Skip to main content

Varicella Zoster Virus Immune Evasion Strategies

  • Chapter
  • First Online:
Varicella-zoster Virus

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 342))

Abstract

The capacity of varicella zoster virus (VZV) to cause varicella (chickenpox) relies upon multiple steps, beginning with inoculation of the host at mucosal sites with infectious virus in respiratory droplets. Despite the presence of a powerful immune defense system, this virus is able to disseminate from the site of initial infection to multiple sites, resulting in the emergence of distinctive cutaneous vesiculopustular lesions. Most recently, it has been proposed that the steps leading to cutaneous infection include VZV infecting human tonsillar CD4+ T cells that express skin homing markers that allow them to transport VZV directly from the lymph node to the skin during the primary viremia. It has also been proposed that dendritic cells (DC) of the respiratory mucosa may be among the first cells to encounter VZV and these cells may transport virus to the draining lymph node. These various virus-host cell interactions would all need to occur in the face of an intact host immune response for the virus to successfully cause disease. Significantly, following primary exposure to VZV, there is a prolonged incubation period before emergence of skin lesions, during which time the adaptive immune response is delayed. For these reasons, it has been proposed that VZV must encode functions which benefit the virus by evading the immune response. This chapter will review the diverse array of immunomodulatory mechanisms identified to date that VZV has evolved to at least transiently limit immune recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abendroth A, Arvin A (1999) Varicella-zoster virus immune evasion. Immunol Rev 168:143–156

    Article  PubMed  CAS  Google Scholar 

  • Abendroth A, Arvin AM (2001) Immune evasion as a pathogenic mechanism of varicella zoster virus. Semin Immunol 13:27–39

    Article  PubMed  CAS  Google Scholar 

  • Abendroth A, Slobedman B, Lee E, Mellins E, Wallace M, Arvin AM (2000) Modulation of major histocompatibility class II protein expression by varicella-zoster virus. J Virol 74:1900–1907

    Article  PubMed  CAS  Google Scholar 

  • Abendroth A, Lin I, Slobedman B, Ploegh H, Arvin AM (2001a) Varicella-zoster virus retains major histocompatibility complex class I proteins in the Golgi compartment of infected cells. J Virol 75:4878–4888

    Article  PubMed  CAS  Google Scholar 

  • Abendroth A, Morrow G, Cunningham AL, Slobedman B (2001b) Varicella-zoster virus infection of human dendritic cells and transmission to T cells: implications for virus dissemination in the host. J Virol 75:6183–6192

    Article  PubMed  CAS  Google Scholar 

  • Ahn K, Meyer TH, Uebel S, Sempe P, Djaballah H, Yang Y, Peterson PA, Fruh K, Tampe R (1996) Molecular mechanism and species specificity of TAP inhibition by herpes simplex virus ICP47. EMBO J 15:3247–3255

    PubMed  CAS  Google Scholar 

  • Ambagala AP, Cohen JI (2007) Varicella-zoster virus IE63, a major viral latency protein, is required to inhibit the alpha interferon-induced antiviral response. J Virol 81:7844–7851

    Article  PubMed  CAS  Google Scholar 

  • Arvin A (2001) Varicella zoster virus. In: Knipe DaHP (ed) Fields virology, vol 2, 4th edn. Lippincott Williams and Wilkins, Philadelphia, pp 2731–2767

    Google Scholar 

  • Arvin AM, Schmidt NJ, Cantell K, Merigan TC (1982) Alpha interferon administration to infants with congenital rubella. Antimicrob Agents Chemother 21:259–261

    Article  PubMed  CAS  Google Scholar 

  • Arvin AM, Koropchak CM, Williams BR, Grumet FC, Foung SK (1986) Early immune response in healthy and immunocompromised subjects with primary varicella-zoster virus infection. J Infect Dis 154:422–429

    Article  PubMed  CAS  Google Scholar 

  • Arvin AM, Moffat JF, Redman R (1996) Varicella-zoster virus: aspects of pathogenesis and host response to natural infection and varicella vaccine. Adv Virus Res 46:263–309

    Article  PubMed  CAS  Google Scholar 

  • Balachandra K, Thawaranantha D, Ayuthaya PI, Bhumisawasdi J, Shiraki K, Yamanishi K (1994) Effects of human alpha, beta and gamma interferons on varicella zoster virus in vitro. Southeast Asian J Trop Med Public Health 25:252–257

    PubMed  CAS  Google Scholar 

  • Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    Article  PubMed  CAS  Google Scholar 

  • Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811

    Article  PubMed  CAS  Google Scholar 

  • Black AP, Jones L, Malavige GN, Ogg GS (2009) Immune evasion during varicella zoster virus infection of keratinocytes. Clin Exp Dermatol 34(8):941–944

    Google Scholar 

  • Bowden RA, Levin MJ, Giller RH, Tubergen DG, Hayward AR (1985) Lysis of varicella zoster virus infected cells by lymphocytes from normal humans and immunosuppressed pediatric leukaemic patients. Clin Exp Immunol 60:387–395

    PubMed  CAS  Google Scholar 

  • Cohen JI (1998) Infection of cells with varicella-zoster virus down-regulates surface expression of class I major histocompatibility complex antigens. J Infect Dis 177:1390–1393

    Article  PubMed  CAS  Google Scholar 

  • Cohen GB, Gandhi RT, Davis DM, Mandelboim O, Chen BK, Strominger JL, Baltimore D (1999) The selective downregulation of class I major histocompatibility complex proteins by HIV-1 protects HIV-infected cells from NK cells. Immunity 10:661–671

    Article  PubMed  CAS  Google Scholar 

  • Colamonici OR, Domanski P (1993) Identification of a novel subunit of the type I interferon receptor localized to human chromosome 21. J Biol Chem 268:10895–10899

    PubMed  CAS  Google Scholar 

  • Collins T, Korman AJ, Wake CT, Boss JM, Kappes DJ, Fiers W, Ault KA, Gimbrone MA Jr, Strominger JL, Pober JS (1984) Immune interferon activates multiple class II major histocompatibility complex genes and the associated invariant chain gene in human endothelial cells and dermal fibroblasts. Proc Natl Acad Sci USA 81:4917–4921

    Article  PubMed  CAS  Google Scholar 

  • Colonna M, Trinchieri G, Liu YJ (2004) Plasmacytoid dendritic cells in immunity. Nat Immunol 5:1219–1226

    Article  PubMed  CAS  Google Scholar 

  • Desloges N, Rahaus M, Wolff MH (2005) Role of the protein kinase PKR in the inhibition of varicella-zoster virus replication by beta interferon and gamma interferon. J Gen Virol 86:1–6

    Article  PubMed  CAS  Google Scholar 

  • Eisfeld AJ, Yee MB, Erazo A, Abendroth A, Kinchington PR (2007) Downregulation of class I major histocompatibility complex surface expression by varicella-zoster virus involves open reading frame 66 protein kinase-dependent and -independent mechanisms. J Virol 81:9034–9049

    Article  PubMed  CAS  Google Scholar 

  • El Mjiyad N, Bontems S, Gloire G, Horion J, Vandevenne P, Dejardin E, Piette J, Sadzot-Delvaux C (2007) Varicella-zoster virus modulates NF-kappaB recruitment on selected cellular promoters. J Virol 81:13092–13104

    Article  PubMed  CAS  Google Scholar 

  • Erazo A, Kinchington PR (2009) Varicella-zoster virus open reading frame 66 protein kinase and its relationship to alphaherpesvirus US3 kinases. Curr Top Microbiol Immunol, DOI 10.1007/82_2009_7

    Google Scholar 

  • Farrell HE, Davis-Poynter NJ (1998) From sabotage to camouflage: viral evasion of cytotoxic T lymphocyte and natural killer cell-mediated immunity. Semin Cell Dev Biol 9:369–378

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Sastre A, Biron CA (2006) Type 1 interferons and the virus–host relationship: a lesson in detente. Science 312:879–882

    Article  PubMed  CAS  Google Scholar 

  • Gerlini G, Mariotti G, Bianchi B, Pimpinelli N (2006) Massive recruitment of type I interferon producing plasmacytoid dendritic cells in varicella skin lesions. J Invest Dermatol 126:507–509

    Article  PubMed  CAS  Google Scholar 

  • Gershon AA, Mervish N, LaRussa P, Steinberg S, Lo SH, Hodes D, Fikrig S, Bonagura V, Bakshi S (1997) Varicella-zoster virus infection in children with underlying human immunodeficiency virus infection. J Infect Dis 176:1496–1500

    Article  PubMed  CAS  Google Scholar 

  • Ghosh S, Hayden MS (2008) New regulators of NF-kappaB in inflammation. Nat Rev Immunol 8:837–848

    Article  PubMed  CAS  Google Scholar 

  • Grose C (1981) Variation on a theme by Fenner: the pathogenesis of chickenpox. Pediatrics 68:735–737

    PubMed  CAS  Google Scholar 

  • Haller O, Kochs G, Weber F (2006) The interferon response circuit: induction and suppression by pathogenic viruses. Virology 344:119–130

    Article  PubMed  CAS  Google Scholar 

  • Hansen TH, Bouvier M (2009) MHC class I antigen presentation: learning from viral evasion strategies. Nat Rev Immunol 9:503–513

    Article  PubMed  CAS  Google Scholar 

  • Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132:344–362

    Article  PubMed  CAS  Google Scholar 

  • Hu H, Cohen JI (2005) Varicella-zoster virus open reading frame 47 (ORF47) protein is critical for virus replication in dendritic cells and for spread to other cells. Virology 337:304–311

    Article  PubMed  CAS  Google Scholar 

  • Huch J, Cunningham A, Arvin A, Nasr N, Santegoets S, Slobedman E, Slobedman B, Abendroth A (2010) Impact of varicella zoster virus on dendritic cell subsets in human skin during natural infection. J Virol 84:4060–4072

    Google Scholar 

  • Ihara T, Starr SE, Ito M, Douglas SD, Arbeter AM (1984) Human polymorphonuclear leukocyte-mediated cytotoxicity against varicella-zoster virus-infected fibroblasts. J Virol 51:110–116

    PubMed  CAS  Google Scholar 

  • Ito M, Watanabe M, Kamiya H, Sakurai M (1996) Inhibition of natural killer (NK) cell activity against varicella-zoster virus (VZV)-infected fibroblasts and lymphocyte activation in response to VZV antigen by nitric oxide-releasing agents. Clin Exp Immunol 106:40–44

    Article  PubMed  CAS  Google Scholar 

  • Jones JO, Arvin AM (2005) Viral and cellular gene transcription in fibroblasts infected with small plaque mutants of varicella-zoster virus. Antiviral Res 68:56–65

    Article  PubMed  CAS  Google Scholar 

  • Jones JO, Arvin AM (2006) Inhibition of the NF-kappaB pathway by varicella-zoster virus in vitro and in human epidermal cells in vivo. J Virol 80:5113–5124

    Article  PubMed  CAS  Google Scholar 

  • Jura E, Chadwick EG, Josephs SH, Steinberg SP, Yogev R, Gershon AA, Krasinski KM, Borkowsky W (1989) Varicella-zoster virus infections in children infected with human immunodeficiency virus. Pediatr Infect Dis J 8:586–590

    Article  PubMed  CAS  Google Scholar 

  • Katze MG, He Y, Gale M Jr (2002) Viruses and interferon: a fight for supremacy. Nat Rev Immunol 2:675–687

    Article  PubMed  CAS  Google Scholar 

  • Klagge IM, Schneider-Schaulies S (1999) Virus interactions with dendritic cells. J Gen Virol 80:823–833

    PubMed  CAS  Google Scholar 

  • Koppers-Lalic D, Reits EA, Ressing ME, Lipinska AD, Abele R, Koch J, Marcondes Rezende M, Admiraal P, van Leeuwen D, Bienkowska-Szewczyk K, Mettenleiter TC, Rijsewijk FA, Tampe R, Neefjes J, Wiertz EJ (2005) Varicelloviruses avoid T cell recognition by UL49.5-mediated inactivation of the transporter associated with antigen processing. Proc Natl Acad Sci USA 102:5144–5149

    Article  PubMed  CAS  Google Scholar 

  • Koppers-Lalic D, Verweij MC, Lipinska AD, Wang Y, Quinten E, Reits EA, Koch J, Loch S, Marcondes Rezende M, Daus F, Bienkowska-Szewczyk K, Osterrieder N, Mettenleiter TC, Heemskerk MH, Tampe R, Neefjes JJ, Chowdhury SI, Ressing ME, Rijsewijk FA, Wiertz EJ (2008) Varicellovirus UL 49.5 proteins differentially affect the function of the transporter associated with antigen processing, TAP. PLoS Pathog 4:e1000080

    Article  PubMed  Google Scholar 

  • Koropchak CM, Solem SM, Diaz PS, Arvin AM (1989) Investigation of varicella-zoster virus infection of lymphocytes by in situ hybridization. J Virol 63:2392–2395

    PubMed  CAS  Google Scholar 

  • Koropchak CM, Graham G, Palmer J, Winsberg M, Ting SF, Wallace M, Prober CG, Arvin AM (1991) Investigation of varicella-zoster virus infection by polymerase chain reaction in the immunocompetent host with acute varicella. J Infect Dis 163:1016–1022

    Article  PubMed  CAS  Google Scholar 

  • Ku CC, Padilla JA, Grose C, Butcher EC, Arvin AM (2002) Tropism of varicella-zoster virus for human tonsillar CD4(+) T lymphocytes that express activation, memory, and skin homing markers. J Virol 76:11425–11433

    Article  PubMed  CAS  Google Scholar 

  • Ku CC, Zerboni L, Ito H, Graham BS, Wallace M, Arvin AM (2004) Varicella-zoster virus transfer to skin by T Cells and modulation of viral replication by epidermal cell interferon-alpha. J Exp Med 200:917–925, Epub 2004 Sep 27

    Article  PubMed  CAS  Google Scholar 

  • Levin MJ, Hayward AR (1996) The varicella vaccine. Prevention of herpes zoster. Infect Dis Clin North Am 10:657–675

    Article  PubMed  CAS  Google Scholar 

  • Liang L, Roizman B (2008) Expression of gamma interferon-dependent genes is blocked independently by virion host shutoff RNase and by US3 protein kinase. J Virol 82:4688–4696

    Article  PubMed  CAS  Google Scholar 

  • Liu YJ (2005) IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23:275–306

    Article  PubMed  CAS  Google Scholar 

  • Miller-Kittrell M, Sparer TE (2009) Feeling manipulated: cytomegalovirus immune manipulation. Virol J 6:4

    Article  PubMed  Google Scholar 

  • Morrow G, Slobedman B, Cunningham AL, Abendroth A (2003) Varicella-zoster virus productively infects mature dendritic cells and alters their immune function. J Virol 77:4950–4959

    Article  PubMed  CAS  Google Scholar 

  • Muller U, Steinhoff U, Reis LF, Hemmi S, Pavlovic J, Zinkernagel RM, Aguet M (1994) Functional role of type I and type II interferons in antiviral defense. Science 264:1918–1921

    Article  PubMed  CAS  Google Scholar 

  • Nikkels AF, Debrus S, Sadzot-Delvaux C, Piette J, Rentier B, Pierard GE (1995) Localization of varicella-zoster virus nucleic acids and proteins in human skin. Neurology 45:S47–S49

    Article  PubMed  CAS  Google Scholar 

  • Nikkels AF, Sadzot-Delvaux C, Pierard GE (2004) Absence of intercellular adhesion molecule 1 expression in varicella zoster virus-infected keratinocytes during herpes zoster: another immune evasion strategy? Am J Dermatopathol 26:27–32

    Article  PubMed  Google Scholar 

  • Pober JS, Gimbrone MA Jr, Cotran RS, Reiss CS, Burakoff SJ, Fiers W, Ault KA (1983) Ia expression by vascular endothelium is inducible by activated T cells and by human gamma interferon. J Exp Med 157:1339–1353

    Article  PubMed  CAS  Google Scholar 

  • Rothlein R, Dustin ML, Marlin SD, Springer TA (1986) A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1. J Immunol 137:1270–1274

    PubMed  CAS  Google Scholar 

  • Sadler AJ, Williams BR (2008) Interferon-inducible antiviral effectors. Nat Rev Immunol 8:559–568

    Article  PubMed  CAS  Google Scholar 

  • Salio M, Palmowski MJ, Atzberger A, Hermans IF, Cerundolo V (2004) CpG-matured murine plasmacytoid dendritic cells are capable of in vivo priming of functional CD8 T cell responses to endogenous but not exogenous antigens. J Exp Med 199:567–579

    Article  PubMed  CAS  Google Scholar 

  • Schaap A, Fortin JF, Sommer M, Zerboni L, Stamatis S, Ku CC, Nolan GP, Arvin AM (2005) T-cell tropism and the role of ORF66 protein in pathogenesis of varicella-zoster virus infection. J Virol 79:12921–12933

    Article  PubMed  CAS  Google Scholar 

  • Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, Ho S, Antonenko S, Liu YJ (1999) The nature of the principal type 1 interferon-producing cells in human blood. Science 284:1835–1837

    Article  PubMed  CAS  Google Scholar 

  • Tomazin R, Hill AB, Jugovic P, York I, van Endert P, Ploegh HL, Andrews DW, Johnson DC (1996) Stable binding of the herpes simplex virus ICP47 protein to the peptide binding site of TAP. EMBO J 15:3256–3266

    PubMed  CAS  Google Scholar 

  • Tortorella D, Gewurz BE, Furman MH, Schust DJ, Ploegh HL (2000) Viral subversion of the immune system. Annu Rev Immunol 18:861–926

    Article  PubMed  CAS  Google Scholar 

  • Valladeau J, Saeland S (2005) Cutaneous dendritic cells. Semin Immunol 17:273–283

    Article  PubMed  CAS  Google Scholar 

  • Verweij MC, Koppers-Lalic D, Loch S, Klauschies F, de la Salle H, Quinten E, Lehner PJ, Mulder A, Knittler MR, Tampe R, Koch J, Ressing ME, Wiertz EJ (2008) The varicellovirus UL49.5 protein blocks the transporter associated with antigen processing (TAP) by inhibiting essential conformational transitions in the 6+6 transmembrane TAP core complex. J Immunol 181:4894–4907

    PubMed  CAS  Google Scholar 

  • Wilkinson GW, Tomasec P, Stanton RJ, Armstrong M, Prod'homme V, Aicheler R, McSharry BP, Rickards CR, Cochrane D, Llewellyn-Lacey S, Wang EC, Griffin CA, Davison AJ (2008) Modulation of natural killer cells by human cytomegalovirus. J Clin Virol 41:206–212

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Wang FS (2005) Plasmacytoid dendritic cells act as the most competent cell type in linking antiviral innate and adaptive immune responses. Cell Mol Immunol 2:411–417

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

AA and BS were supported by NHMRC grant 457356. PRK acknowledges support for this work by Public Health Service NIH grants NS064022 and EY08098, and funds from the Research to Prevent Blindness Inc. and the Eye and Ear Institute of Pittsburgh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allison Abendroth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Abendroth, A., Kinchington, P.R., Slobedman, B. (2010). Varicella Zoster Virus Immune Evasion Strategies. In: Abendroth, A., Arvin, A., Moffat, J. (eds) Varicella-zoster Virus. Current Topics in Microbiology and Immunology, vol 342. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2010_41

Download citation

Publish with us

Policies and ethics