiche D, Sturtzel C et al (2012) The human C-type lectin-like receptor CLEC-1 is upregulated by TGF-beta and primarily localized in the endoplasmic membrane compartment. Scand J Immunol 75(3):282–292

    CAS  PubMed  Google Scholar 

  • Serrano-Gomez D, Leal JA, Corbi AL (2005) DC-SIGN mediates the binding of Aspergillus fumigatus and keratinophylic fungi by human dendritic cells. Immunobiology 210(2–4):175–183

    CAS  PubMed  Google Scholar 

  • Shah VB, Ozment-Skelton TR, Williams DL et al (2009) Vav1 and PI3K are required for phagocytosis of beta-glucan and subsequent superoxide generation by microglia. Mol Immunol 46(8–9):1845–1853

    CAS  PubMed  Google Scholar 

  • Shoham S, Huang C, Chen JM et al (2001) Toll-like receptor 4 mediates intracellular signaling without TNF-alpha release in response to Cryptococcus neoformans polysaccharide capsule. J Immunol 166(7):4620–4626

    CAS  PubMed  Google Scholar 

  • Skalski JH, Kottom TJ Limper AH (2015) Pathobiology of Pneumocystis pneumonia: life cycle, cell wall and cell signal transduction. FEMS Yeast Res 15(6)

    Google Scholar 

  • Smeekens SP, van de Veerdonk FL, Joosten LAB, Jacobs L, Jansen T, Williams DL, van der Meer JVM, Kullberg BJ, Netea MG (2011) The classical CD14++CD16 monocytes, but not the patrolling CD14+CD16+ monocytes, promote Th17 responses to Candida albicans. Eur J Immunol 41(10):2915–2924

    Google Scholar 

  • Smith DFQ, Casadevall A (2019) The role of melanin in fungal pathogenesis for animal hosts. Curr Top Microbiol Immunol 422:1–30

    CAS  PubMed  Google Scholar 

  • Sparber F, Dolowschiak T, Mertens S et al (2018) Langerin + DCs regulate innate IL-17 production in the oral mucosa during Candida albicans-mediated infection. PLoS Pathog 14(5):e1007069

    PubMed  PubMed Central  Google Scholar 

  • Speakman EA, Dambuza IM, Salazar F et al (2020) T Cell antifungal immunity and the role of C-Type lectin receptors. Trends Immunol 41(1):61–76

    CAS  PubMed  Google Scholar 

  • Speth C, Rambach G, Wurzner R et al (2008) Complement and fungal pathogens: an update. Mycoses 51(6):477–496

    CAS  PubMed  Google Scholar 

  • Stappers MHT, Clark AE, Aimanianda V et al (2018) Recognition of DHN-melanin by a C-type lectin receptor is required for immunity to Aspergillus. Nature 555(7696):382–386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steele C, Marrero L, Swain S et al (2003) Alveolar macrophage-mediated killing of Pneumocystis carinii f. sp. muris involves molecular recognition by the Dectin-1 beta-glucan receptor. J Exp Med 198(11):1677–1688

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steele C, Rapaka RR, Metz A et al (2005) The beta-glucan receptor dectin-1 recognizes specific morphologies of Aspergillus fumigatus. PLoS Pathog 1(4):e42

    PubMed  PubMed Central  Google Scholar 

  • Stephen-Victor E, Karnam A, Fontaine T et al (2017) Aspergillus fumigatus cell wall alpha-(1,3)-glucan stimulates regulatory T-cell polarization by inducing PD-L1 expression on human dendritic cells. J Infect Dis 216(10):1281–1294

    CAS  PubMed  Google Scholar 

  • Strasser D, Neumann K, Bergmann H et al (2012) Syk kinase-coupled C-type lectin receptors engage protein kinase C-sigma to elicit Card9 adaptor-mediated innate immunity. Immunity 36(1):32–42

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun H, Xu XY, Tian XL et al (2014) Activation of NF-kappaB and respiratory burst following Aspergillus fumigatus stimulation of macrophages. Immunobiology 219(1):25–36

    CAS  PubMed  Google Scholar 

  • Swidergall M, Solis NV, Lionakis MS et al (2018) EphA2 is an epithelial cell pattern recognition receptor for fungal beta-glucans. Nat Microbiol 3(1):53–61

    CAS  PubMed  Google Scholar 

  • Swidergall M, Solis NV, Wang Z et al (2019) EphA2 Is a neutrophil receptor for Candida albicans that stimulates antifungal activity during oropharyngeal infection. Cell Rep 28(2):423–433.e425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tada H, Nemoto E, Shimauchi H et al (2002) Saccharomyces cerevisiae- and Candida albicans-derived mannan induced production of tumor necrosis factor alpha by human monocytes in a CD14- and Toll-like receptor 4-dependent manner. Microbiol Immunol 46(7):503–512

    CAS  PubMed  Google Scholar 

  • Takahara K, Omatsu Y, Yashima Y et al (2002) Identification and expression of mouse Langerin (CD207) in dendritic cells. Int Immunol 14(5):433–444

    CAS  PubMed  Google Scholar 

  • Takahara K, Arita T, Tokieda S et al (2012a) Difference in fine specificity to polysaccharides of Candida albicans mannoprotein between mouse SIGNR1 and human DC-SIGN. Infect Immun 80(5):1699–1706

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takahara K, Tokieda S, Nagaoka K et al (2012b) Efficient capture of Candida albicans and zymosan by SIGNR1 augments TLR2-dependent TNF-alpha production. Int Immunol 24(2):89–96

    CAS  PubMed  Google Scholar 

  • Tassi I, Cella M, Castro I et al (2009) Requirement of phospholipase C-gamma2 (PLCgamma2) for Dectin-1-induced antigen presentation and induction of TH1/TH17 polarization. Eur J Immunol 39(5):1369–1378

    CAS  PubMed  Google Scholar 

  • Tateno H, Ohnishi K, Yabe R et al (2010) Dual specificity of Langerin to sulfated and mannosylated glycans via a single C-type carbohydrate recognition domain. J Biol Chem 285(9):6390–6400

    CAS  PubMed  Google Scholar 

  • Taylor PR, Brown GD, Herre J et al (2004) The role of SIGNR1 and the beta-glucan receptor (dectin-1) in the nonopsonic recognition of yeast by specific macrophages. J Immunol 172(2):1157–1162

    CAS  PubMed  Google Scholar 

  • Taylor PR, Roy S, Leal SM Jr et al (2014) Activation of neutrophils by autocrine IL-17A-IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, RORgammat and dectin-2. Nat Immunol 15(2):143–151

    CAS  PubMed  Google Scholar 

  • Taylor PR, Tsoni SV, Willment JA et al (2007) Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat Immunol 8(1):31–38

    CAS  PubMed  Google Scholar 

  • Thebault P, Lhermite N, Tilly G et al (2009) The C-type lectin-like receptor CLEC-1, expressed by myeloid cells and endothelial cells, is up-regulated by immunoregulatory mediators and moderates T cell activation. J Immunol 183(5):3099–3108

    CAS  PubMed  Google Scholar 

  • Thompson A, Davies LC, Liao CT et al (2019) The protective effect of inflammatory monocytes during systemic C. albicans infection is dependent on collaboration between C-type lectin-like receptors. PLoS Pathog 15(6):e1007850

    CAS  PubMed  PubMed Central  Google Scholar 

  • Urban CF, Reichard U, Brinkmann V et al (2006) Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol 8(4):668–676

    CAS  PubMed  Google Scholar 

  • van Bruggen R, Drewniak A, Jansen M et al (2009) Complement receptor 3, not Dectin-1, is the major receptor on human neutrophils for beta-glucan-bearing particles. Mol Immunol 47(2–3):575–581

    PubMed  Google Scholar 

  • van de Veerdonk FL, Marijnissen RJ, Kullberg BJ et al (2009) The macrophage mannose receptor induces IL-17 in response to Candida albicans. Cell Host Microbe 5(4):329–340

    PubMed  Google Scholar 

  • van der Graaf CA, Netea MG, Verschueren I et al (2005) Differential cytokine production and Toll-like receptor signaling pathways by Candida albicans blastoconidia and hyphae. Infect Immun 73(11):7458–7464

    PubMed  PubMed Central  Google Scholar 

  • Vautier S, Drummond RA, Redelinghuys P et al (2012) Dectin-1 is not required for controlling Candida albicans colonization of the gastrointestinal tract. Infect Immun 80(12):4216–4222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vera J, Fenutria R, Canadas O et al (2009) The CD5 ectodomain interacts with conserved fungal cell wall components and protects from zymosan-induced septic shock-like syndrome. Proc Natl Acad Sci U S A 106(5):1506–1511

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vijayan D, Radford KJ, Beckhouse AG et al (2012) Mincle polarizes human monocyte and neutrophil responses to Candida albicans. Immunol Cell Biol 90(9):889–895

    CAS  PubMed  Google Scholar 

  • von Bernuth H, Picard C, Jin Z et al (2008) Pyogenic bacterial infections in humans with MyD88 deficiency. Science 321(5889):691–696

    Google Scholar 

  • Wagener J, Malireddi RK, Lenardon MD et al (2014) Fungal chitin dampens inflammation through IL-10 induction mediated by NOD2 and TLR9 activation. PLoS Pathog 10(4):e1004050

    PubMed  PubMed Central  Google Scholar 

  • Walker AN, Garner RE, Horst MN (1990) Immunocytochemical detection of chitin in Pneumocystis carinii. Infect Immun 58(2):412–415

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh NM, Wuthrich M, Wang H et al (2017) Characterization of C-type lectins reveals an unexpectedly limited interaction between Cryptococcus neoformans spores and Dectin-1. PLoS ONE 12(3):e0173866

    PubMed  PubMed Central  Google Scholar 

  • Wang JE, Warris A, Ellingsen EA et al (2001) Involvement of CD14 and toll-like receptors in activation of human monocytes by Aspergillus fumigatus hyphae. Infect Immun 69(4):2402–2406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JP, Lee CK, Akalin A et al (2011) Contributions of the MyD88-dependent receptors IL-18R, IL-1R, and TLR9 to host defenses following pulmonary challenge with Cryptococcus neoformans. PLoS ONE 6(10):e26232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Zhao G, Lin J et al (2016) Role of the mannose receptor during Aspergillus fumigatus Infection and Interaction With Dectin-1 in corneal epithelial cells. Cornea 35(2):267–273

    PubMed  Google Scholar 

  • Wang SH, Zhang C, Lasbury ME et al (2008) Decreased inflammatory response in Toll-like receptor 2 knockout mice is associated with exacerbated Pneumocystis pneumonia. Microbes Infect 10(4):334–341

    CAS  PubMed  Google Scholar 

  • Warr GA (1980) A macrophage receptor for (mannose/glucosamine)-glycoproteins of potential importance in phagocytic activity. Biochem Biophys Res Commun 93(3):737–745

    CAS  PubMed  Google Scholar 

  • Wells CA, Salvage-Jones JA, Li X et al (2008) The macrophage-inducible C-type lectin, mincle, is an essential component of the innate immune response to Candida albicans. J Immunol 180(11):7404–7413

    CAS  PubMed  Google Scholar 

  • Werner JL, Metz AE, Horn D et al (2009) Requisite role for the dectin-1 beta-glucan receptor in pulmonary defense against Aspergillus fumigatus. J Immunol 182(8):4938–4946

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wevers BA, Kaptein TM, Zijlstra-Willems EM et al (2014) Fungal engagement of the C-type lectin mincle suppresses dectin-1-induced antifungal immunity. Cell Host Microbe 15(4):494–505

    CAS  PubMed  Google Scholar 

  • Wheeler RT, Kombe D, Agarwala SD et al (2008) Dynamic, morphotype-specific Candida albicans beta-glucan exposure during infection and drug treatment. PLoS Pathog 4(12):e1000227

    PubMed  PubMed Central  Google Scholar 

  • Wiesner DL, Specht CA, Lee CK et al (2015) Chitin recognition via chitotriosidase promotes pathologic type-2 helper T cell responses to cryptococcal infection. PLoS Pathog 11(3):e1004701

    PubMed  PubMed Central  Google Scholar 

  • Wirnsberger G, Zwolanek F, Asaoka T et al (2016) Inhibition of CBLB protects from lethal Candida albicans sepsis. Nat Med 22(8):915–923

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong SSW, Aimanianda V (2017) Host Soluble Mediators: Defying the Immunological Inertness of Aspergillus fumigatus Conidia. J Fungi (Basel) 4(1)

    Google Scholar 

  • Wu Z, Zhang Z, Lei Z et al (2019) CD14: Biology and role in the pathogenesis of disease. Cytokine Growth Factor Rev 48:24–31

    CAS  PubMed  Google Scholar 

  • Xiao Y, Tang J, Guo H et al (2016) Targeting CBLB as a potential therapeutic approach for disseminated candidiasis. Nat Med 22(8):906–914

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Q, Zhao G, Lin J et al (2015) Role of Dectin-1 in the innate immune response of rat corneal epithelial cells to Aspergillus fumigatus. BMC Ophthalmol 15:126

    PubMed  PubMed Central  Google Scholar 

  • Xu S, Huo J, Lee KG et al (2009) Phospholipase Cgamma2 is critical for Dectin-1-mediated Ca2 + flux and cytokine production in dendritic cells. J Biol Chem 284(11):7038–7046

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yauch LE, Mansour MK, Shoham S et al (2004) Involvement of CD14, toll-like receptors 2 and 4, and MyD88 in the host response to the fungal pathogen Cryptococcus neoformans in vivo. Infect Immun 72(9):5373–5382

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu GR, Lin J, Zhang J et al (2018) Mincle in the innate immune response of mice fungal keratitis. Int J Ophthalmol 11(4):539–547

    PubMed  PubMed Central  Google Scholar 

  • Zani IA, Stephen SL, Mughal NA et al (2015) Scavenger receptor structure and function in health and disease. Cells 4(2):178–201

    PubMed  PubMed Central  Google Scholar 

  • Zelensky AN, Gready JE (2005) The C-type lectin-like domain superfamily. FEBS J 272(24):6179–6217

    CAS  PubMed  Google Scholar 

  • Zhang C, Wang SH, Lasbury ME et al (2006) Toll-like receptor 2 mediates alveolar macrophage response to Pneumocystis murina. Infect Immun 74(3):1857–1864

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu LL, Zhao XQ, Jiang C et al (2013) C-type lectin receptors Dectin-3 and Dectin-2 form a heterodimeric pattern-recognition receptor for host defense against fungal infection. Immunity 39(2):324–334

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Wellcome Trust (102705) and the Medical Research Council Centre for Medical Mycology and the University of Exeter (MR/N006364/2) for funding.

Statement

All figures were made using BioRender.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon D. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hatinguais, R., Willment, J.A., Brown, G.D. (2020). PAMPs of the Fungal Cell Wall and Mammalian PRRs. In: Latgé, JP. (eds) The Fungal Cell Wall . Current Topics in Microbiology and Immunology, vol 425. Springer, Cham. https://doi.org/10.1007/82_2020_201

Download citation

Publish with us

Policies and ethics