Skip to main content

Large-Scale Population-Based Studies of Blood Metabolome and Brain Health

  • Chapter
  • First Online:
Current Topics in Behavioral Neurosciences

Abstract

Metabolomics technologies enable the quantification of multiple metabolomic measures simultaneously, which provides novel insights into molecular aspects of human health and disease. In large-scale, population-based studies, blood is often the preferred biospecimen. Circulating metabolome may relate to brain health either by affecting or reflecting brain metabolism. Peripheral metabolites may act at or cross the blood–brain barrier and, subsequently, influence brain metabolism, or they may reflect brain metabolism if similar pathways are engaged. Peripheral metabolites may also include those penetrating the circulation from the brain, indicating, for example, brain damage. Most brain health-related metabolomics studies have been conducted in the context of neurodegenerative disorders and cognition, but some studies have also focused on neuroimaging markers of these disorders. Moreover, several metabolomics studies of neurodevelopmental disorders have been performed. Here, we provide a brief background on the types of blood metabolites commonly assessed, and we review the literature describing the relationships between human blood metabolome (n > 50 metabolites) and brain health reported in large-scale studies (n > 500 individuals).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahola-Olli AV, Mustelin L, Kalimeri M, Kettunen J, Jokelainen J, Auvinen J et al (2019) Circulating metabolites and the risk of type 2 diabetes: a prospective study of 11,896 young adults from four Finnish cohorts. Diabetologia 62(12):2298–2309. [Internet]. 2022 Aug 8 [cited 2023 Jan 9]. Available from: https://link.springer.com/article/10.1007/s00125-019-05001-w

    Google Scholar 

  • Amin N, Liu J, Bonnechere B, Mahmoudiandehkordi S, Arnold M, Batra R et al (2023) Interplay of metabolome and gut microbiome in individuals with major depressive disorder vs control individuals. JAMA Psychiatry 80(6):597–609. [Internet]. 2023 Jun 7 [cited 2023 Sep 27]. Available from: https://pubmed.ncbi.nlm.nih.gov/37074710/

    Google Scholar 

  • An Y, Varma VR, Varma S, Casanova R, Dammer E, Pletnikova O et al (2018) Evidence for brain glucose dysregulation in Alzheimer’s disease. Alzheimers Dement 14(3):318–329. [Internet]. 2018 Mar 1 [cited 2023 Jan 3]. Available from: https://pubmed.ncbi.nlm.nih.gov/29055815/

    Google Scholar 

  • Anand NS, Ji Y, Wang G, Hong X, van der Rijn M, Riley A et al (2021) Maternal and cord plasma branched-chain amino acids and child risk of attention-deficit hyperactivity disorder: a prospective birth cohort study. J Child Psychol Psychiatry 62(7):868–875. [Internet]. 2021 Jul 1 [cited 2023 Nov 2]. Available from: https://pubmed.ncbi.nlm.nih.gov/32960988/

    Google Scholar 

  • Andrews SJ, Fulton-Howard B, Goate A (2020) Interpretation of risk loci from genome-wide association studies of Alzheimer’s disease. Lancet Neurol 19(4):326–335. [Internet]. 2020 Apr 1 [cited 2023 Jan 9]. Available from: https://pubmed.ncbi.nlm.nih.gov/31986256/

    Google Scholar 

  • Arnold SE, Arvanitakis Z, Macauley-Rambach SL, Koenig AM, Wang HY, Ahima RS et al (2018) Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat Rev Neurol 14(3):168–181. [Internet]. 2018 Jan 29 [cited 2023 Jan 3]. Available from: https://www.nature.com/articles/nrneurol.2017.185

    Google Scholar 

  • Arnold M, Nho K, Kueider-Paisley A, Massaro T, Huynh K, Brauner B et al (2020) Sex and APOE ε4 genotype modify the Alzheimer’s disease serum metabolome. Nat Commun 11(1) [Internet]. 2020 Dec 1 [cited 2023 Oct 4]. Available from: https://pubmed.ncbi.nlm.nih.gov/32123170/

  • Baloni P, Arnold M, Buitrago L, Nho K, Moreno H, Huynh K et al (2022) Multi-Omic analyses characterize the ceramide/sphingomyelin pathway as a therapeutic target in Alzheimer’s disease. Commun Biol 5(1):1074. [Internet]. 2022 Oct 8 [cited 2023 Sep 27]. Available from: https://pubmed.ncbi.nlm.nih.gov/36209301/

    Google Scholar 

  • Bar-tana J, Ben-shoshan S, Blum J, Migron Y, Hertz R, Bar-tana-rose-khan G et al (1989) Synthesis and hypolipidemic and antidiabetogenic activities of β,β,β’,β’-tetrasubstituted, long-chain dioic acids. J Med Chem 32(9):2072–2084

    Google Scholar 

  • Bazinet RP, Layé S (2014) Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci 15(12):771–785. [Internet]. 2014 Dec 11 [cited 2023 Sep 29]. Available from: https://pubmed.ncbi.nlm.nih.gov/25387473/

    Google Scholar 

  • Bellenguez C, Küçükali F, Jansen IE, Kleineidam L, Moreno-Grau S, Amin N et al (2022) New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat Genet 54(4):412–436. [Internet]. 2022 Apr 1 [cited 2023 Sep 27]. Available from: https://pubmed.ncbi.nlm.nih.gov/35379992/

    Google Scholar 

  • Benarroch EE (2014) Brain glucose transporters. Neurology 82(15):1374–1379. [Internet]. 2014 Apr 15 [cited 2023 Jan 3]. Available from: https://n.neurology.org/content/82/15/1374

    Google Scholar 

  • Bennet AM, Di Angelantonio E, Ye Z, Wensley F, Dahlin A, Ahlbom A et al (2007) Association of apolipoprotein E genotypes with lipid levels and coronary risk. JAMA 298(11):1300–1311. [Internet]. 2007 Sep 19 [cited 2023 Jan 9]. Available from: https://pubmed.ncbi.nlm.nih.gov/17878422/

    Google Scholar 

  • Bentsen H (2017) Dietary polyunsaturated fatty acids, brain function and mental health. Microb Ecol Health Dis 28(sup1):1281916. [Internet]. 2017 Feb 24 [cited 2023 Oct 30]. Available from: /pmc/articles/PMC5445635/

    Google Scholar 

  • Bernath MM, Bhattacharyya S, Nho K, Barupal DK, Fiehn O, Baillie R et al (2020) Serum triglycerides in Alzheimer disease: relation to neuroimaging and CSF biomarkers. Neurology 94(20):E2088–E2098. [Internet]. 2020 May 19 [cited 2023 Oct 4]. Available from: https://pubmed.ncbi.nlm.nih.gov/32358220/

    Google Scholar 

  • Bhagavan NV, Ha CE (2011) Essentials of medical biochemistry. Academic Press, Amsterdam

    Google Scholar 

  • Blanchard JW, Akay LA, Davila-Velderrain J, von Maydell D, Mathys H, Davidson SM et al (2022) APOE4 impairs myelination via cholesterol dysregulation in oligodendrocytes. Nature 611(7937):769–779. [Internet]. 2022 Nov 16 [cited 2023 Jan 9]. Available from: https://www.nature.com/articles/s41586-022-05439-w

    Google Scholar 

  • Bocarsly ME, Fasolino M, Kane GA, Lamarca EA, Kirschen GW, Karatsoreos IN et al (2015) Obesity diminishes synaptic markers, alters microglial morphology, and impairs cognitive function. Proc Natl Acad Sci USA 112(51):15731–15736

    Google Scholar 

  • Bright JJ, Kanakasabai S, Chearwae W, Chakraborty S (2008) PPAR regulation of inflammatory signaling in CNS diseases. PPAR Res

    Google Scholar 

  • Brites P, Waterham HR, Wanders RJA (2004) Functions and biosynthesis of plasmalogens in health and disease. Biochim Biophys Acta Mol Cell Biol Lipids 1636(2–3):219–231

    Google Scholar 

  • Brocchi A, Rebelos E, Dardano A, Mantuano M, Daniele G (2022) Effects of intermittent fasting on brain metabolism. Nutrients 14(6) [Internet]. 2022 Mar 1 [cited 2023 Sep 27]. Available from: https://pubmed.ncbi.nlm.nih.gov/35334932/

  • Bu G (2009) Apolipoprotein E and its receptors in Alzheimer’s disease: pathways, pathogenesis and therapy. Nat Rev Neurosci 10(5):333–344. [Internet]. 2009 Apr 2 [cited 2023 Oct 4] Available from: https://www.nature.com/articles/nrn2620

    Google Scholar 

  • Cao B, Wang D, Pan Z, Brietzke E, McIntyre RS, Musial N et al (2019) Characterizing acyl-carnitine biosignatures for schizophrenia: a longitudinal pre- and post-treatment study. Transl Psychiatry 9(1)

    Google Scholar 

  • Cerghet M, Skoff RP, Swamydas M, Bessert D (2009) Sexual dimorphism in the white matter of rodents. J Neurol Sci 286(1–2):76–80

    Google Scholar 

  • Chang TY, Yamauchi Y, Hasan MT, Chang C (2017) Cellular cholesterol homeostasis and Alzheimer’s disease. J Lipid Res 58(12):2239–2254. [Internet]. 2017 [cited 2023 Sep 27]. Available from: https://pubmed.ncbi.nlm.nih.gov/28298292/

    Google Scholar 

  • Chen CT, Bazinet RP (2015. 2015 Jan 1) β-Oxidation and rapid metabolism, but not uptake regulate brain eicosapentaenoic acid levels. Prostaglandins Leukot Essent Fatty Acids 92:33–40

    Google Scholar 

  • Chen Z, Zhong C (2013) Decoding Alzheimer’s disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies. Prog Neurobiol 108:21–43

    Google Scholar 

  • Chouraki V, Preis SR, Yang Q, Beiser A, Li S, Larson MG et al (2017) Association of amine biomarkers with incident dementia and Alzheimer’s disease in the Framingham study. Alzheimers Dement 13(12):1327–1336. [Internet]. 2017 Dec 1 [cited 2023 Nov 6]. Available from: https://pubmed.ncbi.nlm.nih.gov/28602601/

    Google Scholar 

  • Ciavardelli D, Piras F, Consalvo A, Rossi C, Zucchelli M, Di Ilio C et al (2016) Medium-chain plasma acylcarnitines, ketone levels, cognition, and gray matter volumes in healthy elderly, mildly cognitively impaired, or Alzheimer’s disease subjects. Neurobiol Aging 43:1–12

    Google Scholar 

  • Clark KJ, Makrides M, Neumann MA, Gibson RA (1992) Determination of the optimal ratio of linoleic acid to alpha-Iinolenic acid in infant formulas. J Pediatr 120(4 Pt 2):S151–S158

    Google Scholar 

  • Cox SR, Lyall DM, Ritchie SJ, Bastin ME, Harris MA, Buchanan CR et al (2019) Associations between vascular risk factors and brain MRI indices in UK biobank. Eur Heart J 40(28):2290–2299

    Google Scholar 

  • Cristofano A, Sapere N, La Marca G, Angiolillo A, Vitale M, Corbi G et al (2016) Serum levels of acyl-carnitines along the continuum from normal to Alzheimer’s dementia. PLoS One 11(5):1–16

    Google Scholar 

  • Crook D, Seed M (1990) Endocrine control of plasma lipoprotein metabolism: effects of gonadal steroids. Bailliere Clin Endocrinol Metab 4(4):851–875. [Internet]. 1990 [cited 2023 Oct 4] Available from: https://pubmed.ncbi.nlm.nih.gov/2082909/

    Google Scholar 

  • Cui M, Jiang Y, Zhao Q, Zhu Z, Liang X, Zhang K et al (2020) Metabolomics and incident dementia in older Chinese adults: the Shanghai aging study. Alzheimers Dement 16(5):779–788. [Internet]. 2020 May 1 [cited 2023 Nov 6]. Available from: https://pubmed.ncbi.nlm.nih.gov/32270572/

    Google Scholar 

  • de Leeuw FA, Karamujić-Čomić H, Tijms BM, Peeters CFW, Kester MI, Scheltens P et al (2021) Circulating metabolites are associated with brain atrophy and white matter hyperintensities. Alzheimers Dement 17(2):205–214. [Internet]. 2021 Feb 1 [cited 2023 Sep 27]. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/alz.12180

    Google Scholar 

  • Debette S, Schilling S, Duperron MG, Larsson SC, Markus HS (2019) Clinical significance of magnetic resonance imaging markers of vascular brain injury: a systematic review and meta-analysis. JAMA Neurol 76(1):81–94. [Internet]. 2019 Jan 1 [cited 2023 Jan 2]. Available from: https://pubmed.ncbi.nlm.nih.gov/30422209/

    Google Scholar 

  • Deelen J, Kettunen J, Fischer K, van der Spek A, Trompet S, Kastenmüller G et al (2019) A metabolic profile of all-cause mortality risk identified in an observational study of 44,168 individuals. Nat Commun 10(1):1–8. [Internet]. 2019 Aug 20 [cited 2023 Sep 27]. Available from: https://www.nature.com/articles/s41467-019-11311-9

    Google Scholar 

  • Dehouck B, Fenart L, Dehouck MP, Pierce A, Torpier G, Cecchelli R (1997) A new function for the LDL receptor: transcytosis of LDL across the blood-brain barrier. J Cell Biol 138(4):877–889. [Internet]. [cited 2023 Sep 29]. Available from: http://www.jcb.org

    Google Scholar 

  • Deoni S, Dean D, Joelson S, O’Regan J, Schneider N (2018. Sep 1) Early nutrition influences developmental myelination and cognition in infants and young children. NeuroImage 178:649–659

    Google Scholar 

  • Desale SE, Chinnathambi S (2020) Role of dietary fatty acids in microglial polarization in Alzheimer’s disease. J Neuroinflammation 17(1) [Internet]. 2020 Mar 24 [cited 2023 Sep 28]. Available from: https://pubmed.ncbi.nlm.nih.gov/32209097/

  • Díaz M, Mesa-Herrera F, Marín R (2021) DHA and its elaborated modulation of antioxidant Defenses of the brain: implications in aging and AD neurodegeneration. Antioxidants 10(6):907. [Internet]. 2021 Jun 3 [cited 2023 Oct 5]. Available from: https://www.mdpi.com/2076-3921/10/6/907/htm

    Google Scholar 

  • Dienel GA (2012a) Brain lactate metabolism: the discoveries and the controversies. J Cereb Blood Flow Metab 32(7):1107–1138. [Internet]. 2012 Jul [cited 2023 Sep 27]. Available from: https://pubmed.ncbi.nlm.nih.gov/22186669/

    Google Scholar 

  • Dienel GA (2012b) Fueling and imaging brain activation. ASN Neuro 4(5):267–321

    Google Scholar 

  • Dungan KM (2008) 1,5-anhydroglucitol (GlycoMark™) as a marker of short-term glycemic control and glycemic excursions. Expert Rev Mol Diagn 8(1):9–19

    Google Scholar 

  • Dunn WB, Broadhurst DI, Atherton HJ, Goodacre R, Griffin JL (2010) Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem Soc Rev 40(1):387–426. [Internet]. 2010 Dec 15 [cited 2023 Oct 5]. Available from: https://pubs.rsc.org/en/content/articlehtml/2011/cs/b906712b

    Google Scholar 

  • Ebright B, Assante I, Poblete RA, Wang S, Duro MV, Bennett DA et al (2022) Eicosanoid lipidome activation in post-mortem brain tissues of individuals with APOE4 and Alzheimer’s dementia. Alzheimers Res Ther 14(1):1–13. [Internet]. 2022 Dec 1 [cited 2023 Sep 27]. Available from: https://alzres.biomedcentral.com/articles/10.1186/s13195-022-01084-7

    Google Scholar 

  • Edmond J (2001) Essential polyunsaturated fatty acids and the barrier to the brain: the components of a model for transport. J Mol Neurosci 16(2–3):181–193. [Internet]. [cited 2023 Sep 29]. Available from: https://link.springer.com/article/10.1385/JMN:16:2-3:181

    Google Scholar 

  • Eelen G, de Zeeuw P, Treps L, Harjes U, Wong BW, Carmeliet P (2018) Endothelial cell metabolism. Physiol Rev 98(1):3–58

    Google Scholar 

  • Fernstrom JD (2005) Branched-chain amino acids and brain function. J Nutr 135(6):1539S–1546S

    Google Scholar 

  • Fraser T, Tayler H, Love S (2010) Fatty acid composition of frontal, temporal and parietal neocortex in the normal human brain and in Alzheimer’s disease. Neurochem Res 35(3):503–513

    Google Scholar 

  • Galea I (2021) The blood–brain barrier in systemic infection and inflammation. Cell Mol Immunol 18(11):2489–2501

    Google Scholar 

  • Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA et al (2006) Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Circulation 21(1):1–6

    Google Scholar 

  • Hamilton JA, Hillard CJ, Spector AA, Watkins PA (2007) Brain uptake and utilization of fatty acids, lipids and lipoproteins: application to neurological disorders. J Mol Neurosci 33(1):2–11

    Google Scholar 

  • Harayama T, Riezman H (2018) Understanding the diversity of membrane lipid composition. Nat Rev Mol Cell Biol 19(5):281–296. [Internet]. 2018 Feb 7 [cited 2022 Dec 29]. Available from: https://www.nature.com/articles/nrm.2017.138

    Google Scholar 

  • Hardie RC, Muallem S (2009) Lipids in Ca2+ signalling-An introduction. Cell Calcium 45(6):517–520

    Google Scholar 

  • Harshfield EL, Markus HS (2023) Association of Baseline Metabolomic Profiles with Incident Stroke and Dementia and with imaging markers of cerebral small vessel disease. Neurology 101(5):E489–E501. [Internet] 2023 Aug 1 [cited 2023 Sep 27]. Available from: https://pubmed.ncbi.nlm.nih.gov/37290969/

    Google Scholar 

  • Harshfield EL, Sands CJ, Tuladhar AM, De Leeuw FE, Lewis MR, Markus HS (2022) Metabolomic profiling in small vessel disease identifies multiple associations with disease severity. Brain 145(7):2461–2471. [Internet]. 2022 Jul 29 [cited 2023 Nov 3]. Available from: https://doi.org/10.1093/brain/awac041

    Google Scholar 

  • Helbecque N, Berr C, Cottel D, Fromentin-David I, Sazdovitch V, Ricolfi F et al (2001) VLDL receptor polymorphism, cognitive impairment, and dementia. Neurology 56(9):1183–1188

    Google Scholar 

  • Herz J (2003) LRP: a bright beacon at the blood-brain barrier. J Clin Invest 112(10):1483–1485

    Google Scholar 

  • Holmes MV, Millwood IY, Kartsonaki C, Hill MR, Bennett DA, Boxall R et al (2018. Feb 13) Lipids, lipoproteins, and metabolites and risk of myocardial infarction and stroke. J Am Coll Cardiol 71(6):620–632

    Google Scholar 

  • Hoogland ICM, Houbolt C, van Westerloo DJ, van Gool WA, van de Beek D (2015) Systemic inflammation and microglial activation: systematic review of animal experiments. J Neuroinflammation 12(1):1–13

    Google Scholar 

  • Huo Z, Yu L, Yang J, Zhu Y, Bennett DA, Zhao J (2020. Feb 1) Brain and blood metabolome for Alzheimer’s dementia: findings from a targeted metabolomics analysis. Neurobiol Aging 86:123–133

    Google Scholar 

  • Huynh K, Lim WLF, Giles C, Jayawardana KS, Salim A, Mellett NA et al (2020) Concordant peripheral lipidome signatures in two large clinical studies of Alzheimer’s disease. Nat Commun 11(1):1–11. [Internet]. 2020 Nov 10 [cited 2023 Jan 2]. Available from: https://www.nature.com/articles/s41467-020-19473-7

    Google Scholar 

  • Jensen NJ, Wodschow HZ, Nilsson M, Rungby J (2020) Effects of ketone bodies on brain metabolism and function in neurodegenerative diseases. Int J Mol Sci 21(22):1–17

    Google Scholar 

  • Jones DP, Mason HS (1978) Metabolic hypoxia: accumulation of tyrosine metabolites in hepatocytes at low pO2. Biochem Biophys Res Commun 80(3):477–483

    Google Scholar 

  • Jones LL, McDonald DA, Borum PR (2010) Acylcarnitines: role in brain. Prog Lipid Res 49(1):61–75

    Google Scholar 

  • Julia TCW, Qian L, Pipalia NH, Chao MJ, Liang SA, Shi Y et al (2022) Cholesterol and matrisome pathways dysregulated in astrocytes and microglia. Cell 185(13):2213–2233.e25. [Internet]. 2022 Jun 23 [cited 2023 Jan 9]. Available from: https://pubmed.ncbi.nlm.nih.gov/35750033/

    Google Scholar 

  • Karjalainen JP, Mononen N, Hutri-Kähönen N, Lehtimäki M, Juonala M, Ala-Korpela M et al (2019) The effect of apolipoprotein E polymorphism on serum metabolome-a population-based 10-year follow-up study. 9(1) [cited 2023 Oct 4]; Available from: https://doi.org/10.1038/s41598-018-36450-9

  • Kellar D, Craft S (2020. Sep 1) Brain insulin resistance in Alzheimer’s disease and related disorders: mechanisms and therapeutic approaches. Lancet Neurol 19(9):758–766

    Google Scholar 

  • Kris-Etherton PM, Hecker KD, Binkoski AE (2004) Polyunsaturated fatty acids and cardiovascular health. Nutr Rev 62(11):414–426

    Google Scholar 

  • Krishnadas R, McLean J, Batty DG, Burns H, Deans KA, Ford I et al (2013) Cardio-metabolic risk factors and cortical thickness in a neurologically healthy male population: results from the psychological, social and biological determinants of ill health (pSoBid) study. Neuroimage Clin 2(1):646–657

    Google Scholar 

  • Kucharcyk W, Macdonald M, Stanisz GHRM (1994) Relaxivity at MR imaging: of cerebrosides and pH. Radiology:521–529

    Google Scholar 

  • Lalić-Popović M, Vasović V, Milijašević B, Goločorbin-Kon S, Al-Salami H, Mikov M (2013) Deoxycholic acid as a modifier of the permeation of gliclazide through the blood brain barrier of a rat. J Diabetes Res 598603:1–9

    Google Scholar 

  • Lancaster GI, Langley KG, Berglund NA, Kammoun HL, Reibe S, Estevez E et al (2018) Evidence that TLR4 is not a receptor for saturated fatty acids but mediates lipid-induced inflammation by reprogramming macrophage metabolism. Cell Metab 27(5):1096–1110.e5. [Internet]. 2018 May 1 [cited 2023 Sep 28]. Available from: http://www.cell.com/article/S155041311830192X/fulltext

    Google Scholar 

  • Lehmann R (2021) From bedside to bench-practical considerations to avoid pre-analytical pitfalls and assess sample quality for high-resolution metabolomics and lipidomics analyses of body fluids. Anal Bioanal Chem. [cited 2023 Oct 4] Available from: https://doi.org/10.1007/s00216-021-03450-0

  • Li D, Misialek JR, Boerwinkle E, Gottesman RF, Sharrett AR, Mosley TH et al (2016) Plasma phospholipids and prevalence of mild cognitive impairment and/or dementia in the ARIC neurocognitive study (ARIC-NCS). Alzheimers Dement (Amst) 3:73–82. [Internet]. 2016 [cited 2023 Sep 29]. Available from: https://pubmed.ncbi.nlm.nih.gov/27408938/

    Google Scholar 

  • Lian F, Hu KQ, Russell RM, Wang XD (2006) Β-cryptoxanthin suppresses the growth of immortalized human bronchial epithelial cells and non-small-cell lung cancer cells and up-regulates retinoic acid receptor Β expression. Int J Cancer 119(9):2084–2089

    Google Scholar 

  • Lind MV, Savolainen OI, Ross AB (2016) The use of mass spectrometry for analysing metabolite biomarkers in epidemiology: methodological and statistical considerations for application to large numbers of biological samples. Eur J Epidemiol 31(8):717–733. [Internet]. 2016 Aug 1 [cited 2023 Oct 5]. Available from: https://pubmed.ncbi.nlm.nih.gov/27230258/

    Google Scholar 

  • Lu R, Aziz NA, Diers K, Stöcker T, Reuter M, MMB B (2021) Insulin resistance accounts for metabolic syndrome-related alterations in brain structure. Hum Brain Mapp 42(8):2434–2444. [Internet]. 2021 Jun 1 [cited 2023 Jan 3]. Available from: https://onlinelibrary.wiley.com/doi/full/10.1002/hbm.25377

    Google Scholar 

  • Luukkonen PK, Zhou Y, Nidhina Haridas PA, Dwivedi OP, Hyötyläinen T, Ali A et al (2017) Impaired hepatic lipid synthesis from polyunsaturated fatty acids in TM6SF2 E167K variant carriers with NAFLD. J Hepatol 67(1):128–136

    Google Scholar 

  • Machado-Fragua MD, Landré B, Chen M, Fayosse A, Dugravot A, Kivimaki M et al (2022) Circulating serum metabolites as predictors of dementia: a machine learning approach in a 21-year follow-up of the Whitehall II cohort study. BMC Med 20(1):1–12. [Internet]. 2022 Dec 1 [cited 2023 Jan 3]. Available from: https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-022-02519-6

    Google Scholar 

  • Mahmoudian Dehkordi S, Arnold M, Nho K, Ahmad S, Jia W, Xie G et al (2019) Altered bile acid profile associates with cognitive impairment in Alzheimer’s disease-An emerging role for gut microbiome. Alzheimers Dement 15(1):76–92. [Internet]. 2019 Jan 1 [cited 2023 Nov 3]. Available from: https://pubmed.ncbi.nlm.nih.gov/30337151/

    Google Scholar 

  • Mapstone M, Cheema AK, Fiandaca MS, Zhong X, Mhyre TR, Macarthur LH et al (2014) Plasma phospholipids identify antecedent memory impairment in older adults. Nat Med 20(4):415–418. [Internet]. 2014 Mar 9 [cited 2023 Sep 27]. Available from: https://www.nature.com/articles/nm.3466

    Google Scholar 

  • Marais AD (2019) Apolipoprotein E in lipoprotein metabolism, health and cardiovascular disease. Pathology 51(2):165–176

    Google Scholar 

  • Marathe GK, Pandit C, Lakshmikanth CL, Chaithra VH, Jacob SP, D’Souza CJM (2014) To hydrolyze or not to hydrolyze: the dilemma of platelet-activating factor acetylhydrolase. J Lipid Res 55(9):1847–1854. [Internet]. 2014 Sep 1 [cited 2023 Jan 2]. Available from: http://www.jlr.org/article/S0022227520356601/fulltext

    Google Scholar 

  • Marx W, Thomson S, O’Hely M, Symeonides C, Collier F, Tang MLK et al (2022) Maternal inflammatory and omega-3 fatty acid pathways mediate the association between socioeconomic disadvantage and childhood cognition. Brain Behav Immun 100:211–218. [Internet]. 2022 Feb 1 [cited 2023 Sep 26]. Available from: https://pubmed.ncbi.nlm.nih.gov/34896180/

    Google Scholar 

  • Mattson MP, Moehl K, Ghena N, Schmaedick M, Cheng A (2018) Intermittent metabolic switching, neuroplasticity and brain health. Nat Rev Neurosci 19(2):81–94. [Internet]. 2018 Feb 1 [cited 2023 Sep 27]. Available from: https://pubmed.ncbi.nlm.nih.gov/29321682/

    Google Scholar 

  • Mauch DH, Nägier K, Schumacher S, Göritz C, Müller EC, Otto A et al (2001) CNS synaptogenesis promoted by glia-derived cholesterol. Science (1979) 294(5545):1354–1357

    Google Scholar 

  • McCullough ML, Maliniak ML, Stevens VL, Carter BD, Hodge RA, Wang Y (2019) Metabolomic markers of healthy dietary patterns in US postmenopausal women. Am J Clin Nutr 109(5):1439–1451

    Google Scholar 

  • Menni C, Graham D, Kastenmüller G, Alharbi NHJ, Alsanosi SM, Mcbride M et al (2015) Metabolomic identification of a novel pathway of blood pressure regulation involving hexadecanedioate. Hypertension 66(2):422–429

    Google Scholar 

  • Mergenthaler P, Lindauer U, Dienel GA, Meisel A (2013) Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci 36(10):587. [Internet]. 2013 Oct [cited 2023 Oct 5]. Available from: /pmc/articles/PMC3900881/

    Google Scholar 

  • Mertens KL, Kalsbeek A, Soeters MR, Eggink HM (2017) Bile acid signaling pathways from the enterohepatic circulation to the central nervous system. Front Neurosci 11:617

    Google Scholar 

  • Mielke MM, Haughey NJ, Bandaru VVR, Weinberg DD, Darby E, Zaidi N et al (2011) Plasma sphingomyelins are associated with cognitive progression in Alzheimer’s disease. J Alzheimers Dis 27(2):259–269. [Internet]. 2011 [cited 2023 Sep 29]. Available from: https://pubmed.ncbi.nlm.nih.gov/21841258/

    Google Scholar 

  • Millington DS, Stevens RD (2011) Acylcarnitines: analysis in plasma and whole blood using tandem mass spectrometry. Methods Mol Biol 708:55–72

    Google Scholar 

  • Monteiro-Cardoso VF, Corlianò M, Singaraja RR (2021) Bile acids: a Communication Channel in the gut-brain Axis. NeuroMolecular Med 23(1):99–117

    Google Scholar 

  • Nakamura MT, Cheon Y, Li Y, Nara TY (2004) Mechanisms of regulation of gene expression by fatty acids. Lipids 39(11):1077–1083. [Internet]. 2004 Nov 1 [cited 2023 Sep 28]. Available from: https://onlinelibrary.wiley.com/doi/full/10.1007/s11745-004-1333-0

    Google Scholar 

  • Neuffer J, González-Domínguez R, Lefèvre-Arbogast S, Low DY, Driollet B, Helmer C et al (2022) Exploration of the gut-brain Axis through metabolomics identifies serum propionic acid associated with higher cognitive decline in older persons. Nutrients 14(21) [Internet]. 2022 Nov 1 [cited 2023 Sep 27]. Available from: https://pubmed.ncbi.nlm.nih.gov/36364950/

  • Nho K, Kueider-Paisley A, MahmoudianDehkordi S, Arnold M, Risacher SL, Louie G et al (2019) Altered bile acid profile in mild cognitive impairment and Alzheimer’s disease: relationship to neuroimaging and CSF biomarkers. Alzheimers Dement 15(2):232–244. [Internet]. 2019 Feb 1 [cited 2023 Nov 3]. Available from: https://onlinelibrary.wiley.com/doi/full/10.1016/j.jalz.2018.08.012

    Google Scholar 

  • Nishitsuji K, Hosono T, Nakamura T, Bu G, Michikawa M (2011. May 20) Apolipoprotein E regulates the integrity of tight junctions in an isoform-dependent manner in an in vitro blood-brain barrier model. J Biol Chem 286(20):17536–17542

    Google Scholar 

  • Oliveira TG, Di Paolo G (2010) Phospholipase D in brain function and Alzheimer’s disease. Biochim Biophys Acta 1801(8):799–805. [Internet]. 2010 Aug [cited 2023 Sep 27]. Available from: https://pubmed.ncbi.nlm.nih.gov/20399893/

    Google Scholar 

  • Ouzzine M, Gulberti S, Ramalanjaona N, Magdalou J, Fournel-Gigleux S (2014) The UDP-glucuronosyltransferases of the blood-brain barrier: their role in drug metabolism and detoxication. Front Cell Neurosci 8(October):1–12

    Google Scholar 

  • Palacios N, Lee JS, Scott T, Kelly RS, Bhupathiraju SN, Bigornia SJ et al (2020) Circulating plasma metabolites and cognitive function in a Puerto Rican cohort. J Alzheimers Dis 76(4):1267–1280. [Internet]. 2020 [cited 2023 Nov 6]. Available from: https://pubmed.ncbi.nlm.nih.gov/32716356/

    Google Scholar 

  • Pan X, Fei G, Lu J, Jin L, Pan S, Chen Z et al (2016) Measurement of blood thiamine metabolites for Alzheimer’s disease diagnosis. EBioMedicine 3:155–162

    Google Scholar 

  • Panov A, Orynbayeva Z, Vavilin V, Lyakhovich V (2014) Fatty acids in energy metabolism of the central nervous system. Biomed Res Int 2014:472459

    Google Scholar 

  • Pattison DJ, Symmons DPM, Lunt M, Welch A, Bingham SA, Day NE et al (2005) Dietary β-cryptoxanthin and inflammatory polyarthritis: results from a population-based prospective study. Am J Clin Nutr 82(2):451–455

    Google Scholar 

  • Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BAH et al (2016) Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535(7612):376–381

    Google Scholar 

  • Pesaresi M, Soon-Shiong R, French L, Kaplan DR, Miller FD, Paus T (2015) Axon diameter and axonal transport: in vivo and in vitro effects of androgens. NeuroImage 115:191–201

    Google Scholar 

  • Peters SG, Pomare EW, Fisher CA (1992) Portal and peripheral blood short chain fatty acid concentrations after caecal lactulose instillation at surgery. Gut 33(9):1249–1252. [Internet]. [cited 2023 Sep 27]. Available from: https://pubmed.ncbi.nlm.nih.gov/1427380/

    Google Scholar 

  • Poitelon Y, Kopec AM, Belin S (2020) Myelin fat facts: An overview of lipids and fatty acid metabolism. Cell 9(4) [Internet]. 2020 Mar 27 [cited 2023 Sep 27]. Available from: https://pubmed.ncbi.nlm.nih.gov/32230947/

  • Prince N, Chu SH, Chen Y, Mendez KM, Hanson E, Green-Snyder LA et al (2023) Phenotypically driven subgroups of ASD display distinct metabolomic profiles. Brain Behav Immun 111:21–29. [Internet]. 2023 Jul 1 [cited 2023 Oct 2]. Available from: https://pubmed.ncbi.nlm.nih.gov/37004757/

    Google Scholar 

  • Psychogios N, Hau DD, Peng J, Guo AC, Mandal R, Bouatra S et al (2011) The human serum metabolome. PLoS One 6(2):e16957

    Google Scholar 

  • Qi Y, Jiang C, Cheng J, Krausz KW, Li T, Ferrell JM et al (2015) Bile acid signaling in lipid metabolism: metabolomic and lipidomic analysis of lipid and bile acid markers linked to anti-obesity and anti-diabetes in mice. Biochim Biophys Acta Mol Cell Biol Lipids 1851(1):19–29

    Google Scholar 

  • Quehenberger O, Dennis EA (2011) The human plasma lipidome. N Engl J Med 365(19):1812–1823

    Google Scholar 

  • Quinn M, McMillin M, Galindo C, Frampton G, Pae HY, DeMorrow S (2014) Bile acids permeabilize the blood brain barrier after bile duct ligation in rats via Rac1-dependent mechanisms. Dig Liver Dis 46(6):527–534

    Google Scholar 

  • Raheem J, Sliz E, Shin J, Holmes MV, Gaudet D, Paus T et al (2022) Visceral adiposity is associated with metabolic profiles predictive of type 2 diabetes and myocardial infarction. Commun Med 2(81):1–7

    Google Scholar 

  • Rapoport SI, Rao JS, Igarashi M (2007) Brain metabolism of nutritionally essential polyunsaturated fatty acids depends on both the diet and the liver. Prostaglandins Leukot Essent Fatty Acids 77(5–6):251–261

    Google Scholar 

  • Ridone P, Grage SL, Patkunarajah A, Battle AR, Ulrich AS, Martinac B (2018) “Force-from-lipids” gating of mechanosensitive channels modulated by PUFAs. J Mech Behav Biomed Mater 79(December 2017):158–167

    Google Scholar 

  • Rom S, Heldt NA, Gajghate S, Seliga A, Reichenbach NL, Persidsky Y (2020) Hyperglycemia and advanced glycation end products disrupt BBB and promote occludin and claudin-5 protein secretion on extracellular microvesicles. Sci Rep 10(1):1–14. [Internet]. 2020 Apr 29 [cited 2023 Jan 3]. Available from: https://www.nature.com/articles/s41598-020-64349-x

    Google Scholar 

  • Sanchez-Mejia RO, Newman JW, Toh S, Yu GQ, Zhou Y, Halabisky B et al (2008) Phospholipase A2 reduction ameliorates cognitive deficits in a mouse model of Alzheimer’s disease. Nat Neurosci 11(11):1311–1318. [Internet], 2008 Oct 19 [cited 2023 Sep 27]. Available from: https://www.nature.com/articles/nn.2213

    Google Scholar 

  • Sas KM, Karnovsky A, Michailidis G, Pennathur S (2015) Metabolomics and diabetes: analytical and computational approaches. Diabetes 64(3):718–732. [Internet]. 2015 Mar 1 [cited 2023 Oct 5] Available from: https://pubmed.ncbi.nlm.nih.gov/25713200/

    Google Scholar 

  • Schaefer EJ, Bongard V, Beiser AS, Lamon-Fava S, Robins SJ, Au R et al (2006) Plasma phosphatidylcholine docosahexaenoic acid content and risk of dementia and Alzheimer disease: the Framingham heart study. Arch Neurol 63(11):1545–1550. [Internet]. Nov [cited 2023 Sep 29]. Available from: https://pubmed.ncbi.nlm.nih.gov/17101822/

    Google Scholar 

  • Schmitt S, Cantuti Castelvetri L, Simons M (2015. Aug 1) Metabolism and functions of lipids in myelin. Biochim Biophys Acta (BBA) - Mol Cell Biol Lipids 1851(8):999–1005

    Google Scholar 

  • Schwarcz R (2016) Kynurenines and glutamate: multiple links and therapeutic implications, Advances in pharmacology, vol 76, 1st edn. Elsevier Inc., Burlington, pp 13–37

    Google Scholar 

  • Schwarz NF, Nordstrom LK, Pagen LHG, Palombo DJ, Salat DH, Milberg WP et al (2018) Differential associations of metabolic risk factors on cortical thickness in metabolic syndrome. Neuroimage Clin 17(April 2017):98–108

    Google Scholar 

  • Sebastiani P, Song Z, Ellis D, Tian Q, Schwaiger-Haber M, Stancliffe E et al (2023) A metabolomic signature of the APOE2 allele. Geroscience 45(1):415–426. [Internet]. 2023 Feb 1 [cited 2023 Oct 4] Available from: https://link.springer.com/article/10.1007/s11357-022-00646-9

    Google Scholar 

  • Sevastou I, Kaffe E, Mouratis MA, Aidinis V (2013. Jan 1) Lysoglycerophospholipids in chronic inflammatory disorders: the PLA2/LPC and ATX/LPA axes. Biochim Biophys Acta (BBA) - Mol Cell Biol Lipids 1831(1):42–60

    Google Scholar 

  • Shi Z, Ren H, Luo C, Yao X, Li P, He C et al (2016. Nov 1) Enriched endogenous Omega-3 polyunsaturated fatty acids protect cortical neurons from experimental ischemic injury. Mol Neurobiol 53(9):6482–6488

    Google Scholar 

  • Shin J, Pelletier S, Richer L, Pike GB, Gaudet D, Paus T et al (2020) Adiposity-related insulin resistance and thickness of the cerebral cortex in middle-aged adults. J Neuroendocrinol 32(12):e12921. [Internet]. 2020 Dec 1 [cited 2023 Jan 3]. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/jne.12921

    Google Scholar 

  • Shin J, Patel Y, Parker N, Paus T, Pausova Z (2023) Prediabetic HbA1c and cortical atrophy: underlying neurobiology. Diabetes Care. [Internet]. 2023 Oct 12 [cited 2023 Nov 2]; Available from: https://doi.org/10.2337/dc23-1105

  • Sienski G, Narayan P, Bonner JM, Kory N, Boland S, Arczewska AA et al (2021) APOE4 disrupts intracellular lipid homeostasis in human iPSC-derived glia. Sci Transl Med 13(583) [Internet]. 2021 Mar 3 [cited 2023 Jan 9]. Available from: https://pubmed.ncbi.nlm.nih.gov/33658354/

  • Silva YP, Bernardi A, Frozza RL (2020) The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol (Lausanne) 11:25. Internet]. 2020 Jan 31 [cited 2023 Sep 27]. Available from: /pmc/articles/PMC7005631/

    Google Scholar 

  • Sims R, Van Der Lee SJ, Naj AC, Bellenguez C, Badarinarayan N, Jakobsdottir J et al (2017) Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat Genet 49(9):1373–1384. [Internet]. 2017 Jul 17 [cited 2023 Sep 27]. Available from: https://www.nature.com/articles/ng.3916

    Google Scholar 

  • Sliz E, Shin J, Syme C, Black S, Seshadri S, Paus T et al (2020) Thickness of the cerebral cortex shows positive association with blood levels of triacylglycerols carrying 18-carbon fatty acids. Commun Biol 3(1) [Internet]. 2020 Dec 1 [cited 2023 Jan 14]. Available from: https://pubmed.ncbi.nlm.nih.gov/32820227/

  • Sliz E, Shin J, Syme C, Patel Y, Parker N, Richer L et al (2021) A variant near DHCR24 associates with microstructural properties of white matter and peripheral lipid metabolism in adolescents. Mol Psychiatry 26(8):3795–3805. [Internet]. 2021 Aug 1 [cited 2023 Nov 6]. Available from: https://pubmed.ncbi.nlm.nih.gov/31900429/

    Google Scholar 

  • Sliz E, Shin J, Ahmad S, Williams DM, Frenzel S, Gauß F et al (2022) Circulating metabolome and White matter hyperintensities in women and men. Circulation 145(14):1040–1052. [Internet]. 2019 Jan 1 [cited 2023 Jan 2]. Available from: https://www.ahajournals.org/doi/abs/10.1161/CIRCULATIONAHA.121.056892

    Google Scholar 

  • Soininen P, Kangas AJ, Würtz P, Suna T, Ala-Korpela M (2015) Quantitative serum nuclear magnetic resonance metabolomics in cardiovascular epidemiology and genetics. Circ Cardiovasc Genet 8(1):192–206. [Internet]. 2015 Feb 4 [cited 2023 Oct 5]. Available from: https://pubmed.ncbi.nlm.nih.gov/25691689/

    Google Scholar 

  • Stanhewicz AE, Wenner MM, Stachenfeld NS (2018) Sex differences in endothelial function important to vascular health and overall cardiovascular disease risk across the lifespan. Am J Physiol Heart Circ Physiol 315(6):H1569–H1588

    Google Scholar 

  • Sun D, Tiedt S, Yu B, Jian X, Gottesman RF, Mosley TH et al (2019) A prospective study of serum metabolites and risk of ischemic stroke. Neurology 92(16):E1890–E1898. [Internet]. 2019 Apr 16 [cited 2023 Nov 6]. Available from: https://pubmed.ncbi.nlm.nih.gov/30867269/

    Google Scholar 

  • Sun Y, Guo Y, Li HQ, Tan L, Feng JF, Cheng W et al (2023) Associations of circulating metabolites with cerebral white matter hyperintensities. J Neurochem 166(2):414–423. [Internet]. 2023 Jul 1 [cited 2023 Sep 27]. Available from: https://pubmed.ncbi.nlm.nih.gov/37222503/

    Google Scholar 

  • Sundaram JR, Chan ES, Poore CP, Pareek TK, Cheong WF, Shui G et al (2012) Cdk5/p25-induced cytosolic PLA2-mediated lysophosphatidylcholine production regulates neuroinflammation and triggers neurodegeneration. J Neurosci 32(3):1020–1034. [Internet]. 2012 Jan 18 [cited 2023 Sep 27]. Available from: https://pubmed.ncbi.nlm.nih.gov/22262900/

    Google Scholar 

  • Syme C, Czajkowski S, Shin J, Abrahamowicz M, Leonard G, Perron M et al (2016) Glycerophosphocholine metabolites and cardiovascular disease risk factors in adolescents: a cohort study. Circulation 134(21):1629–1636. [Internet]. 2016 Nov 22 [cited 2023 Sep 27]. Available from: https://www.ahajournals.org/doi/abs/10.1161/circulationaha.116.022993

    Google Scholar 

  • Syme C, Pelletier S, Shin J, Abrahamowicz M, Leonard G, Perron M et al (2019) Visceral fat-related systemic inflammation and the adolescent brain: a mediating role of circulating glycerophosphocholines. Int J Obes 43(6):1223–1230. [Internet]. 2019 Jun 1 [cited 2023 Sep 27]. Available from: https://pubmed.ncbi.nlm.nih.gov/30206338/

    Google Scholar 

  • Tan ZS, Harris WS, Beiser AS, Au R, Himali JJ, Debette S et al (2012) Red blood cell ω-3 fatty acid levels and markers of accelerated brain aging. Neurology 78(9):658–664. [Internet]. 2012 Feb 28 [cited 2023 Sep 29]. Available from: https://pubmed.ncbi.nlm.nih.gov/22371413/

    Google Scholar 

  • Thompson DK, Sloane R, Bain JR, Stevens RD, Newgard CB, Pieper CF et al (2012) Daily variation of serum Acylcarnitines and amino acids. Metabolomics 8(4):556–565

    Google Scholar 

  • Tian Q, Mitchell BA, Erus G, Davatzikos C, Moaddel R, Resnick SM et al (2023. Sep 1) Sex differences in plasma lipid profiles of accelerated brain aging. Neurobiol Aging 129:178–184

    Google Scholar 

  • Toledo JB, Arnold M, Kastenmüller G, Chang R, Baillie RA, Han X et al (2017) Metabolic network failures in Alzheimer’s disease: a biochemical road map. Alzheimers Dement 13(9):965–984. [Internet]. 2017 Sep 1 [cited 2023 Jan 2]. Available from: https://onlinelibrary.wiley.com/doi/full/10.1016/j.jalz.2017.01.020

    Google Scholar 

  • Tortosa-Caparrós E, Navas-Carrillo D, Marín F, Orenes-Piñero E (2017) Anti-inflammatory effects of omega 3 and omega 6 polyunsaturated fatty acids in cardiovascular disease and metabolic syndrome. Crit Rev Food Sci Nutr 57(16):3421–3429

    Google Scholar 

  • Tynkkynen J, Chouraki V, van der Lee SJ, Hernesniemi J, Yang Q, Li S et al (2018) Association of branched-chain amino acids and other circulating metabolites with risk of incident dementia and Alzheimer’s disease: a prospective study in eight cohorts. Alzheimers Dementx 14(6):723–733. [Internet]. 2018 Jun 1 [cited 2023 Oct 4]. Available from: https://pubmed.ncbi.nlm.nih.gov/29519576/

    Google Scholar 

  • van der Lee SJ, Teunissen CE, Pool R, Shipley MJ, Teumer A, Chouraki V et al (2018) Circulating metabolites and general cognitive ability and dementia: evidence from 11 cohort studies. Alzheimers Dement 14(6):707–722. [Internet]. 2018 Jun 1 [cited 2023 Oct 4]. Available from: https://pubmed.ncbi.nlm.nih.gov/29316447/

    Google Scholar 

  • Van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 9(2):112–124

    Google Scholar 

  • Victor MB, Leary N, Luna X, Meharena HS, Scannail AN, Bozzelli PL et al (2022. Aug 4) Lipid accumulation induced by APOE4 impairs microglial surveillance of neuronal-network activity. Cell Stem Cell 29(8):1197–1212.e8

    Google Scholar 

  • Vojinovic D, Kalaoja M, Trompet S, Fischer K, Shipley MJ, Li S et al (2020) Association of circulating metabolites in plasma or serum and risk of stroke: meta-analysis from seven prospective cohorts. Neurology 96(8):E1110–E1123. [Internet]. 2020 Feb 23 [cited 2023 Nov 6]. Available from: https://pubmed.ncbi.nlm.nih.gov/33268560/

    Google Scholar 

  • Wanders RJA, Komen J, Kemp S (2011) Fatty acid omega-oxidation as a rescue pathway for fatty acid oxidation disorders in humans. FEBS J 278(2):182–194

    Google Scholar 

  • Wang J, Wei R, Xie G, Arnold M, Kueider-Paisley A, Louie G et al (2020) Peripheral serum metabolomic profiles inform central cognitive impairment. Sci Rep 10(1) [Internet]. 2020 Dec 1 [cited 2023 Nov 6]. Available from: https://pubmed.ncbi.nlm.nih.gov/32820198/

  • Wang RZ, Huang SY, Li HQ, Yang YX, Chen SD, Yu JT (2022) Genetic determinants of circulating metabolites and the risk of stroke and its subtypes. Eur J Neurol 29(12):3711–3719. [Internet]. 2022 Dec 1 [cited 2023 Sep 27]. Available from: https://pubmed.ncbi.nlm.nih.gov/36086915/

    Google Scholar 

  • Wardlaw JM, Allerhand M, Doubal FN, Hernandez MV, Morris Z, Gow AJ et al (2014) Vascular risk factors, large-artery atheroma, and brain white matter hyperintensities. Neurology 82(15):1331–1338

    Google Scholar 

  • Wawrzkiewicz-Jałowiecka A, Lalik A, Soveral G (2021) Recent update on the molecular mechanisms of gonadal steroids action in adipose tissue. Int J Mol Sci 22(10) [Internet]. 2021 May 2 [cited 2023 Oct 4]. Available from: https://pubmed.ncbi.nlm.nih.gov/34069293/

  • White CJ, Lee J, Choi J, Chu T, Scafidi S, Wolfgang MJ (2020) Determining the bioenergetic capacity for fatty acid oxidation in the mammalian nervous system. Mol Cell Biol 40(10) [Internet]. 2020 Apr 28 [cited 2023 Sep 27]. Available from: https://www.tandfonline.com/doi/abs/10.1128/MCB.00037-20

  • Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R et al (2018) HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 46(D1):D608–D617

    Google Scholar 

  • Woo A, Botta A, SSW S, Paus T, Pausova Z (2022) Obesity-related neuroinflammation: magnetic resonance and microscopy imaging of the brain. Int J Mol Sci 23(15):8790. [Internet]. 2022 Aug 8 [cited 2023 Jan 9]. Available from: https://www.mdpi.com/1422-0067/23/15/8790/htm

    Google Scholar 

  • Würtz P, Wang Q, Kangas AJ, Richmond RC, Skarp J, Tiainen M et al (2014) Metabolic signatures of adiposity in young adults: mendelian randomization analysis and effects of weight change. PLoS Med 11(12):e1001765

    Google Scholar 

  • Würtz P, Havulinna AS, Soininen P, Tynkkynen T, Prieto-Merino D, Tillin T et al (2015) Metabolite profiling and cardiovascular event risk: a prospective study of 3 population-based cohorts. Circulation 131(9):774–785. [Internet]. 2015 [cited 2023 Sep 27]. Available from: https://www.ahajournals.org/doi/abs/10.1161/CIRCULATIONAHA.114.013116

    Google Scholar 

  • Xu H, Valenzuela N, Fai S, Figeys D, Bennett SAL (2013) Targeted lipidomics—advances in profiling lysophosphocholine and platelet-activating factor second messengers. FEBS J 280(22):5652–5667. [Internet]. 2013 Nov 1 [cited 2022 Dec 30]. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/febs.12423

    Google Scholar 

  • Yanguas-Casás N, Barreda-Manso MA, Pérez-Rial S, Nieto-Sampedro M, Romero-Ramírez L (2017) TGFβ contributes to the anti-inflammatory effects of Tauroursodeoxycholic acid on an animal model of acute neuroinflammation. Mol Neurobiol 54(9):6737–6749

    Google Scholar 

  • Zeng J, Chen L, Wang Z, Chen Q, Fan Z, Jiang H et al (2017) Marginal vitamin a deficiency facilitates Alzheimer’s pathogenesis. Acta Neuropathol 133(6):967–982

    Google Scholar 

  • Zhang X, Hu W, Wang Y, Wang W, Liao H, Zhang X et al (2022) Plasma metabolomic profiles of dementia: a prospective study of 110,655 participants in the UK Biobank. BMC Med 20(1):1–10. [Internet]. 2022 Dec 1 [cited 2023 Jan 3]. Available from: https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-022-02449-3

    Google Scholar 

  • Zhao Y, Li D, Zhao J, Song J, Zhao Y (2016) The role of the low-density lipoprotein receptor-related protein 1 (LRP-1) in regulating blood-brain barrier integrity. Rev Neurosci 27(6):623–634

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eeva Sliz .

Ethics declarations

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Funding

The present work was funded by the National Institutes of Health (R01AG056726) and the Research Council of Finland (338229).

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pausova, Z., Sliz, E. (2024). Large-Scale Population-Based Studies of Blood Metabolome and Brain Health. In: Current Topics in Behavioral Neurosciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2024_463

Download citation

  • DOI: https://doi.org/10.1007/7854_2024_463

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

Publish with us

Policies and ethics