Skip to main content

Envelope Structures of Gram-Positive Bacteria

  • Chapter
  • First Online:
Book cover Protein and Sugar Export and Assembly in Gram-positive Bacteria

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 404))

Abstract

Gram-positive organisms, including the pathogens Staphylococcus aureus, Streptococcus pneumoniae, and Enterococcus faecalis, have dynamic cell envelopes that mediate interactions with the environment and serve as the first line of defense against toxic molecules. Major components of the cell envelope include peptidoglycan (PG), which is a well-established target for antibiotics, teichoic acids (TAs), capsular polysaccharides (CPS), surface proteins, and phospholipids. These components can undergo modification to promote pathogenesis, decrease susceptibility to antibiotics and host immune defenses, and enhance survival in hostile environments. This chapter will cover the structure, biosynthesis, and important functions of major cell envelope components in gram-positive bacteria. Possible targets for new antimicrobials will be noted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PG:

Peptidoglycan

MRSA:

Methcillin-resistant Staphylococcus aureus

GlcNAc:

N-acetylglucosamine

GalNAc:

N-acetylgalactosamine

MurNAc:

N-acetlymuramic acid

PBP:

Penicillin-binding protein

PGT:

Peptidoglycan glycosyltransferase

Und-P:

Undecaprenyl phosphate

TA:

Teichoic acid

WTA:

Wall teichoic acid

LTA:

Lipoteichoic acid

CPS:

Capsular polysaccharides

PIA:

Polysaccharide intercellular adhesin

References

  • Abachin E, Poyart C, Pellegrini E, Milohanic E, Fiedler F, Berche P, Trieu-Cuot P (2002) Formation of d-alanyl-lipoteichoic acid is required for adhesion and virulene of Listeria monocytogenes. Mol Microbiol 43:1–14

    Article  CAS  PubMed  Google Scholar 

  • Abee T, Kovács AT, Kuipers OP, van der Veen A (2011) Biofilm formation and dispersal in Gram-positive bacteria. Curr Opin Biotechnol 22:172–179

    Article  CAS  PubMed  Google Scholar 

  • Allison SE, D’Elia MA, Arar S, Monteiro MA, Brown ED (2011) Studies of the genetics, function, and kinetic mechanism of TagE, the wall teichoic acid glycosyltransferase in Bacillus subtilis 168. J Biol Chem 286(27):23708–23716. http://doi.org/10.1074/jbc.M111.241265

  • Aly R, Shinefield HR, Litz C, Maibach HI (1980) Role of teichoic acid in the binding of Staphylococcus aureus to nasal epithelial cells. J Infect Dis 141(4):463–465

    Article  CAS  PubMed  Google Scholar 

  • Anderson JS, Matsuhashi M, Haskin MA, Strominger JL (1967) Biosynthesis of the peptidoglycan of bacterial cell walls. II. Phospholipid carriers in the reaction sequence. J Biol Chem 242(13):3180–3190

    CAS  PubMed  Google Scholar 

  • Archibald AR, Baddiley J, Heptinstall S (1973) The alanine ester content and magneisum binding capacity of walls of Staphylococcus aurues H grown at different pH values. Biochim Biophys Acta 291(3):629–634

    Article  CAS  PubMed  Google Scholar 

  • Arciola CR, Campoccia D, Ravaioli S, Montanaro L (2015) Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Front Cell Infect Microbiol 5(7):1–10

    Google Scholar 

  • Armstrong JJ, Baddiley J, Buchanan JG (1960) Structure of the ribitol teichoic acid from the walls of Bacillus subtilis. Biochem J 76(3):610–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arthur M, Courvalin P (1993) Genetics and mechanisms of glycopeptide resistance in enterococci. Antimicrob Agents Chemother 37(8):1563–1571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atilano ML, Pereira PM, Yates J, Reed P, Veiga H, Pinho MG, Filipe SR (2010) Teichoic acids are temporal and spatial regulators of peptidoglycan cross-linking in Staphylococcus aureus. Proc Natl Acad Sci USA 107(44):18991–18996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aubry C, Goulard C, Nahori MA, Cayet N, Decalf J, Sachse M, Boneca IG, Cossart P, Dussurget O (2011) OatA, a peptidoglycan O-acetyltransferase involved in Listeria monocytognes immune escape, is critical for virulence. J Infect Dis 204(5):731–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagnoli F, Bertholet S, Grandi G (2012) Inferring reasons for the failure of Staphylococcus aureus vaccines in clinical trials. Front Cell Infect Microbiol 2(16):1–4

    Google Scholar 

  • Baur S, Rautenberg M, Faulstich M, Grau T, Severin Y, Unger C, Hoffmann WH, Rudel T, Autenrieth IB, Weidenmaier C (2014) A nasal epithelial receptor for Staphylococcus aureus WTA governs adhesion to epithelial cells and modulates nasal colonization. PLoS Pathog 10(5):e1004089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bayer AS, Schneider T, Sahl HG (2013) Mechanisms of daptomycin resistance in Staphylococcus aureus: role of the cell membrane and cell wall. Ann NY Acad Sci 1277:139–158

    Article  CAS  PubMed  Google Scholar 

  • Benson TE, Marquardt JL, Marquardt AC, Etzkorn FA, Walsh CT (1993) Overexpresson, purification, and mechanistic study of UDP-N-acetylenolpyruvylglucosamine reductase. Biochemistry 32(8):2024–2030

    Article  CAS  PubMed  Google Scholar 

  • Bera A, Herbert S, Jakob A, Vollmer W, Götz F (2005) Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Mol Microbiol 55(3):778–787

    Article  CAS  PubMed  Google Scholar 

  • Bera A, Biswas R, Herbert S, Götz F (2006) The presence of peptidogylcan O-acetyltransferase in various staphylococcal species correlates with lysozyme resistance and pathogenicity. Infect Immun 74(8):4598–4604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger-Bächi B, Rohrer S (2002) Factors influencing methicillin resistance in staphylococci. Arch Microbiol 178(3):165–171

    Article  PubMed  CAS  Google Scholar 

  • Bernard E, Rolain T, Courtin P, Guillot A, Langella P, Hols P, Chapot-Chartier M (2011) Characterization of O-acetylation of N-acetylglucosamine: a novel structural variation of bacterial peptidoglycan. J Biol Chem 286(27):23950–23958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhakdi S, Klonisch T, Nuber P, Fischer W (1991) Stimulation of monokine production by lipoteichoic acids. Infect Immun 59(12):4614–4620

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blake KL, O’Neill AJ, Mengin-Lecreulx D, Henderson PJ, Bostock JM, Dunsmore CJ, Simmons KJ, Fishwick CW, Leeds JA, Chopra I (2009) The nature of Staphylococcus aureus MurA and MurZ and approaches for detection of peptidoglycan biosynthesis inhibitors. Mol Microbiol 72(2):335–343

    Article  CAS  PubMed  Google Scholar 

  • Blumberg PM, Strominger JL (1974) Interaction of penicillin with the bacterial cell: penicillin-binding proteins and penicillin-sensitive enzymes. Bacteriol Rev 38(3):291–335

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bogaert D, Hermans PW, Adrian PV, Rümke HC, de Groot R (2004) Pneumococcal vaccines: an update on current strategies. Vaccine 22(17–18):2209–2220

    Article  CAS  PubMed  Google Scholar 

  • Boneca IG, Huang ZH, Gage DA, Tomasz A (2000) Characterization of Staphylococcus aureus cell wall glycan strands, evidence for a new β-N-acetylglucosaminidase activity. J Biol Chem 275(14):9910–9918

    Article  CAS  PubMed  Google Scholar 

  • Bouhss A, Mengin-Lecreulx D, Blanot D, van Heijenoort J, Parquet C (1997) Invariant amino acids in the Mur peptide synthetases of bacterial peptidoglycan synthesis and their modification by site-directed mutagenesis in the UDP-MurNAc:l-alanine ligase from Escherichia coli. Biochemistry 36(39):11556–11563

    Article  CAS  PubMed  Google Scholar 

  • Bouhss A, Josseaume N, Severin A, Tabei K, Hugonnet JE, Shlaes D, Mengin-Lecreulx D, van Heijenoort J, Arthur M (2002) Synthesis of the l-alanyl-l-alanyl cross-bridge of Enterococcus faecalis peptidoglycan. J Biol Chem 277(48):45935–45941

    Article  CAS  PubMed  Google Scholar 

  • Bouhss A, Crouvoisier M, Blanot D, Mengin-Lecreulx D (2004) Purification and characteriztaion of the bacterial MraY translocase catalyzing the first membrane step of peptidoglycan synthesis. J Biol Chem 279:29974–29980

    Article  CAS  PubMed  Google Scholar 

  • Bouhss A, Trunkfield AE, Bugg TD, Mengin-Lecreulx D (2008) The biosynthesis of peptidoglycan lipid-linked intermediates. FEMS Microbiol Rev 32(2):208–233

    Article  CAS  PubMed  Google Scholar 

  • Boylan RJ, Mendelson NH, Brooks D, Young FE (1972) Regulation of the bacterial cell wall: analysis of a mutant of Bacillus subtilis defective in biosynthesis of teichoic acid. J Bacteriol 110(1):281–290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brötz H, Josten M, Wiedemann I, Schneider U, Götz F, Bierbaum G, Sahl HB (2002) Role of lipid-bound peptidoglycan precursors in the formation of pores by nisin, epidermin and other lantibiotics. Mol Microbiol 30(2):317–327

    Article  Google Scholar 

  • Brown S, Zhang YH, Walker S (2008) A revised pathway proposed for Staphylococcus aureus wall teichoic acid biosynthesis based on in vitro reconstitution of the intracellular steps. Chem Biol 346(17):2816–2819

    Google Scholar 

  • Brown S, Meredith T, Swoboda J, Walker S (2010) Staphylococcus aureus and Bacillus subtilis W23 make polyribitol wall teichoic acids using different enzymatic pathways. Chem Biol 17(10):1101–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown S, Xia G, Luhachack LG, Campbell J, Meredith TC, Chen C, Winstel V, Gekeler C, Irazoqui JE, Peschel A, Walker S (2012) Methicillin resistance in Staphylococcus aureus requires glycosylated wall teichoic acids. Proc Natl Acad Sci USA 109(46):18909–18914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown S, Santa Maria JP, Walker S Jr (2013) Wall teichoic acids of Gram-positive bacteria. Annu Rev Microbiol 67:313–336

    Article  CAS  PubMed  Google Scholar 

  • Bugg TD, Wright GD, Dutka-Malen S, Arthur M, Courvalin P, Walsh CT (1991) Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochem 30:10408–10415

    Article  CAS  Google Scholar 

  • Buist G, Steen A, Kok J, Kuipers OP (2008) LysM, a widely distributed protein motif for binding to (peptido) glycans. Mol Microbiol 68(4):838–847

    Article  CAS  PubMed  Google Scholar 

  • Bunk S, Sigel S, Metzdorf D, Sharif O, Triantafilou K, Triantafilou M, Hartung T, Knapp S, von Aulock S (2010) Internalization and coreceptor expression are critical for TLR2-mediated recognition of lipoteichoic acid in human peripheral blood. J Immunol 185(6):3708–3717

    Article  CAS  PubMed  Google Scholar 

  • Bychowska A, Theilacker C, Czerwicka M, Marszewska K, Huebner J, Holst O, Stepnowski P, Kaczyński Z (2011) Chemical structure of wall teichoic acid isolated from Enterococcus faecium strain U0317. Carbohydr Res 346(17):2816–2819

    Article  CAS  PubMed  Google Scholar 

  • Cabanes D, Dehoux P, Dussurget O, Frangeul L, Cossart P (2002) Surface proteins and the pathogenic potential of Listeria monocytogenes. Trends Microbiol 10(5):238–245

    Article  CAS  PubMed  Google Scholar 

  • Calix JJ, Nahm MH (2010) A new pneumococcal serotype, 11E, has variably inactivated wcjE gene. J Infect Dis 202(1):29–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calix JJ, Brady AM, Du VY, Saad JS, Nahm MH (2014) Spectrum of pneumococcal serotype 11A variants results from incomplete loss of capsule O-acetylation. J Clin Microbiol 52(3):758–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell J, Singh AK, Santa Maria JP, Kim Y, Brown S, Swoboda JG, Mylonakis E, Wilkinson BJ, Walker S (2011) Synthetic lethal compound combinations reveal a fundamental connection between wall teichoic acid and peptidoglycan biosyntheses in Staphylococcus aureus. ACS Chem Biol 6(1):106–116

    Article  CAS  PubMed  Google Scholar 

  • Campbell J, Singh AK, Swoboda JG, Gilmore MS, Wilkinson BJ, Walker S (2012) An antibiotic that inhibits a late step in wall teichoic acid biosynthesis induces the cell wall stress stimulon in Staphylococcus aureus. Antimicrob Agents Chemother 56(4):1810–1820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campeotto I, Percy MG, MacDonald JT, Förster A, Freemont PS, Gründling A (2014) Structural and mechanistic insight into the Listeria monocytogenes two-enzyme lipoteichoic acid synthesis system. J Biol Chem 289(41):28054–28069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlin AF, Lewis AL, Varki A, Nizet V (2007) Group B Streptococcal capsular sialic acids interact with siglecs (immunoglobulin-like lectins) on human leukocytes. J Bacteriol 189(4):1231–1237

    Article  CAS  PubMed  Google Scholar 

  • Carlin AF, Uchiyama S, Chang YC, Lewis AL, Nizet V, Varki A (2009) Molecular mimicry of host sialylated glycans allows a bacterial pathogen to engage neutrophil Siglec-9 and dampen the innate immune response. Blood 113(14):3333–3336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan YG, Frankel MB, Dengler V, Schneewind O, Missiakas D (2013) Staphylococcus aureus mutants lacking the LytR-CpsA-Psr family of enzymes release cell wall teichoic acids into the extracellular medium. J Bacteriol 195(20):4650–4659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan YG, Kim HK, Schneewind O, Missiakas D (2014) The capsular polysaccharide of Staphyloccocus aureus is attached to peptidoglycan by the LytR-CpsA-Psr (LCP) family of enzymes. J Biol Chem 289(22):15680–15690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chang S, Sievert DM, Hageman JC, Boulton ML, Tenover FC, Downes FP et al (2003) Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N Engl J Med 348:1342–1347

    Article  PubMed  Google Scholar 

  • Chatterjee AN (1969) Use of bacteriophage-resistant mutants to study the nature of the bacteriophage receptor site of Staphylococcus aureus. J Bacteriol 98(2):519–527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhuri RR, Allen AG, Owen PJ, Shalom G et al (2009). Comprehensive dentification of essential Staphylococcus aureus genes using transpson-mediated differential hybridisation (TMDH). BMC Genomics 10(291). doi:10.1186/1471-2164-10-291

  • Chen M, Yu Q, Sun H (2013) Novel strategies for the prevention and treatment of biofilm related infections. Int J Mol Sci 14(9):18488–18501

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chung BC, Zhao J, Gillespie RA, Kwon DY, Guan Z, Hong J, Zhou P, Lee SY (2013) Crystal structure of MraY, an essential membrane enzyme for bacterial cell wall synthesis. Science 341(6149):1012–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claessen D, Emmins R, Hamoen LW, Daniel RA, Errington J, Edwards DH (2008) Control of the cell elongation-division cycle by shuttling of PBP1 protein in Bacillus subtilis. Mol Microbiol 68(4):1029–1046

    Article  CAS  PubMed  Google Scholar 

  • Clarke AJ, Dupont C (1992) O-acetylated peptidoglycan: its occurrence, pathobiological significance, and biosynthesis. Can J Microbiol 38(2):85–91

    Article  CAS  PubMed  Google Scholar 

  • Clejan S, Krulwich TA, Mondrus KR, Seto-Young D (1986) Membrane lipid composition of obligatively and facultatively alkalophilic strains of Bacillus spp. J Bacteriol 168(1):334–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coffey TJ, Enright MC, Daniels M, Morona JK, Morona R, Hryniewicz W, Paton JC, Spratt BG (1998) Recombinational exchanges at the capsular polysaccharide biosynthetic locus lead to frequent serotype changes among natural isolates of Streptococcus pneumoniae. Mol Microbiol 27(1):73–83

    Article  CAS  PubMed  Google Scholar 

  • Collins LV, Kristian SA, Weidenmaier C, Faigle M, van Kessel KP, van Strijp JA, Götz F, Neumeister B, Peschel A (2002) Staphylococcus aureus strains lacking d-alanine modifications of teichoic acids are highly susceptible to human neutrophil killing and are virulence attenuated in mice. J Infect Dis 186(2):214–219

    Article  CAS  PubMed  Google Scholar 

  • Cook J, Hepler R, Pancari G, Kuklin N, Fan H, Wang XM, Cope L, Tan C, Joyce J, Onishi J, Montogomery D, Anderson A, McNeely T (2009) Staphylcoccus aurues capsule type 8 antibodies provide inconsistent efficacy in murine models of staphylococcal infection. Hum Vaccin 5(4):254–263

    Article  CAS  PubMed  Google Scholar 

  • Corrigan RM, Abbott JC, Burhenne H, Kaever V, Gründling A (2011) c-di-AMP is a new second messenger in Staphylococcus aureus with a role in controlling cell size and envelope stress. PLoS Pathog 7(9):e1002217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corrigan RM, Campeotto I, Jeganathan T, Roelofs KG, Lee VT, Gründling A (2013) Systematic identification of conserved bacterial c-di-AMP receptor proteins. Proc Natl Acad Sci USA 110(22):9084–9089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Creech CB, Johnson BG, Alsentzer AR, Hohenboken M, Edwards KM, Talbot TR 3rd (2009) Vaccination as infection control: a pilot study to determine the impact of Staphylococcus aureus vaccination on nasal carriage. Vaccine 28(1):256–260

    Article  PubMed  CAS  Google Scholar 

  • Crisóstomo MI, Vollmer W, Kharat AS, Inhülsen S, Gehre F, Buckenmaier S, Tomasz A (2006) Attenuation of penicillin resistance in a peptidoglycan O-acetyltransferase mutant of Streptococcus pneumoniae. Mol Microbiol 61(6):1497–1509

    Article  PubMed  CAS  Google Scholar 

  • Cunnion KM, Zhang HM, Frank MM (2003) Availability of complement bound to Staphylococcus aureus to interact with membrane complement receptors influences efficiency of phagocytosis. Infect Immun 71(2):656–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Elia MA, Pereira MP, Chung YS, Zhao W, Chau A, Kenney TJ, Sulavik MC, Black TA, Brown ED (2006) Lesions in teichoic acid biosynthesis in Staphylococcus aureus lead to a lethal gain of function in the otherwise dispensable pathway. J Bacteriol 188(12):4183–4189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • D’Elia MA, Millar KE, Bhavsar AP, Tomljenovic AM, Hutter B, Schaab C, Moreno-Hagelsieb G, Brown ED (2009) Probing teichoic acid genetics with bioactive molecules reveals new interactions among diverse processes in bacterial cell wall biogenesis. Chem Biol 16(5):548–556

    Article  PubMed  CAS  Google Scholar 

  • Dagan R, Poolman J, Siegrist CA (2010) Glycoconjugate vaccines and immune interference: A review. Vaccine 28(34):5513–5523

    Article  CAS  PubMed  Google Scholar 

  • Daniel RA, Harry EJ, Errington J (2000) Role of penicillin-binding protein PBP 2B in assembly and functioning of the division machinery of Bacillus subtilis. Mol Microbiol 35(2):299–311

    Article  CAS  PubMed  Google Scholar 

  • Davies TA, Page MG, Shang W, Andrew T, Kania M, Bush K (2007) Binding of ceftobiprole and comparators to the penicillin-binding proteins of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae. Antimicrob Agents Chemother 51(7):2621–2624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis KM, Weiser JN (2011) Modifications to the peptidoglycan backbone help bacteria to establish infection. Infect Immun 79(2):562–570

    Article  CAS  PubMed  Google Scholar 

  • De Jonge BL, Sidow T, Chang Y, Labischinski H, Berger-Bächi B, Gage DA, Tomasz A (1993) Altered muropeptide composition in Staphylococcus aureus strains with an inactivated femA Locus. J Bacteriol 175(9):2779–2782

    Article  PubMed  PubMed Central  Google Scholar 

  • De Jonge BL, Handwerger S, Gage D (1996) Altered peptidoglycan composition in vancomycin-resistant Enterococcus faecalis. Antimicrob Agents Chemother 40(4):863–869

    PubMed  PubMed Central  Google Scholar 

  • De Leeuw E, Li C, Zeng P, Li C, Diepeveen-de Buin M, Lu WY, Breukink E, Lu W (2010) Functional interaction of human neutrophil peptide-1 with the cell wall precursor Lipid II. FEBS Lett 584(8):1543–1548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Mendoza D (2014) Temperature sensing by membranes. Annu Rev Microbiol 68:101–116

    Article  PubMed  CAS  Google Scholar 

  • De Velasco EA, Merkus D, Anderton S, Verheul AF, Lizzio EF, Van der Zee R, Van Eden W, Hoffman T, Verhoef J, Snippe H (1995) Synthetic peptides representing T-cell epitopes act as carriers in pneumococcal polysacchride conjugate vaccines. Infect Immun 63(3):961–968

    PubMed  PubMed Central  Google Scholar 

  • Denapaite D, Brückner R, Hakenbeck R, Vollmer W (2012) Biosynthesis of teichoic acids in Streptococcus pneumoniae and closely related species: lessons from genomes. Microb Drug Resist 18(3):344–358

    Article  CAS  PubMed  Google Scholar 

  • Dengler V, Meier PS, Heusser R, Kupferschmied P, Fazekas J, Friebe S, Staufer SB, Majcherczyk PA, Moreillon P, Berger-Bächi McCallum N (2012) Deletion of hypothetical wall teichoic acid ligases in Staphylococcus aureus activates the cell wall stress response. FEMS Microbiol Lett 333(2):09–120

    Article  CAS  Google Scholar 

  • Depardieu F, Podglajen I, Leclercq R, Collatz E, Courvalin P (2007) Modes and modulations of antibiotic resistance gene expression. Clin Microbiol Rev 20(1):79–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Draing C, Pfitzemaier M, Zummo S, Mancuso G, Geyer A, Hartung T, von Aulock S (2006) Comparison of lipoteichoic acid from different serotypes of Streptococcus pneumoniae. J Biol Chem 281(45):33849–33859

    Article  CAS  PubMed  Google Scholar 

  • Draing C, Sigel S, Deininger S, Traub S, Munke R, Mayer C, Hareng L, Hartung T, von Aulock S, Hermann C (2008) Cytokine induction by Gram-positive bacteria. Immunobiology 213(3–4):285–296

    Article  CAS  PubMed  Google Scholar 

  • Drawz SM, Papp-Wallace KM, Bonomo RA (2014) New β-lactamase inhibitors: a therapeutic renaissance in an MDR world. Antimicrob Agents Chemother 58(4):1835–1846

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Du W, Brown JR, Sylvester DR, Huang J, Chalker AF, So CY, Holmes DJ, Payne DJ, Wallis NG (2000) Two active forms of UDP-N-acetylglucosamine enolpyruvyl transferase in Gram-positive bacteria. J Bacteriol 182(15):4146–4152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Ghachi M, Bouhss A, Blanot D, Mengin-Lecreulx D (2004) The bacA gene of Escherichia coli encodes an undecaprenyl pyrophosphate phosphatase activity. J Biol Chem 279(29):30106–30113

    Article  PubMed  CAS  Google Scholar 

  • El Ghachi M, Derbise A, Bouhss A, Mengin-Lecreulx D (2005) Identification of multiple genes encoding membrane proteins with undecaprenyl pyrophosphate phosphatase (UppP) activity in Escherichia coli. J Biol Chem 280(19):18689–18695

    Article  PubMed  CAS  Google Scholar 

  • Epand RF, Savage PB, Epand RM (2007) Bacterial lipid composition and the antimicrobial efficacy of cationic steroid compounds (ceragenins). Biochim Biophys Acta 1768(10):2500–2509

    Article  CAS  PubMed  Google Scholar 

  • Ernst CM, Peschel A (2011) Broad-spectrum antimicrobial peptide resistance by MprF-mediated aminoacylation and flipping of phospholipids. Mol Microbiol 80(2):290–299

    Article  CAS  PubMed  Google Scholar 

  • Ernst CM, Staubitz P, Mishra NN, Yang SJ, Hornig G, Kalbacher H, Bayer AS, Kraus D, Peschel A (2009) The bacterial defensin resistance protein MprF consists of separable domains for lipid lysinylation and antimicrobial peptide repulsion. PLoS Pathog 5(11):e1000660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fabretti F, Theilacker C, Baldassarri L, Kaczynski Z, Kropec A, Holst O, Huebner J (2006) Alanine esters of enterococcal lipoteichoic acid play a role in biofilm formation and resistance to antimicrobial peptides. Infect Immun 74(7):4164–4171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falord M, Mäder U, Hiron A, Débarbouillé M, Msadek T (2011) Investigation of the Staphylococcus aureus GraSR regulon reveals novel links to virulence, stress response and cell wall signal transduction pathways. PLoS ONE 6(7):e21323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farha MA, Koteva K, Gale RT, Sewell EW, Wright GD, Brown ED (2014) Designing analogs of ticlopidine, a wall teichoic acid inhibitor, to avoid formation of its oxidative metabolites. Bioorg Med Chem Lett 24(3):905–910

    Article  CAS  PubMed  Google Scholar 

  • Fattom AI, Horwith G, Fuller S, Propst M, Naso R (2004) Development of StaphVAX, a polysaccharide conjugate vaccine against S. aureus infection: from lab bench to phase III clinical trials. Vaccine 22(7):880–887

    Article  CAS  PubMed  Google Scholar 

  • Fiedel BA, Jackson RW (1978) Activation of the alternative complement pathway by a streptococcal lipoteichoi acid. Infect Immun 22(1):286–287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Figueiredo TA, Sobral RG, Ludovice AM, Almeida JM, Bui NK, Vollmer W, de Lancastre H, Tomasz A (2012) Identification of genetic determinants and enzymes involved with the amidation of glutamic acid residues in the peptidoglycan of Staphylococcus aureus. PLoS Pathog 8(1):e1002508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filipe SR, Pinho MG, Tomasz A (2000) Characterization of the murMN operon involved in the synthesis of branched peptidoglycan peptides in Streptococcus pneumoniae. J Biol Chem 275(36):22768–27774

    Google Scholar 

  • Fischer W (1988) Physiology of lipoteichoic acids in bacteria. Adv Microb Phsyiol 29:233–302

    Article  CAS  Google Scholar 

  • Fischer W (2000) Phosphocholine of pneumococcal teichoic acids: role in bacterial physiology and pneumococcal infection. Res Microbiol 151(6):421–427

    Article  CAS  PubMed  Google Scholar 

  • Fischer W, Behr T, Hartmann R, Peter-Katalinić J, Egge H (1993) Teichoic acids and lipoteichoic acid of Streptococcus pneumoniae possess identical chain structures. Eur J Biochem 215(3):851–857

    Article  CAS  PubMed  Google Scholar 

  • Fittipaldi N, Sekizaki T, Takamatsu D, Harel J, MdeL Domínguez-Punaro, von Aulock SV, Draing C, Marois C, Kobisch M, Gottschalk M (2008) d-alanylation of lipoteichoic acid contributes to the virulence of Streptococcus suis. Infect Immun 76(8):3587–3594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman L, Alder JD, Silverman JA (2006) Genetic changes that correlate with reduced susceptibility to Daptomycin in Staphylococcus aureus. Antimicrob Agents Chemother 50(6):2137–2145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuda C, Suvorov M, Vakulenko SB, Mobashery S (2004) The basis for resistance to β-lactam antibiotics by penicillin-binding protein 2A of Methicillin-resistant Staphylococcus aureus. J Biol Chem 279:40802–40806

    Article  CAS  PubMed  Google Scholar 

  • Fukushima T, Yamamoto H, Atrih A, Foster SJ, Sekiguchi J (2002) A polysaccharide deacetylase gene (pdaA) is required for germination and for production of muramic δ-lactam residues in the spore cortex of Bacillus subtilis. J Bacteriol 184(21):6007–6015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukushima T, Kitajima T, Sekiguchi J (2005) A polysaccharide deacetylase homologue, PdaA, in Bacillus subtilis acts as an N-acetylmuramic acid deacetylase in vitro. J Bacteriol 187(4):1287–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Bustos JF, Chait BT, Tomasz A (1987) Structure of the peptide network of pneumococcal peptidoglycan. J Biol Chem 262(32):15400–15405

    CAS  PubMed  Google Scholar 

  • Gardete S, Tomasz A (2014) Mechanisms of vancomycin resistance in Staphylococcus aureus. J Clin Invest 124(7):2836–2840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerke C, Kraft A, Süssmuth R, Schweitzer O, Götz F (1998) Characterization of the N-acetylglucosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin. J Biol Chem 273(29):18586–18593

    Article  CAS  PubMed  Google Scholar 

  • Ghuysen JM (1991) Serine β-lactamases and penicillin-binding proteins. Annu Rev Microbiol 45:37–67

    Article  CAS  PubMed  Google Scholar 

  • Ginsburg I (2002) Role of lipoteichoic acid in infection and inflammation. Lancet Infect Dis 2(3):171–179

    Article  CAS  PubMed  Google Scholar 

  • Giudicelli S, Tomasz A (1984) Attachment of pneumococcal autolysin to wall teichoic acids, an essential step in enzymatic wall degradation. J Bacteriol 158(3):1188–1190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gosink KK, Mann ER, Guglielmo C, Tuomanen EI, Masure HR (2000) Role of novel choline binding proteins in virulence of Streptococcus pneumoniae. Infect Immun 68(10):5690–5695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross M, Cramton SE, Götz F, Peschel A (2001) Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces. Infect Immun 69(5):3423–3426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gründling A, Schneewind O (2007a) Genes required for glycolipid synthesis and lipoteichoic acid anchoring in Staphylococcus aureus. J Bacteriol 189(6):2521–2530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gründling A, Schneewind O (2007b) Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus. Proc Natl Acad Sci USA 104(20):8478–8483

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gutkind GO, Di Conza J, Power P, Radice M (2013) β-lactamase-mediated resistance: a biochemical, epidemiological and genetic overview. Curr Pharm Des 19(2):164–208

    Article  CAS  PubMed  Google Scholar 

  • Haas R, Koch HU, Fischer W (1984) Alanyl turnover from lipoteichoic acid to teichoic acid in Staphylococcus aureus. FEMS Microbiol Lett 21(1):27–31

    Article  CAS  Google Scholar 

  • Hakenbeck R, Madhour A, Denapaite D, Brückner R (2009) Versatality of choline metabolism and choline-binding proteins in Streptococcus pneumoniae and commensal streptococci. FEMS Microbiol Rev 33(3):572–586

    Article  CAS  PubMed  Google Scholar 

  • Hall RG, Michaels HN (2015) Profile of tedizolid phosphate and its potential in the treatment of acute bacterial skin and skin structure infections. Infect Drug Resist 8:75–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall-Stoodley L, Costerton W, Stoodley P (2004) Bacterial biofilms: from the natural enviroment to infectious diseases. Nat Rev Microbiol 2:95–108

    Article  CAS  PubMed  Google Scholar 

  • Hancock IC (1997) Bacterial cell surface carbohydrates: structure and assembly. Biochem Soc Trans 25(1):183–187

    Article  CAS  PubMed  Google Scholar 

  • Hancock IC, Wiseman G, Baddiley J (1976) Biosynthesis of the unit that links teichoic acid to the bacterial wall: inhibition by tunicamycin. FEBS Lett 69(1):75–80

    Article  CAS  PubMed  Google Scholar 

  • Handwerger S, Pucci MJ, Volk KJ, Liu J, Lee MS (1992) The cytoplasmic peptidoglycan precursor of vancomycin-resistant Enterococcus faecalis terminates in lactate. J Bacteriol 174(18):5982–5984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haque MA, Russell NJ (2004) Strains of Bacillus cereus vary in the phenotypic adaptation of their membrane lipid composition in response to low water activity, reduced temperature and growth in rice starch. Microbiol 150(Pt 5):1397–1404

    Article  CAS  Google Scholar 

  • Hartman BJ, Tomasz A (1984) Low-affinity penicillin-binding protein associated with β-lactam resistance in Staphylococcus aurues. J Bacteriol 158(2):513–516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto M, Tawaratsmida K, Kariya H, Aoyama K, Tamura T, Suda Y (2006a) Lipoprotein is a dominant Toll-like receptor 2 ligand in Staphylococcus aureus cell wall components. Int Immunol 18(2):355–362

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto M, Tawaratsmida K, Kariya H, Kiyohara A, Suda Y, Krikae F, Kirikae T, Götz F (2006b) Not lipoteichoic acid but lipoprotein appear to be the dominant immunobiologically active compounds in Staphylococcus aureus. J Immunol 177(5):3162–3169

    Article  CAS  PubMed  Google Scholar 

  • Hayashi H, Araki Y, Ito E (1973) Occurence of glucosamine residues with free amino groups in cell wall peptidoglycan from bacilli as a factor responsible for resistance to lysozyme. J Bacteriol 113(2):592–598

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayhurst EJ, Kailas L, Hobbs JK, Foster SJ (2008) Cell wall peptidoglycan architecture in Bacillus subtilis. Proc Natl Acad Sci USA 105(38):14603–14608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Healy VL, Lessard IA, Roper DI, Knox JR, Walsh CT (2000) Vancomycin resistance in enterococci: reprogramming of the d-ala-d-ala ligases in bacterial peptidoglycan biosynthesis. Chem Biol 7(5):109–119

    Article  Google Scholar 

  • Heaslet H, Shaw B, Mistry A, Miller A (2009) Characterization of the active site of S. aureus monofunctional transglycosylase (Mtg) by site-directed mutation and structural analysis of the protein complexed with moenomycin. J Struct Biol 167(2):129–135

    Article  CAS  PubMed  Google Scholar 

  • Heaton MP, Neuhaus FC (1992) Biosynthesis of d-alanyl-lipoteichoic acid: cloning, nucleotide sequence, and expression of the Lactobacillus casei gene for the d-alanine-activating enzyme. J Bacteriol 174(14):4707–4717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heaton MP, Neuhaus FC (1994) Roles of the d-alanyl carrier protein in the biosynthesis of d-alanyl-lipoteichoic acid. J Bacteriol 176(3):681–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hebert L, Courtin P, Torelli R, Sanguinetti M, Chapot-Chartier MP, Auffray Y, Benachour A (2007) Enterococcus faecalis constitutes an unusual bacterial model in lysozyme resistance. Infect Immun 75(11):5390–5398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heilmann C, Schweitzer O, Gerke C, Vanittanakom N, Mack D, Götz F (1996) Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol Microbiol 20(5):1083–1091

    Article  CAS  PubMed  Google Scholar 

  • Henze U, Sidow T, Wecke J, Labischinski H, Berger-Bächi B (1993) Influence of femB on methicillin resistance and peptidoglycan metabolism in Staphylococcus aureus. J Bacteriol 175(6):1612–1620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffman K (2000) A superfamily of membrane-bound O-acetyltansferases with implications for wnt signalling. Trends Biochem Sci 25(3):111–112

    Article  Google Scholar 

  • Holmes NE, Howden BP (2014) What’s new in the treatment of serious MRSA infection? Curr Opin Infect Dis 27(6):471–478

    Article  CAS  PubMed  Google Scholar 

  • Hong DJ, Bae IK, Jang IH, Jeong SH, Kang HK, Lee K (2015) Epidemiology and characteristics of metall-β-lactamase-producing Pseudomonas aeruginosa. Infect Chemother 47(2):81–97

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsu ST, Breukink E, Tischenko E, Lutters MA, de Kruijiff B, Kaptein R, Bonvin AM, van Nuland NA (2004) The nisin–lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics. Nat Struct Mol Biol 11(10):963–967

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Chen L, Ha S, Gross B, Falcone B, Walker D, Mokhtarzadeh M, Walker S (2003a) Crystal structure of the MurG: UDP-GlcNAc complex reveals common structural principles of a superfamily of glycosyltransferases. Proc Natl Acad Sci USA 100(3):845–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Helm JS, Chen L, Ya XY, Walker S (2003b) Ramoplanin inhibits bacterial transglycosylases by binding as a dimer to Lipid II. J Am Chem Soc 125(29):8736–8737

    Article  CAS  PubMed  Google Scholar 

  • Huber J, Donald RG, Lee SH, Jarantow LW, Salvatore MJ, Meng X, Painter R, Onishi RH, Occi J, Dorso K, Young K, Park YW, Skwish S, Szymonifka MJ, Waddell TS, Miesel L, Phillips JW, Roemer T (2009) Chemical genetic identification of peptidoglycan inhibtors potentiating carbapenem activity against methicillin-resistant Staphylococcus aureus. Chem Biol 16:837–848

    Article  CAS  PubMed  Google Scholar 

  • Itoh Y, Wang X, Hinnebusch BJ, Preston JF, Romeo T (2005) Depolymerization of β-1,6-N-acetyl-d-glucosamine disrupts the integrity of diverse bacterial biofilms. J Bacteriol 187(1):382–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jedrzejas MJ (2001) Pneumococcal virulence factors: structure and function. Microbiol Mol Biol Rev 65(2):187–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jefferies JM, Clarke SC, Webb JS, Kraaijeveld AR (2011) Risk of red queen dynamics in pneumococcal vaccine strategy. Trends Microbiol 19(8):377–381

    Article  CAS  PubMed  Google Scholar 

  • Jerga A, Lu YJ, Schujman GE, de Mendoza D, Rock CO (2007) Identification of a soluble diacylglycerol kinase required for lipoteichoic acid production in Bacillus subtilis. J Biol Chem 282(30):21738–21745

    Article  CAS  PubMed  Google Scholar 

  • Jervis AJ, Thackray PD, Houston CW, Horsburgh MJ, Moir A (2007) SigM-responsive genes of Bacillus subtilis and their promoters. J Bacteriol 189(12):4534–4538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jett BD, Huycke MM, Gilmore MS (1994) Virulence of enterococci. Clin Microbiol Rev 7(4):462–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones T, Yeaman MR, Sakoulas G, Yang SJ, Proctor RA, Sahl HG, Schrenzel J, Xiong YQ, Bayer AS (2008) Failures in clinical treatment of Staphylococcus aureus infection with daptomycin are associated with alterations in surface charge, membrane phospholipid asymmetry, and drug binding. Antimicrob Agents Chemother 52(1):269–278

    Google Scholar 

  • Jonquières R, Bierne H, Fiedler F, Gounon P, Cossart P (1999) Interaction between the protein InlB of Listeria monocytogenes and lipoteichoic acid: a novel mechanism of protein association at the surface of Gram-positive bacteria. Mol Microbiol 34(5):902–914

    Article  PubMed  Google Scholar 

  • Jorasch P, Wolter FP, Zähringer U, Heinz E (1998) A UDP glucosyltransferase from Bacillus subtilis successively transfer up to four glucose residues to 1,2-diacylglycerol: expression of ypfP in Escherichia coli and structural analysis of its reaction product. Mol Microbiol 29(2):419–430

    Article  CAS  PubMed  Google Scholar 

  • Julian K, Kosowska-Shick K, Whitener C, Roos M, Labischinski H, Rubio A, Parent L, Ednie L, Koeth L, Bogdanovich T, Appelbaum PC (2007) Characterization of a daptomycin-nonsusceptible vancomycin-intermediate Staphylococcus aureus strain in a patient with endocarditis. Antimicrob Agents Chemother 51(9):3445–3448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahan FM, Kahan JS, Cassidy PJ, Kropp H (1974) The mechanism of action of fosfomycin (phosphonomycin). Ann NY Acad Sci 235:364–386

    Article  CAS  PubMed  Google Scholar 

  • Kalin M (1998) Pneumococcal serotypes and their clinical relevance. Thorax 53(3):159–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karatsa-Dodgson M, Wörmann ME, Gründling A (2010) In vitro anaylsis of the Staphylococcus aureus lipoteichoic acid synthase enzyme using fluorescently labeled lipids. J Bacteriol 192(20):5341–5349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai Y, Marles-Wright J, Cleverley RM, Emmins R, Ishikawa S, Kuwano M, Heinz N, Bui NK, Hoyland CN, Ogasawara N, Lewis RJ, Vollmer W, Daniel RA, Errington J (2011) A widespread family of bacterial cell wall assembly proteins. EMBO J 30(24):4931–4941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller R, Fischer W, Keist R, Bassetti S (1992) Macrophage response to bacteria: induction of marked secretory and cellular activities by lipoteichoic acids. Infect Immun 60(9):3664–3672

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kenne L, Lindberg B, Svensson S (1975) The structure of capsular polysaccharide of the pneumococcus type II. Carbohydr Res 40:69–75

    Article  CAS  PubMed  Google Scholar 

  • Kharat AS, Tomasz A (2006) Drastic reduction in the virulence of Streptococcus pneumoniae expressing type 2 capsular polysaccharide but lacking choline residues in the cell wall. Mol Microbiol 60(1):93–107

    Article  CAS  PubMed  Google Scholar 

  • Kiriukhin MY, Debabov DV, Shinabarger DL, Neuhaus FC (2001) Biosynthesis of the glycolipid anchor in lipoteichoic acid of Staphylococcus aureus RN4220: role of YpfP, the diglucosyldiacylglycerol synthase. J Bacteriol 183(11):3506–3514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi K, Ehrlich SD, Albertini A, Amati G, Andersen KK, Arnaud M et al (2003) Essential Bacillus subtilis genes. Proc Natl Acad Sci U S A 100(8):4678–4683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi K, Sudiarta P, Kodoma T, Fukushima T, Ara K, Ozaki K, Sekiguchi J (2012) Identification and characterization of a novel polysaccharide deacetylase C (PdaC) from Bacillus subtilis. J Biol Chem 287(13):9765–9776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch HU, Döker R, Fischer W (1985) Maintenance of d-alanine ester substitution of lipoteichoic acid by reesterification in Staphylococcus aureus. J Bacteriol 164(3):1211–1217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kock H, Gerth U, Hecker M (2004) MurAA, catalyzing the first committed step in peptidoglycan biosynthesis, is a target for Clp-dependent proteolysis in Bacillus subtilis. Mol Microbiol 51(4):1087–1102

    Article  CAS  PubMed  Google Scholar 

  • Kohler T, Weidenmaier C, Peschel A (2009) Wall teichoic acid protects Staphylococcus aureus against antimicrobial fatty acids from human skin. J Bacteriol 191(13):4482–4484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kojima N, Araki Y, Ito E (1985) Structure of the linkage units between ribitol teichoic acids and peptidoglycan. J Bacteriol 161(1):299–306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Komatsuzawa H, Sugai M, Ohta K, Fujiwara T, Nakashima S, Lee CY, Suginaka H (1997) Cloning and characterization of the fmt gene which affects the methicillin-resistance level and autolysis in the presence of triton X-100 in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 41(11):2355–2361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Komatsuzawa H, Ohta K, Fujiwara T, Choi GH, Labischinski H, Sugai M (2001) Cloning and sequencing of the gene, fmtC, which affects oxacillin resistance in methicillin-resistant Staphylococcus aureus. FEMS Microbiol Lett 203(1):49–54

    Article  CAS  PubMed  Google Scholar 

  • Kovács M, Halfmann A, Fedtke I, Heintz M, Peschel A, Vollmer W, Hakenbeck R, Brückner R (2006) A functional dlt operon, encoding proteins required for incorporation of d-alanine in teichoic acids in Gram-positive bacteria, confers resistance to cationic antimicrobial peptides in Streptococcus pneumoniae. J Bacteriol 188(16):5797–5805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kovacs-Simon A, Titball RW, Michell SL (2011) Lipoproteins of bacterial pathogens. Infect Immun 79(2):548–561

    Article  CAS  PubMed  Google Scholar 

  • Kozarich JW, Strominger JL (1978) A membrane enzyme from Staphylococcus aureus which catalyzes transpeptidase, carboxypeptidase, and penicillinase activities. J Biol Chem 253(4):1272–1278

    CAS  PubMed  Google Scholar 

  • Kresge N, Simoni RD, Hill RL (2007) t-RNA involvement in peptidoglycan synthesis: the work of Dieter Söll. J Biol Chem 282(26):e20–e21

    CAS  Google Scholar 

  • Kristian SA, Dürr M, Van Strijp JA, Neumeister B, Peschel A (2003) MprF-mediated lysinylation of phospholipids in Staphylococcus aureus leads to protection against oxgen-independent neutrophil killing. Infect Immun 71(1):546–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kristian SA, Vivekanand D, Wiedenmaier C, Kansal R, Fedtke I, Peschel A, Gallo RL, Nizet V (2005) d-alanylation of teichoic acids promotes Group A Streptococcus antimicrobial peptide resistance, neutrophil survival, and epithelial cell invasion. J Bacteriol 187(19):6719–6725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laaberki MH, Pfeffer J, Clarke AJ, Dworkin J (2011) O-acetylation of peptidoglycan is required for proper cell separation and S-layer anchoring in Bacillus anthracis. J Biol Chem 286(7):5278–5288

    Article  CAS  PubMed  Google Scholar 

  • Lavollay M, Arthur M, Fourgeaud M, Dubost L, Marie A, Veziris N, Blanot D, Gutmann L, Mainardi J (2008) The peptidoglycan of stationary-phase Mycobacterium tuberculosis predominantly contains cross-links generated by l,d-transpeptidation. J Bacteriol 190(12):4360–4366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavollay M, Fourgeaud M, Hermann JL, Dubost L, Marie A, Gutmann L, Arthur M, Mainardi J (2011) The peptidoglycan of Mycobacterium abscessus is predominantly cross-linked by l,d-transpeptidases. J Bacteriol 193(3):778–782

    Article  CAS  PubMed  Google Scholar 

  • Lazarevic V, Abellan FX, Möller SB, Karamata D, Mauël C (2002) Comparison of ribitol and glycerol teichoic acid genes in Bacillus subtilis W23 and 168: identical function, similar divergent organization, but different regulation. Microbiology 148(Pt 3):815–824

    Article  CAS  PubMed  Google Scholar 

  • Leach KL, Brickner SJ, Noe MC, Miller PF (2011) Linezolid, the first ozazolidinone antibacterial agent. Ann NY Acad Sci 1222:49–54

    Article  CAS  PubMed  Google Scholar 

  • Lebreton F, Depardieu F, Bourdon N, Fines-Guyon M, Berger P, Camiade S, Leclerq R, Courvalin P, Cattoir V (2011) d-ala-d-ser VanN-type transferable vancomycin resistance in Enterococcus faecium. Antimicrob Agents Chemother 55(10):4606–4612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee K, Campbell J, Swoboda JG, Cuny GD, Walker S (2010) Development of improved inhibitors of wall teichoic acid biosynthesis with potent activity against Staphylococcus aureus. Bioorg Med Chem Lett 20:1767–1770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Cha DJ, Lai Y, Villaruz AE, Sturdevant DE, Otto M (2007a) The antimicrobial peptide-sensing system aps of Staphylococcus aureus. Mol Microbiol 66(5):1136–1147

    Article  CAS  PubMed  Google Scholar 

  • Li M, Lai Y, Villaruz AE, Cha DJ, Sturdevant DE, Otto M (2007b) Gram-positive three-component antimicrobial peptide-sensing system. Proc Natl Acad of Sci USA 104(22):9469–9474

    Article  CAS  Google Scholar 

  • Lim D, Strynadka NC (2002) Structural basis for the β-lactam resistance of PBP2a from methicillin-resistant Staphylocccus aureus. Nat Struct Biol 9(11):870–876

    CAS  PubMed  Google Scholar 

  • Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon P, Mueller A et al (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517(7535):455–459

    Google Scholar 

  • Lo MC, Men H, Branstrom A, Helm J, Yao N, Goldman R, Walker S (2000) A new mechanism of action proposed for ramoplanin. J Am Chem Soc 122:3540–3541

    Article  CAS  Google Scholar 

  • Loos M, Clas F, Fisher W (1986) Interaction of purified lipoteichoic acid with classical complement pathway. Infect Immun 53(3):595–599

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu D, Wörmann ME, Zhang X, Schneewind O, Gründling A, Freemont PS (2009) Structure-based mechanism of lipoteichoic acid synthesis of Staphylococcus aureus LtaS. Proc Natl Acad Sci USA 106(5):1584–1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludovice AM, Wu SW, De Lencastre H (1998) Molecular cloning and DNA sequencing of the Staphylococcus aureus UDP-N-acetylmuramyl tripeptide synthetase (murE) gene, essential for the optimal expression of methicillin resistance. Microb Drug Resist 4(2):85–90

    Article  CAS  PubMed  Google Scholar 

  • Lunderberg JM, Nguyen-Mau SM, Richter GS, Wang YT, Dworkin J, Missiakas DM, Schneewind O (2013) Bacillus anthracis acetyltransferases PatA1 and PatA2 modify the secondary cell wall polysaccharide and affect the assembly of S-layer proteins. J Bacteriol 195(5):977–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mack D, Fischer W, Krokotsch A, Leopold K, Hartmann R, Egge H, Laufs R (1996) The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear β-1,6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol 178(1):175–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacLeod CM, Hodges RG, Heidelbrger M, Bernhard WG (1945) Prevention of pneumococcal pneumonia by immunization with specific capsular polysaccharides. J Exp Med 82(6):445–465

    Article  PubMed Central  Google Scholar 

  • Mahapatra S, Yagi T, Belisle JT, Espinosa BJ, Hill PJ, McNeil MR, Brennan PJ, Crick D (2005) Mycobaterial Lipid II is composed of a complex mixture of muramyl and peptide moieties linked to a decaprenly phosphate. J Bacteriol 187(8):2747–2757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maidhof H, Reinicke B, Blümel P, Berger-Bächi B, Labischinski H (1991) femA, which encodes a factor essential for methicillin resistance, affects glycine content of peptidoglycan in methicillin-resistant and methicillin-susceptible Staphylococcus aureus strains. J Bacteriol 173(11):3507–3513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mainardi JL, Legrand R, Arthur M, Schoot B, van Heijenoort J, Gutmann L (2000) Novel mechanism of beta-lactam resistance due to bypass of Dd-transpeptidation in Enterococcus faecium. J Biol Chem 275(22):16490–16496

    Article  CAS  PubMed  Google Scholar 

  • Maira-Litrán T, Bentancor LV, Bozkurt-Guzel C, O’Malley JM, Cywes-Bentley C, Pier GB (2012) Synthesis and evaluation of a conjugate vaccine composed of Staphylococcus aureus poly-N-acetylglucosamine and clumping factor A. PLoS ONE 7(9):e43813

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marquardt JL, Siegele DA, Kolter R, Walsh CT (1992) Cloning and sequencing of Escherichia coli murZ and purification of its product, a UDP-N-acetylglucosamine enolpyruvyl transferase. J Bacteriol 174(17):5748–5752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall CG, Lessard IA, Park I, Wright GD (1998) Glycopeptide antibiotic resistance genes in glycopeptide-producing organisms. Antimicrob Agents Chemother 42(9):2215–2220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuoka S, Chiba M, Tanimura Y, Hashimoto M, Hara H, Matsumoto K (2011) Abnormal morphology of Bacillus subtilis ugtP mutant cells lacking glucolipids. Genes Genet Syst 86(5):295–304

    Article  CAS  PubMed  Google Scholar 

  • Mauël C, Young M, Karamata D (1991) Genes concerned with synthesis of poly(glycerol phosphate), the essential teichoic acid in Bacillus subtilis strain 168, are organized in two divergent transcription units. J Gen Microbiol 137(4):929–941

    Article  PubMed  Google Scholar 

  • May JJ, Finking R, Wiegshoff F, Weber TT, Bandur N, Koert U, Marahiel MA (2005) Inhibition of the d-alanine:d-alanyl carrier protein ligase from Bacillus subtilis increases the bacterium’s susceptibility to antibiotics that target the cell wall. FEBS J 272(12):2993–3003

    Article  CAS  PubMed  Google Scholar 

  • McDaneld PM, Spooner LM, Mohr JF, Belliveau PP (2013) Use of daptomycin to treat infections with methicillin-resistant Staphylococcus aureus having vancomycin minimum inhibitory concentrations of 1.5 to 2 μg/mL. Ann Pharmacother 47(12):1654–1665

    Article  CAS  PubMed  Google Scholar 

  • Meeske AJ, Sham LT, Kimsey H, Koo BM, Gross CA, Bernhardt TG, Rudner DZ (2015) MurJ and a novel lipid II flippase are required for cell wall biogenesis in Bacillus subtilis. Proc Natl Acad Sci USA 112(20):6437–6442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Memmi G, Filipe SR, Pinho MG, Fu Z, Cheung A (2008) Staphylococcus aureus PBP4 is essential for β-lactam resistance in community-acquired methicillin-resistant strains. Antimicrob Agents Chemother 52(11):3955–3966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mengin-Lecreulx D, Texier L, Rousseau M, van Heijenoort J (1991) The murG gene of Escherichia coli codes for the UDP-N-acetylglucosamine: N-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine transferase involved in the membrane steps of peptidoglycan synthesis. J Bacteriol 173(15):4625–4636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meredith TC, Swoboda JG, Walker S (2008) Late-stage polyribitol phosphate wall teichoic acid biosynthesis in Staphylococcus aureus. J Bacteriol 190(8):3046–3056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minnikin DE, Abdolraimzadeh H (1974) Effect of pH on the proportions of polar lipds, in chemostat cultures of Bacillus subtilis. J Bacteriol 120(3):999–10003

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra NN, Bayer AS, Weidenmaier C, Grau T, Wanner S, Stefani S, Cafiso V, Bertuccio T, Yeaman MR, Nast CC, Yang SJ (2014) Phenotypic and genotypic characterization of daptomycin-resistant methicillin-resistant Staphylococcus aureus strains: relative roles of mprF and dlt operons. PLoS ONE 9(9):e107426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mitchell P, Moyle J (1956) Osmotic structure and function in bacteria. Symp Soc Gen Microbiol 6:150–180

    Google Scholar 

  • Mitra S, Saeed U, Havlichek DH, Stein GE (2015) Profile of oritavancin and its potential in the treatment of acute bacterial skin structure infections. Infect Drug Resist 8:189–197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohamadzadeh M, Pfeiler EA, Brown JB, Zadeh M, Gramarossa M, Managlia E, Bere P, Sarraj B, Khan MW, Pakanati KC, Ansari MJ, O’Flaherty S, Barrett T, Klaenhammer TR (2011) Regulation of induced colonic inflammation by Lactobacillus acidophilus deficient in lipoteichoic acid. Proc Natl Acad Sci USA 108(Supplement 1):4623–4630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moisan H, Pruneau M, Malouin F (2010) Binding of ceftaroline to penicillin-binding proteins of Staphylococcus aureus and Streptococcus pneumoniae. J Antimicrob Chemother 5(4):713–716

    Article  CAS  Google Scholar 

  • Moynihan PJ, Sychantha D, Clarke AJ (2014) Chemical biology of peptidoglycan acetylation and deacetylation. Bioorg Chem 54:44–50

    Article  CAS  PubMed  Google Scholar 

  • Münch D, Roemer T, Lee SH, Engeser M, Sahl HG, Schneider T (2012) Identification and in vitro analysis of the GatD/MurT enzyme-complex catalyzing Lipid II amdiation in Staphylococcus aureus. PLoS Pathog 8(1):e1002509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Navarre WW, Schneewind O (1999) Surface proteins of Gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63(1):174–229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neuhaus FC, Baddiley J (2003) A continuum of anionic charge: structures and functions of d-alanyl-teichoic acids in Gram-positive bacteria. Microbiol Mol Biol Rev 67(4):686–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishi H, Komatsuzawa H, Fujiwara T, McCallum N, Sugai M (2004) Reduced content of lysyl-phosphatidylglycerol in the cytoplasmic membrane affects susceptibility to moenomycin, as well as vancomycin, gentamicin, and antimicrobial peptides Staphylococcus aureus. Antimicrob Agents Chemother 48(12):4800–4807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norris V, Sweeney S (1993) Deformations in the cytoplasmic membrane of Escherichia coli direct the repair of peptidoglycan. In: de Pedro MA, Höltje JV, Löffelhardt W (eds) Bacterial growth and lysis: metabolism and structure of the bacterial sacculus. Springer, US, pp 375–385

    Chapter  Google Scholar 

  • Nurhonen M, Auranen K (2014) Optimal serotype compositions for pneumococcal conjugate vaccination under serotype replacement. PLoS Comput Biol 10(2):e1003477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Gara JP (2007) ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol Lett 270(2):179–188

    Article  PubMed  CAS  Google Scholar 

  • O’Riordan K, Lee JC (2004) Staphylococcus aureus capsular polysaccharides. Clin Microbiol Rev 17(1):218–234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohno N, Yadomae T, Miyazaki T (1982) Identification of 2-amino-2-deoxyglucose residues in the peptidoglucan of Streptococcus pneumoniae. Carbohydr Res 107(1):152–155

    Article  CAS  PubMed  Google Scholar 

  • Oku Y, Kurokawa K, Matsuo M, Yamada S, Lee BL, Sekimizu K (2009) Pleiotropic roles of polyglycerolphosphate synthase of lipoteichoic acid in growth of Staphylococcus aureus cells. J Bacteriol 191(1):141–151

    Article  CAS  PubMed  Google Scholar 

  • Oliver MB, Jones C, Larson TR, Calix JJ, Zartler ER, Yother J, Nahm MH (2013a) Streptococcus pneumoniae serotype 11D has a bi-specific glycosyltransferase and expresses two different capsular polysaccharide repeating units. J Biol Chem 288(30):21945–21954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver MB, van der Linden MP, Küntzel SA, Saad JS, Nahm MH (2013b) Discovery of Sreptococcus pneumoniae serotype 6 variants with glycosyltransferases synthesizing two different repeating units. J Biol Chem 288(36):25976–25985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oman TJ, Lupoli TJ, Wang TSA, Kahne D, Walker S, van der Donk WA (2011) Haloduracin α binds the peptidoglycan precursor Lipid II with 2:1 stoichiometry. J Am Chem Soc 133(44):17544–17547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otto M (2008) Staphylococcal biofilms. Curr Top Microbiol Immunol 322:207–228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Over B, Heusser R, McCallum N, Schulthess B, Kupferschmied P, Gaiani JM, Sifri CD, Berger-Bächi B, Meier PS (2011) LytR-CpsA-Psr proteins in Staphylococcus aureus display partial functional redundancy and the deletion of all three severely impairs spetum placement and cell separation. FEMS Microbiol Lett 320(2):142–151

    Article  CAS  PubMed  Google Scholar 

  • Paknikar SS, Narayana S (2012) Newer antibacterials in therapy and clinical trials. N Am J Med Sci 4(11):537–547

    Article  PubMed  PubMed Central  Google Scholar 

  • Palmer KL, Kos VN, Gilmore MS (2010) Horizontal gene transfer and the genomics of enterococcal antibiotic resistance. Curr Opin Microbiol 13(5):632–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parsons JB, Rock CO (2014) Bacterial lipids: metabolism and membrane homeostasis. Prog Lipid Res 52(3):249–276

    Article  CAS  Google Scholar 

  • Patin D, Boniface A, Kovač A, Hervé M, Dementin S, Barreteau H, Mengin-Lecreulx D, Blanot D (2010) Purification and biochemical characterization of Mur ligases from Staphylococcus aureus. Biochimie 92(12):1793–1800

    Article  CAS  PubMed  Google Scholar 

  • Patti GJ, Chen J, Schaefer J, Gross ML (2008) Characterization of structural variation in the peptidoglycan of vancomyin susceptible Enterococcus faecium: undertanding glycopeptide-antibiotic binding sites using mass spectrometry. J Am Soc Mass Spectrom 19(10):1467–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patton GC, van der Donk WA (2005) New developments in lantibiotic biosynthesis and mode of action. Curr Opin Microbiol 8:543–551

    Article  CAS  PubMed  Google Scholar 

  • Pelton SI, Loughlin AM, Marchant CD (2004) Seven valent pneumococcal conjugate vaccine immunization in two Boston communities: changes in serotypes and antimicrobial susceptibility among Streptococcus pneumoniae isolates. Pediatr Infect Dis J 23(11):1015–1022

    Article  PubMed  Google Scholar 

  • Percy MG, Gründling A (2014) Lipoteichoic acid synthesis and function in Gram-positive bacteria. Annu Rev Microbiol 68:81–100

    Article  CAS  PubMed  Google Scholar 

  • Perego M, Glaser P, Minutello A, Srauch MA, Leopold K, Fischer W (1995) Incorporation of d-alanine into lipoteichoic acid and wall teichoic acid in Bacillus subtilis: identification of genes and regulation. J Biol Chem 270(26):15598–15606

    Article  CAS  PubMed  Google Scholar 

  • Pereira MP, D’Elia MA, Troczynska J, Brown ED (2008) Duplication of teichoic acid biosynthetic genes in Staphylococcus aureus leads to functionally redundant poly(ribitol phosphate) polymerases. J Bacteriol 190(16):5642–5649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Périchon B, Courvalin P (2009) VanA-type vancomycin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 53(11):4580–4587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perkins HR (1969) Specificity of combination between mucopeptide precursors and vancomycin or ristocetin. Biochem J 111(2):195–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perkins HR, Nieto M (1974) The chemical basis for the action of the vancomycin group of antibiotics. Ann NY Acad Sci 235:348–363

    Article  CAS  PubMed  Google Scholar 

  • Perry AM, Ton-That H, Mazmanian SK, Schneewind O (2002) Anchoring of surface proteins to the cell wall of Staphylococcus aureus. III. Lipid II is an in vivo peptidoglycan substrate for sortase-catalyzed surface protein anchoring. J Biol Chem 277(18):16241–16248

    Article  CAS  PubMed  Google Scholar 

  • Peschel A, Otto M, Jack RW, Kalbacher H, Jung G, Götz F (1999) Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem 274(13):8405–8410

    Article  CAS  PubMed  Google Scholar 

  • Peschel A, Vuong C, Otto M, Götz F (2000) The d-alanine residues of Staphylococcus aureus teichoic acids alter the susceptibility to vancomycin and the activity of autolytic enzymes. Antimicrob Agents Chemother 44(10):2845–2847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peschel A, Jack RW, Otto M, Collins LV, Staubitz P, Nicholson G, Kalbacher H, Nieuwenhuizen WF, Jung G, Tarkowski A, van Kessel KP, van Strijp JA (2001) Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor mprF is based on modification of membrane lipids with l-lysine. J Exp Med 193(1):1067–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson PK, Wilkinson BJ, Kim Y, Schmeling D, Quie PG (1978) Influence of encapsulation on staphylococcal opsonization and phagocytosis by human polymorphonuclear leukocytes. Infect Immun 19(3):943–949

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pilishvili T, Bennett NM (2015) Pneumococcal disease prevention among adults: strategies for the use of pneumococcal vaccines. Vaccine. doi:10.1016/j.vaccine.2015.05.102

    Google Scholar 

  • Pinho MG, de Lancastre H, Tomasz A (2000) Cloning, characterization, and inactivation of the gene pbpC, encoding pencillin-binding protein 3 of Staphylococcus aureus. J Bacteriol 182(4):1074–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinho MG, de Lancastre H, Tomasz A (2001a) An aquired and a native pencillin-binding protein cooperate in building the cell wall of drug-resistant staphylococci. Proc Natl Acad Sci USA 98(19):10886–10891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinho MG, Filipe SR, de Lancastre H, Tomasz A (2001b) Complementation of the essential peptidoglycan transpeptidase function of penicillin-binding protein 2 (PBP2) by the drug resistance PBP2A in Staphylococcus aureus. J Bacteriol 183(22):6525–6531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitout JD, Nordmann P, Poirel L (2015) Carbapenemase-producing Klebsiella pneumoniae: a key pathogen set for global nosocomial dominance. Antimicrob Agents Chemother. doi:10.1128/AAC.01019-15

    PubMed Central  Google Scholar 

  • Pless D, Neuhaus FC (1973) Initial membrane reaction in peptidoglycan synthesis. Lipid dependence of phospho-N-acetylmuramylpentapeptide translocase (exchange reaction). J Biol Chem 248(5):1568–1576

    CAS  PubMed  Google Scholar 

  • Pobre K, Tashani M, Ridda I, Rashid H, Wong M, Booy R (2014) Carrier priming or suppression: understanding carrier priming enhancement of anti-polysaccharide antibody response to conjugate vaccines. Vaccine 32(13):1423–1430

    Article  CAS  PubMed  Google Scholar 

  • Pollack JH, Neuhaus FC (1994) Changes in wall teichoic acid during the rod-sphere transition of Bacillus subtilis 168. J Bacteriol 176(23):7252–7259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powell DA, Duckworth M, Baddiley J (1975) A membrane-associated lipomannan in micrococci. Biochemistry J 151(2):387–397

    Article  CAS  Google Scholar 

  • Qamar A, Golemi-Kotra D (2012) Dual roles of FmtA in Staphylococcus aureus cell wall biosynthesis and autolysis. Antimicrob Agents Chemother 56(7):3797–3805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao Y, Lebar MD, Schirner K, Schaefer K, Tsukamoto H, Kahne D, Walker S (2014) Detection of lipid-linked peptidoglycan precursors by exploiting an unexpected transpeptidase reaction. J Am Chem Soc 136(42):14678–14681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray A, Cot M, Puzo G, Gilleron M, Nigou J (2013) Bacterial cell wall macroamphiphiles: pathogen-/microbe-associated molecular patterns detected by mammalian innate immune system. Biochimie 95(1):33–42

    Article  CAS  PubMed  Google Scholar 

  • Reading C, Cole M (1977) Clavulanic acid: a β-lactamase-inhibiting β-lactam from Streptomyces clavuligerus. Antimicrob Agents Chemother 11(5):852–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reed P, Veiga H, Jorge AM, Terrak M, Pinho MG (2011) Monofunctional transglycosylases are not essential for Staphylococcus aureus cell wall synthesis. J Bacteriol 193(10):2549–2556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reed P, Atilano ML, Alves R, Hoiczyk E, Sher X, Reichmann NT, Pereira PM, Roemer T, Filipe SR, Periera-Leal JB, Ligoxygakis P, Pinho MG (2015) Staphylococcus aureus survives with a minimal peptidoglycan synthesis machine but sacrifices virulence and antibiotic resistance. PLoS Pathog 11(5):e1004891. doi:10.1371/journal.ppat.1004891

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reichmann NT, Cassona CP, Gründling A (2013) Revised mechanism of d-alanine incorporation into cell wall polymers in Gram-positive bacteria. Microbiology 159(Pt 9):1868–1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Revilla-Guarinos A, Gebhard S, Mascher T, Zuniga M (2014) Defence against antimicrobial peptides: different strategies in Firmicutes. Environ Microbiol 16(5):1225–1237

    Article  CAS  PubMed  Google Scholar 

  • Reynolds PE (1989) Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur J Clin Microbiol Infect Dis 8(11):943–950

    Article  CAS  PubMed  Google Scholar 

  • Richter SG, Eli D, Kim HK, Hendrickx APA, Sorg JA, Schneewind O, Missiakas D (2013) Small molecule inhibitor of lipoteichoic acid synthesis is an antibiotic for Gram-positive bacteria. Proc Natl Acad Sci USA 110(9):3531–3536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robbins JB, Schneerson R, Horwith G, Naso R, Fattom A (2004) Staphylococcus aureus type 5 and 8 capsular polysaccharide-protein conjugate vaccines. Am Heart J 147(4):593–598

    Article  CAS  PubMed  Google Scholar 

  • Roberts IS (1996) The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu Rev Microbiol 50:285–315

    Article  CAS  PubMed  Google Scholar 

  • Rogers HJ, Perkins HR, Ward JB (1980) Biosynthesis of peptidoglycan. Microbial cell walls and membranes. Chapman and Hall, London, pp 239–290

    Chapter  Google Scholar 

  • Rohde H, Frankenberger S, Zähringer U, Mack D (2010) Structure, function and contribution of polysaccharide intercellular adhesin (PIA) to Staphylococcus epidermidis biofilm formation and pathogenesis of biomaterial-associated infections. Eur J Cell Biol 89(1):103–111

    Article  CAS  PubMed  Google Scholar 

  • Rohrer S, Ehlert K, Tschierske M, Labischinski H, Berger-Bächi B (1999) The essential Staphylococcus aureus gene fmhB is involved in the first step of peptidoglycan pentaglycine interpeptide formation. Proc Natl Acad Sci USA 96(16):9351–9356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenow C, Ryan P, Weiser JN, Johnson S, Fontan P, Ortqvist A, Masure HR (1997) Contribution of novel choline-binding proteins to adherence, colonization and immunogenicity of Streptococcus pneumoniae. Mol Microbiol 25(5):819–829

    Article  CAS  PubMed  Google Scholar 

  • Ruiz N (2008) Bioinformatics identification of MurJ (MviN) as the peptidoglyan lipidII flippase in Escherichia coli. Proc Natl Acad Sci USA 105(40):15553–15557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz N (2009) Streptococcus pyogenes YtgP (Spy_0390) complements Escherichia coli strains depleted of the putative peptidoglycan flippase MurJ. Antimicrob Agents Chemother 53(8):3604–3605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruzin A, Severin A, Ritacco F, Tabei K, Singh G, Bradford PA, Siegel MM, Projan SJ, Shales DM (2002) Further evidence that a cell wall precursor [C(55)-MurNAc-(peptide)-GlcNAc] serves as an acceptor in a sorting reaction. J Bacteriol 184(8):2141–2147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu YH, Baik JE, Yang JS, Kang SS, Im J, Yun CH, Kim DW, Lee K, Chung DK, Ju HR, Han SH (2009) Differential immunostimulatory effects of Gram-positive bacteria due to their lipoteichoic acids. Int Immunopharmacol 9(1):127–133

    Article  CAS  PubMed  Google Scholar 

  • Saar-Dover R, Bitler A, Nezer R, Shmuel-Galia L, Firon A, Shimoni E, Trieu-Cuot P, Shai Y (2012) d-alanylation of lipoteichoic acids confer resistance to cationic peptides in group B Streptococcus by increasing the cell wall density. PLoS Pathog 8(9):e1002891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saas V, Schneider T, Wilmes M, Körner C, Tossi A, Novikova N, Shamova O, Sahl HG (2010) Human β-defensin 3 inhibits cell wall biosynthesis in staphylococci. Infect Immun 78(6):2793–2800

    Article  CAS  Google Scholar 

  • Santa Maria JP, Sadaka A, Moussa SH, Brown S, Zhang YJ, Rubin EJ, Gilmore MS, Walker S (2014) Compound-gene interaction mapping reveals distinct roles for Staphylococcus aureus teichoic acids. Proc Natl Acad Sci USA 111(34):12510–12515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauvage E, Terrak M, Ayala JA, Charlier P (2008) The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev 32(2):234–258

    Article  CAS  PubMed  Google Scholar 

  • Scheffers DJ, Pinho MG (2005) Bacterial cell wall synthesis: new insights from localization studies. Microbiol Mol Biol Rev 69(4):585–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schirner K, Marles-Wright J, Lewis RJ, Errington J (2009) Distinc and essential morphogenic functions for wall- and lipo-teichoic acids in Bacillus subtilis. EMBO J 28(7):830–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schirner K, Eun YJ, Dion M, Luo Y, Helmann JD, Garner EC, Walker S (2015) Lipid-linked cell wall precursors regulate membrane association of bacterial actin MreB. Nat Chem Biol 11(1):38–45

    Article  CAS  PubMed  Google Scholar 

  • Schlag M, Biswas R, Krismer B, Kohler T, Zoll S, Yu W, Schwarz H, Peschel A, Götz F (2010) Role of staphylococcal wall teichoic acid in targeting the major autolysin Atl. Mol Microbiol 75(4):864–873

    Article  CAS  PubMed  Google Scholar 

  • Schleifer KH, Kandler O (1972) Peptidoglycan. Types of bacterial cell walls and their taxonomic implications. Bacterial Rev 36(4):407–477

    Google Scholar 

  • Schmidt JW, Greenough A, Burns M, Luteran AE, McCafferty DG (2010) Generation of ramoplanin-resistant Staphylococcus aureus. FEMS Microbiol Lett 310(2):104–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneewind O, Missiakas DM (2012) Protein secretion and surface display in Gram-positive bacteria. Philos Trans R Soc Lond B Biol Sci 367(1592):1123–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneewind O, Missiakas D (2014) Lipoteichoic acids, phosphate-containing polymers in the envelope of Gram-positive bacteria. J Bacteriol 196(6):1133–1142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schneider T, Senn MM, Berger-Bächi B, Tossi A, Sahl HG, Wiedermann I (2004) In vitro assembly of a complete interpeptide bridge containing cell wall precursor (lipid-II-Gly5) of Staphylococcus aureus. Mol Microbiol 53(2):675–685

    Article  CAS  PubMed  Google Scholar 

  • Schneider T, Kruse T, Wimmer R, Wiedemann I, Saas V, Pag U, Jansen A, Nielsen AK, Mygind PH, Raventós DS, Soren N, Ravn B, Bonvin AM, De Maria L, Andersen AS, Gammelgaard LK, Sahl HG, Kristensen HH (2010) Plectasin, a fungal defensin targets the bacterial cell wall precursor Lipid II. Science 328:1168–1172

    Article  CAS  PubMed  Google Scholar 

  • Schröder NW, Morath S, Alexander C, Hamann L, Hartung T, Zähringer U, Göbel UB, Weber JR, Schumann RR (2003) Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide binding protein (LBP) and CD14, whereas TLR-4 and MD-2 are not involved. J Biol Chem 278(18):15587–15594

    Article  PubMed  Google Scholar 

  • Severin A, Tomasz A (1996) Naturally Occurring Peptidoglycan Variants of Streptococcus pneumoniae. J Bacteriol 178(1):168–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sham LT, Butler EK, Lebar MD, Kahne D, Bernhardt TG, Ruiz N (2014) Bacterial cell wall. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis. Science 345(6193):220–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shapiro ED, Berg AT, Austrian R, Shroeder D, Parcells V, Margolis M, Adair RK, Clemens JD (1991) The protective efficacy of polyvalent pneumococcal polysaccharide vaccine. N Engl J Med 325(21):1453–1460

    Article  CAS  PubMed  Google Scholar 

  • Shimada T, Park BG, Wolf AJ, Brikos C, Goodridge HS, Becker CA, Reyes CN, Miao EA, Aderem A, Götz F, Liu GY, Underhill DM (2010) Staphylococcus aureus evades lysozyme-based peptidoglycan digestion that links phagocytosis, inflammasome activation, and IL-1beta secretion. Cell Host Microbe 7(1):38–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sievert DM, Rudrik JT, Patel JB, McDonald LC, Wilkins MJ, Hageman JC (2008) Vancomycin-resistant Staphylococcus aureus in the United States, 2002–2006. Clin Infect Dis 46(5):668–674

    Article  CAS  PubMed  Google Scholar 

  • Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2:a000414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Silver L (2013) Viable screening targets related to the bacterial cell wall. Ann NY Acad Sci 1277:29–53

    Article  CAS  PubMed  Google Scholar 

  • Skurnik D, Kropec A, Roux D, Theilacker C, Huebner J, Pier GB (2012) Natural antibodies in normal human serum inhibit Staphylococcus aureus capsular polysaccharide vaccine efficacy. Clin Infect Dis 55(9):1188–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobhanifar S, Worrall LJ, Gruninger RJ, Wasney GA, Blaukopf M, Baumann L, Lameignere E, Solomonson M, Brown ED, Withers SG, Strynadka NC (2015) Structure and mechanism of Staphylococcus aureus TarM, the wall teichoic acid α-glycosyltransferase. Proc Natl Acad Sci USA 112(6):E576–E585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorensen UB, Henrichsen H, Chen HC, Szu SC (1990) Covalent linkage between the capsular polysaccharide and the cell wall peptidoglycan of Streptococcus pneumoniae revealed by immunological methods. Microb Pathog 8(5):325–334

    Article  CAS  PubMed  Google Scholar 

  • Spratt BG (1975) Distinct penicillin binding proteins involved in the division, elongation, and shape of Escherichia coli K12. Proc Natl Acad Sci USA 72(8):2999–3003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steens A, Vestrheim DF, Aaberge IS, Wiklund BS, Storsaeter J, Riise Bergsaker MA, Ronning K, Furuseth E (2014) A review of the evidence to inform pneumococcal vaccine recommendations for risk groups aged 2 years and older. Epidemeol Infect 142(12):2471–2482

    Article  CAS  Google Scholar 

  • Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215

    Article  CAS  PubMed  Google Scholar 

  • Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147(Pt 1):3–9

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Campbell J, Swoboda JG, Walker S, Gilmore MS (2011a) Role of wall teichoic acids in Staphylococcus aureus endophthalmitis. Invest Ophthalmol Vis Sci 52(6):3187–3192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki T, Swoboda JG, Campbell J, Walker S, Gilmore MS (2011b) In vitro antimicrobial activity of wall teichoic acid biosynthesis inhibitors against Staphylococcus aureus isolates. Antimicrob Agents Chemother 55(2):767–774

    Article  CAS  PubMed  Google Scholar 

  • Swoboda JG, Meredith TC, Campbell J, Brown S, Suzuki T, Bollenbach T, Malhowski AJ, Kishony R, Gilmore MS, Walker S (2009) Discovery of a small molecule that blocks wall teichoic acid biosynthesis in Staphylococcus aureus. ACS Chem Biol 4(10):875–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terrak M, Nguyen-Distèche M (2006) Kinetic characterization of the monofunctional glycosyltransferase from Staphylococcus aureus. J Bacteriol 188(7):2528–2532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theilacker C, Kaczyński Z, Kropec A, Fabretti F, Sange T, Holst O, Huebner J (2006) Opsonic antibiodies to Enterococcus faecalis strain 12030 are directed against lipoteichoic acid. Infect Immun 74(10):5703–5712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theilacker C, Holst O, Lindner B, Huebner J, Kacyński Z (2012) The structure of the wall teichoic acid isolated from Enterococcus faecalis strain 12030. Carbohydr Res 354:106–109

    Article  CAS  PubMed  Google Scholar 

  • Thumm G, Götz F (1997) Studies on prolysostaphin processing and characterization of the lysostaphin immunity factor (Lif) of Staphylococcus simulans biovar staphylolyticus. Mol Microbiol 23(6):1251–1255

    Article  CAS  PubMed  Google Scholar 

  • Thurlow LR, Thomas VC, Fleming SD, Hancock LE (2009) Enterococcus faecalis capsular polysaccharide serotypes C and D and their contributions to host innate immune evasion. Infect Immun 77(12):5551–5557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tschierske M, Ehlert K, Strandén AM, Berger-Bächi B (1997) Lif, the lysostaphin immunity factor, complements FemB in staphylococcal peptidoglycan interpeptide bridge formation. FEMS Microbiol Lett 153(2):261–264

    Article  CAS  PubMed  Google Scholar 

  • Tzianabos AO, Wang JY, Lee JC (2001) Structural rationale for the modulation of abscess formation by Staphylococcus aureus capsular polysaccharides. Proc Natl Acad Sci USA 98(16):9365–9370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valentino MD, Foulston L, Sadaka A, Kos VN, Villet RA, Santa Maria J Jr, Lazinski DW, Camili A, Walker S, Hooper DC, Gilmore M (2014) Genes contributing to Staphylococcus aureus fitness in abscess- and infection-related ecologies. MBio 5(5):e01729–14

    Google Scholar 

  • Van Selm S, van Cann LM, Kolkman MA, van der Zeijst BA, van Putten JP (2003) Genetic basis for the structural difference between Streptococcus pneumoniae serotype 15B and 15C capsular polysaccharides. Infect Immun 71(11):6192–6198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Venkateswaran PS, Stanton N, Austrian R (1983) Type variation of strains of Streptococcus pneumoniae in capsular serogroup 15. J Infect Dis 147(6):1041–1054

    Article  CAS  PubMed  Google Scholar 

  • Vlamakis H, Chai Y, Beauregard P, Losick R, Kolter R (2013) Sticking together: building a biofilm the Bacillus subtilis way. Nat Rev Microbiol 11(3):157–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volkman BF, Zhang Q, Debabov DV, Rivera E, Kresheck GC, Neuhaus FC (2001) Biosynthesis of d-alanyl-lipoteichoic acid: the tertiary structure of apo-d-alanyl carrier protein. Biochemistry 40(27):7964–7972

    Article  CAS  PubMed  Google Scholar 

  • Vollmer W, Tomasz A (2000) The pgdA gene encodes for a peptidoglycan N-acetylglucosamine deacetylase in Streptococcus pneunomiae. J Biol Chem 275(27):20496–20501

    Article  CAS  PubMed  Google Scholar 

  • Vollmer W, Tomasz A (2002) Peptidoglycan N-acetylglucosamine deacetylase, a putative virulence factor in Streptoccus pneumoniae. Infect Immun 70(12):7176–7178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vollmer W, Blanot D, de Pedro MA (2008) Peptidoglycan structure and architecture. FEMS Microbiol Rev 32(2):149–167

    Article  CAS  PubMed  Google Scholar 

  • Von Aulock S, Hartung T, Hermann C (2007) Comment on “not lipoteichoic acid but lipoproteins appear to be the dominant immunobiologically active compound in Staphylococcus aureus”. J Immunol 178(5):2610–2611

    Article  Google Scholar 

  • Vuong C, Kocianova S, Voyich JM, Yao Y, Fischer ER, DeLeo FR, Otto M (2004) A critical role for exopolysaccharide modification in bacterial biofilm formation, immune evasion and virulence. J Biol Chem 279(52):54881–54886

    Article  CAS  PubMed  Google Scholar 

  • Wada A, Watanabe H (1998) Pencillin-binding protein 1 of Staphylococcus aureus is essential for growth. J Bacteriol 180(10):2759–2765

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh CT (1989) Enzymes in the d-alanine branch of bacterial cell wall peptidogylcan assembly. J Biol Chem 264(5):2393–2396

    CAS  PubMed  Google Scholar 

  • Walsh C (2003) Antibiotics that act on cell wall biosynthesis. Antibiotics: actions, origins, resistance. ASM Press, Washington D.C., pp 24–49

    Chapter  Google Scholar 

  • Walsh CT, Howe RA (2002) The prevalence and mechanisms of vancomycn resistance in Staphylococcus aureus. Ann Rev Microbiol 56:657–675

    Article  CAS  Google Scholar 

  • Wang H, Gill CJ, Lee SH, Mann P, Zuck P, Meredith TC, Murgolo N, She X, Kales S, Liang L, Liu J, Wu J, Santa Maria JS, Su J, Pan J, Hailey J, Mcguinness D, Tan CM, Flattery A, Walker S, Black T, Roemer T (2013) Discovery of novel wall teichoic acid inhibitors as effective anti-MRSA β-lactam combination agents. Chem Biol 20(2):272–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward JB (1973) The chain length of the glycans in bacterial cell walls. J Biochem 133(2):395–398

    Article  CAS  Google Scholar 

  • Waxman D, Strominger JL (1983) Penicillin-binding proteins and the mechanism of action of β-lactam antibiotics. Annu Rev Microbiol 52:825–829

    CAS  Google Scholar 

  • Weart RB, Lee AH, Chien AC, Haeusser DP, Hills NS, Levin PA (2007) A metabolic sensor governing cell size in bacteria. Cell 130(2):335–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb AJ, Karatsa-Dodgson M, Gründling A (2009) Two-enzyme systems for glycolipid and polyglycerophosphate lipoteichoic acid synthesis in Listeria monocytogenes. Mol Microbiol 74(2):299–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber B, Ehlert K, Diehl A, Reichmann P, Labischinski H, Hakenbeck R (2000) The fib locus in Streptococcus pneumoniae is required for peptidoglycan crosslinking and PBP-mediated β-lactam resistance. FEMS Microbiol Lett 188(1):81–85

    CAS  PubMed  Google Scholar 

  • Weidenmaier C, Kokai-Kun JF, Kristian SA, Chanturiya T, Kalbacher H, Gross M, Nicholson G, Neumeister B, Mond JJ, Peschel A (2004) Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nat Med 10(3):243–245

    Article  CAS  PubMed  Google Scholar 

  • Weidenmaier C, Peschel A, Xiong YQ, Kristian SA, Dietz K, Yeaman MR, Bayer AS (2005) Lack of wall teichoic acids in Staphylococcus aureus leads to reduced interactions with endothelial cells and to attenuated virulence in rabbit model endocarditis. J Infect Dis 191(10):1771–1777

    Article  CAS  PubMed  Google Scholar 

  • Weigel LM, Clewell DB, Gill SR, Clark NC, McDougal LK, Flannagan SE, Kolonay JF, Shetty J, Killgore GE, Tenover FC (2003) Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 302(5650):1569–1571

    Article  CAS  PubMed  Google Scholar 

  • White AR, Kaye C, Poupard J, Pypstra R, Woodnutt G, Wynne B (2004) Augmentin® (amoxicillin/clavulanate) in the treatment of community-acquired respiratory tract infection: a review of the continuing development of an innovative antimicrobial agent. J Antimicrob Chemother 53(Suppl 1):i3–i20

    Article  CAS  PubMed  Google Scholar 

  • Whitener CJ, Park SY, Browne FA, Parent LJ, Julian K, Bozdogan B et al (2004) Vancomycin-resistant Staphylococcus aureus in the absense of vancomycin exposure. Clin Infect Dis 38(8):1049–1055

    Article  PubMed  Google Scholar 

  • Wilkinson BJ, Holmes KM (1979) Staphylococcus aureus cell surface: capsule as a barrier to bacteriophage adsorption. Infect Immun 23(2):549–552

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winstel V, Kühner P, Salomon F, Larsen J, Skov R, Hoffmann W, Peschel A, Weidenmaier C (2015) Wall teichoic acid glycosylation governs Staphylococcus aureus nasal colonization. MBio 6(4):e00632–e00615

    Google Scholar 

  • Wörmann ME, Corrigan RM, Simpson PJ, Matthews SJ, Gründling A (2011) Enzymatic activities and functional interdependencies of Bacillus subtilis lipoteichoic acid synthesis enzymes. Mol Microbiol 79(3):566–583

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wright G (2011) Molecular mechanism of antibiotic resistance. Chem Comm 47:4055–4061

    Article  CAS  PubMed  Google Scholar 

  • Wyke AW, Ward JB, Hayes MV, Curtis NA (1981) A role in vivo for penicillin-binding protein-4 of Staphylococcus aureus. Eur J Biochem 119(2):389–393

    Article  CAS  PubMed  Google Scholar 

  • Xayarath B, Yother J (2007) Mutations blocking side chain assembly, polymerization, or transport of a Wzy-dependent Streptococcus pneumoniae capsule are lethal in the absence of suppressor mutations and can affect polymer transfer to the cell wall. J Bacteriol 189(9):3369–3381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia G, Maier L, Sanchez-Carballo P, Li M, Otto M, Holst O, Peschel A (2010) Glycosylation of wall teichoic acid in Staphylococcus aureus by TarM. J Biol Chem 285(18):13405–13415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Wang L, Huang J, Zhang Y, Ma F, Wang J, Xu W, Zhang X, Yin Y, Wu K (2015) Pneumococcal wall teichoic acid is required for pathogenesis of Streptococcus pneumoniae in murine models. J Microbiol 53(2):147–154

    Article  CAS  PubMed  Google Scholar 

  • Yang SJ, Kreiswirth BN, Sakoulas G, Yeaman MR, Xiong YQ, Sawa A, Bayer AS (2009a) Enhanced expression of dltABCD is associated with the development of daptomycin nonsusceptibility in a clinical endocarditis isolate of Staphylococcus aureus. J Infect Dis 200(12):1916–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang SJ, Xiong YQ, Dunman PM, Schrenzel J, Francois P, Peschel A, Bayer AS (2009b) Regulation of mprF in daptomycin-nonsusceptible Staphylococcus aureus strains. Antimicrob Agents Chemother 53(6):2636–2637

    Google Scholar 

  • Yang SJ, Bayer AS, Mishra NN, Meehl M, Ledala N, Yeaman MR, Xiong YQ, Cheung AL (2012) The Staphylococcus aureus two-component sensing system, GraRS, senses and confers resistance to selected cationic antimicrobial peptides. Infect Immun 80(1):74–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yocum RR, Waxman DJ, Rasmussen JR, Strominger JL (1979) Mechanism of penicillin action: penicillin and substrate bind covalently to the same active site serine in two bacterial d-alanine carboxypeptidases. Proc Natl Acad Sci USA 76(6):2730–2734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yocum RR, Rasmussen JR, Strominger JL (1980) The mechanism of action of penicillin. Penicillin acylates the active site of Bacillus stearothermophilus d-alanine carboxypeptidase. J Biol Chem 255(9):3977–3986

    CAS  PubMed  Google Scholar 

  • Yonus H, Neumann P, Zimmermann S, May JJ, Marahiel MA, Stubbs MT (2008) Crystal structure of DltA. Implications for the reaction mechanism of non-ribosomal peptide synthetase adenylation domains. J Biol Chem 283(47):32484–32491

    Article  CAS  PubMed  Google Scholar 

  • Yother J (2011) Capsules of Streptococcus pneumoniae and other bacteria: paradigms for polysaccharide bioynthesis and regulation. Annu Rev Microbiol 65:563–581

    Article  CAS  PubMed  Google Scholar 

  • Young FE (1967) Requirement of glucosylated teichoic acid for adsorption of phage in Bacillus subtilis 168. Proc Natl Acad Sci USA 58(6):2377–2384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zapun A, Vernet T, Pinho MG (2008) The different shapes of cocci. FEMS Microbiol Rev 32(2):345–360

    Article  CAS  PubMed  Google Scholar 

  • Zhang YM, Rock CO (2008) Membrane lipid homeostasis in bacteria. Nat Rev Microbiol 6(3):222–233

    Article  PubMed  CAS  Google Scholar 

  • Zhen M, Jacobsen FE, Giedroc DP (2009) Metal transporters and metal sensors: how coordination chemistry controls bacterial metal homeostasis. Chem Rev 109(10):4644–4681

    Article  CAS  Google Scholar 

  • Zhu W, Clark NC, McDougal LK, Hageman J, McDonald LC, Patel JB (2008) Vancomycin-resistant Staphylococcus aureus isolates associated with Inc18-like vanA plasmids in Michigan. Antimicrob Agents Chemother 52(2):452–457

    Article  CAS  PubMed  Google Scholar 

  • Zipperle GF Jr, Ezzell JW Jr, Doyle RJ (1984) Glucosamine substitution and muramidase susceptibility in Bacillus anthracis. Can J Microbiol 30(5):553–559

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Suzanne Walker is supported by funds from the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under award numbers R01AI099144 and P01AI083214.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne Walker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rajagopal, M., Walker, S. (2015). Envelope Structures of Gram-Positive Bacteria. In: Bagnoli, F., Rappuoli, R. (eds) Protein and Sugar Export and Assembly in Gram-positive Bacteria . Current Topics in Microbiology and Immunology, vol 404. Springer, Cham. https://doi.org/10.1007/82_2015_5021

Download citation

Publish with us

Policies and ethics