Skip to main content

Beyond Fear, Extinction, and Freezing: Strategies for Improving the Translational Value of Animal Conditioning Research

  • Chapter
  • First Online:
Fear Extinction

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 64))

Abstract

Translational neuroscience for anxiety has had limited success despite great progress in understanding the neurobiology of Pavlovian fear conditioning and extinction. This chapter explores the idea that conditioning paradigms have had a modest impact on translation because studies in animals and humans are misaligned in important ways. For instance, animal conditioning studies typically use imminent threats to assess short-duration fear states with single behavioral measures (e.g., freezing), whereas human studies typically assess weaker or more prolonged anxiety states with physiological (e.g., skin conductance) and self-report measures. A path forward may be more animal research on conditioned anxiety phenomena measuring dynamic behavioral and physiological responses in more complex environments. Exploring transitions between defensive brain states during extinction, looming threats, and post-threat recovery may be particularly informative. If care is taken to align paradigms, threat levels, and measures, this strategy may reveal stable patterns of non-conscious defense in animals and humans that correlate better with conscious anxiety. This shift in focus is also warranted because anxiety is a bigger problem than fear, even in disorders defined by dysfunctional fear or panic reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abiri D et al (2014) Fear extinction learning can be impaired or enhanced by modulation of the CRF system in the basolateral nucleus of the amygdala. Behav Brain Res 271:234–239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adolphs R, Anderson DJ (2018) The neuroscience of emotion. Princeton University Press, Princeton

    Google Scholar 

  • Amat J et al (2005) Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nat Neurosci 8:365–371

    CAS  PubMed  Google Scholar 

  • Amat J et al (2008) Activation of the ventral medial prefrontal cortex during an uncontrollable stressor reproduces both the immediate and long-term protective effects of behavioral control. Neuroscience 154:1178–1186

    CAS  PubMed  Google Scholar 

  • Anderson KC, Insel TR (2006) The promise of extinction research for the prevention and treatment of anxiety disorders. Biol Psychiatry 60:319–321

    PubMed  PubMed Central  Google Scholar 

  • Bagur S et al (2021) Breathing-driven prefrontal oscillations regulate maintenance of conditioned-fear evoked freezing independently of initiation. Nat Commun 12:2605

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey JE et al (2011) Preliminary evidence of anxiolytic effects of the CRF1 receptor antagonist R317573 in the 7.5% CO2 proof-of-concept experimental model of human anxiety. J Psychopharmacol 25:1199–1206

    CAS  PubMed  Google Scholar 

  • Bale TL, Vale WW (2004) CRF and CRF receptors. Annu Rev Pharmacol Toxicol 44:525–557

    CAS  PubMed  Google Scholar 

  • Barlow DH (2002) Anxiety and its disorders, 2nd edn. Guilford Press, New York, p 704

    Google Scholar 

  • Barrett LF, Satpute AB (2019) Historical pitfalls and new directions in the neuroscience of emotion. Neurosci Lett 693:9–18

    CAS  PubMed  Google Scholar 

  • Barrett G et al (1998) Are women who have abortions different from those who do not? Public Health 112:157–163

    CAS  PubMed  Google Scholar 

  • Beckers T et al (2013) What’s wrong with fear conditioning? Biol Psychol 92:90–96

    PubMed  Google Scholar 

  • Belke TW, Wagner JP (2005) The reinforcing property and the rewarding aftereffect of wheel running in rats. Behav Process 68:165–172

    Google Scholar 

  • Blanchard RJ, Blanchard DC (1989) Antipredator defensive behaviors in a visible burrow system. J Comp Psychol 103:70–82

    CAS  PubMed  Google Scholar 

  • Blanchard DC, Blanchard RJ (2008) Chapter 2.4: Defensive behaviors, fear, and anxiety. In: Blanchard DC et al (eds) Handbook of behavioral neuroscience, vol 17. Elsevier, Netherlands, pp 63–79

    Google Scholar 

  • Blanchard DC et al (2003) The mouse defense test battery. Eur J Pharmacol 463:97–116

    CAS  PubMed  Google Scholar 

  • Boddez Y et al (2020) Tackling fear. Neurosci Biobehav Rev 112:410–419

    PubMed  Google Scholar 

  • Bolles RC (1960) Species-specific defense reactions. In: Brush FR (ed) Aversive conditioning and learning. Academic Press, New York, pp 183–233

    Google Scholar 

  • Bouton ME, Bolles RC (1980) Conditioned fear assessed by freezing and by the suppression of three different baselines. Anim Learn Behav 8:429–434

    Google Scholar 

  • Bouton ME et al (2001) A modern learning theory perspective on the etiology of panic disorder. Psychol Rev 108:4–32

    CAS  PubMed  Google Scholar 

  • Bouton ME et al (2021) Behavioral and neurobiological mechanisms of Pavlovian and instrumental extinction learning. Physiol Rev 101:611–681

    PubMed  Google Scholar 

  • Bowers ME, Ressler KJ (2015) An overview of translationally informed treatments for PTSD. Biol Psychiatry 78:E15–E27

    PubMed  PubMed Central  Google Scholar 

  • Brown R, LeDoux J (2020) Higher-order memory schema and consciousness experience. Cogn Neuropsychol 37:213–215

    PubMed  Google Scholar 

  • Bush DE et al (2007) Individual differences in fear. J Trauma Stress 20:413–422

    PubMed  Google Scholar 

  • Butler EA et al (2014) Testing the effects of suppression and reappraisal on emotional concordance using a multivariate multilevel model. Biol Psychol 98:6–18

    PubMed  Google Scholar 

  • Cain CK (2019) Avoidance problems reconsidered. Curr Opin Behav Sci 26:9–17

    PubMed  Google Scholar 

  • Cain CK, LeDoux JE (2007) Escape from fear. J Exp Psychol Anim Behav Process 33:451–463

    PubMed  Google Scholar 

  • Cain CK et al (2004) Adrenergic transmission facilitates extinction of conditional fear in mice. Learn Mem 11:179–187

    PubMed  PubMed Central  Google Scholar 

  • Cain CK et al (2012) Targeting memory processes with drugs to prevent or cure PTSD. Expert Opin Investig Drugs 21:1323–1350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cain CK et al (2013) Chapter 41: The neurobiology of fear and anxiety. In: Charney DS et al (eds) Neurobiology of mental illness. Oxford University Press, New York, pp 549–566

    Google Scholar 

  • Calhoon GG, Tye KM (2015) Resolving the neural circuits of anxiety. Nat Neurosci 18:1394–1404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castegnetti G et al (2017) Assessing fear learning via conditioned respiratory amplitude responses. Psychophysiology 54:215–223

    PubMed  Google Scholar 

  • Choi JS, Kim JJ (2010) Amygdala regulates risk of predation in rats foraging in a dynamic fear environment. PNAS 107:21773–21777

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coker-Appiah DS et al (2013) Looming animate and inanimate threats. Soc Neurosci 8:621–630

    PubMed  PubMed Central  Google Scholar 

  • Collins KA et al (2014) Taking action in the face of threat. J Neurosci 34:14733–14738

    CAS  PubMed  PubMed Central  Google Scholar 

  • Conoscenti MA, Fanselow MS (2019) Dissociation in effective treatment and behavioral phenotype between stress-enhanced fear learning and learned helplessness. Front Behav Neurosci 13:104

    PubMed  PubMed Central  Google Scholar 

  • Conoscenti MA et al (2017) Temporal parameters of post-stress prophylactic glucose treatment in rats. Stress 20:265–276

    CAS  PubMed  Google Scholar 

  • Constantinou E et al (2021) Measuring fear. J Behav Ther Exp Psych 70:101618

    Google Scholar 

  • Corchs F, Schiller D (2019) Threat-related disorders as persistent motivational states of defense. Curr Opin Behav Sci 26:62–68

    PubMed  Google Scholar 

  • Coric V et al (2010) Multicenter, randomized, double-blind, active comparator and placebo-controlled trial of a corticotropin-releasing factor receptor-1 antagonist in GAD. Depress Anxiety 27:417–425

    CAS  PubMed  Google Scholar 

  • Cox WR et al (2022) Interfering with contextual fear memories by post-reactivation administration of propranolol in mice: a series of null findings. Front Behav Neurosci 16:893572

    CAS  PubMed  PubMed Central  Google Scholar 

  • Craske MG et al (2009) What is an anxiety disorder? Depress Anxiety 26:1066–1085

    PubMed  Google Scholar 

  • Craske M et al (2013) Severity measure for specific phobia adult

    Google Scholar 

  • Craske MG et al (2018) State-of-the-art and future directions for extinction as a translational model for fear and anxiety. Philos Trans R Soc Lond Ser B Biol Sci 373

    Google Scholar 

  • Damasio A, Carvalho GB (2013) The nature of feelings. Nat Rev Neurosci 14:143–152

    CAS  PubMed  Google Scholar 

  • Davidson RJ (1992) Prolegomenon to the structure of emotion. Cognit Emot 6:245–268

    Google Scholar 

  • Davidson RJ (1998) Affective style and affective disorders. Cognit Emot 12:307–330

    Google Scholar 

  • Davis M et al (2010) Phasic vs sustained fear in rats and humans. Neuropsychopharmacology 35:105–135

    PubMed  Google Scholar 

  • De Franceschi G et al (2016) Vision guides selection of freeze or flight defense strategies in mice. Curr Biol 26:2150–2154

    PubMed  Google Scholar 

  • Debiec J, LeDoux JE (2004) Disruption of reconsolidation but not consolidation of auditory fear conditioning by noradrenergic blockade in the amygdala. Neuroscience 129:267–272

    CAS  PubMed  Google Scholar 

  • Delgado MR et al (2006) Extending animal models of fear conditioning to humans. Biol Psychol 73:39–48

    CAS  PubMed  Google Scholar 

  • Delgado MR et al (2008) Neural circuitry underlying the regulation of conditioned fear and its relation to extinction. Neuron 59:829–838

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dunlop BW et al (2017) CRF1 antagonism is ineffective for women with PTSD. Biol Psychiatry 82:866–874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dunsmoor JE et al (2022) Laboratory models of post-traumatic stress disorder. Neuron 110:1754–1776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dymond S et al (2015) Fear generalization in humans. Behav Ther 46:561–582

    PubMed  Google Scholar 

  • Evers C et al (2014) Emotion response coherence. Biol Psychol 98:43–49

    PubMed  Google Scholar 

  • Fadok JP et al (2018) New perspectives on central amygdala function. Curr Opin Neurobiol 49:141–147

    CAS  PubMed  Google Scholar 

  • Fanselow MS (1997) Chapter 16: Species-specific defense reactions: retrospect and prospect. In: Bolles RC, Bouton ME, Fanselow MS (eds) Learning, motivation, and cognition: the functional behaviorism. American Psychological Association, Washington, pp 321–341

    Google Scholar 

  • Fanselow MS (2018a) Emotion, motivation and function. Curr Opin Behav Sci 19:105–109

    Google Scholar 

  • Fanselow MS (2018b) The role of learning in threat imminence and defensive behaviors. Curr Opin Behav Sci 24:44–49

    PubMed  PubMed Central  Google Scholar 

  • Fanselow MS (2022) Negative valence systems. Emerg Top Life Sci

    Google Scholar 

  • Fanselow MS, Lester LS (1988) A functional behavioristic approach to aversively motivated behavior: predatory imminence as a determinant of the topography of defensive behavior. In: Bolles RC, Beecher MD (eds) Evolution and learning. Erlbaum, Hillsdale, pp 185–211

    Google Scholar 

  • Fanselow MS, Pennington ZT (2018) A return to the psychiatric dark ages with a two-system framework for fear. Behav Res Ther 100:24–29

    PubMed  Google Scholar 

  • Foa EB, McLean CP (2016) The efficacy of exposure therapy for anxiety-related disorders and its underlying mechanisms: the case of OCD and PTSD. Annu Rev Clin Psychol 12:1–28

    PubMed  Google Scholar 

  • Friedman BH et al (2014) Redundancy analysis of autonomic and self-reported, responses to induced emotions. Biol Psychol 98:19–28

    PubMed  Google Scholar 

  • Frijda N (1986) The emotions. Cambridge University Press, Cambridge

    Google Scholar 

  • Frysztak RJ, Neafsey EJ (1991) The effect of medial frontal cortex lesions on respiration, “freezing,” and ultrasonic vocalizations during conditioned emotional responses in rats. Cereb Cortex 1:418–425

    CAS  PubMed  Google Scholar 

  • Fullana MA et al (2020) Human fear conditioning. Behav Res Ther 124:103528

    CAS  PubMed  Google Scholar 

  • Furlong T, Carrive P (2007) Neurotoxic lesions centered on the perifornical hypothalamus abolish the cardiovascular and behavioral responses of conditioned fear to context but not of restraint. Brain Res 1128:107–119

    CAS  PubMed  Google Scholar 

  • Gerlicher AMV et al (2022) Better, worse, or different than expected. Sci Rep 12:5862

    CAS  PubMed  PubMed Central  Google Scholar 

  • Geyer MA, Markou A (2002) Chapter 33: The role of preclinical models in the development of psychotropic drugs. In: Davis KL et al (eds) Neuropsychopharmacology: the fifth generation of progress. Lippincott, Williams, & Wilkins, Philadelphia, pp 445–455

    Google Scholar 

  • Giustino TF et al (2016) Revisiting propranolol and PTSD. Neurobiol Learn Mem 130:26–33

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gladwin TE et al (2016) Ready and waiting. Neurosci Lett 619:182–188

    CAS  PubMed  Google Scholar 

  • Goswami S et al (2010) Impact of predatory threat on fear extinction in Lewis rats. Learn Mem 17:494–501

    PubMed  PubMed Central  Google Scholar 

  • Gozzi A et al (2010) A neural switch for active and passive fear. Neuron 67:656–666

    CAS  PubMed  Google Scholar 

  • Graham BM, Milad MR (2011) The study of fear extinction. Am J Psychiatry 168:1255–1265

    PubMed  PubMed Central  Google Scholar 

  • Graham BM et al (2017) Low endogenous fibroblast growth factor 2 levels are associated with heightened conditioned fear expression in rats and humans. Biol Psychiatry 82:601–607

    CAS  PubMed  Google Scholar 

  • Gray JA, McNaughton N (2000) The neuropsychology of anxiety. Oxford University Press, New York

    Google Scholar 

  • Griebel G, Holmes A (2013) 50 years of hurdles and hope in anxiolytic drug discovery. Nature Rev Drug Disc 12:667–687

    CAS  Google Scholar 

  • Grillon C (2009) D-cycloserine facilitation of fear extinction and exposure-based therapy might rely on lower-level, automatic mechanisms. Biol Psychiatry 66:636–641

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grillon C, Ernst M (2020) A way forward for anxiolytic drug development. Neurosci Biobehav Rev 119:348–354

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grillon C et al (1998) Effects of experimental context and explicit threat cues on acoustic startle in Vietnam veterans with posttraumatic stress disorder. Biol Psychiatry 44:1027–1036

    CAS  PubMed  Google Scholar 

  • Grillon C et al (2004) Effects of the β-blocker propranolol on cued and contextual fear conditioning in humans. Psychopharmacologia 175:342–352

    CAS  Google Scholar 

  • Grillon C et al (2015) The CRH1 antagonist GSK561679 increases human fear but not anxiety as assessed by startle. Neuropsychopharmacology 40:1064–1071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haaker J et al (2019) Making translation work. Neurosci Biobehav Rev 107:329–345

    PubMed  PubMed Central  Google Scholar 

  • Haller J et al (2013) Classical and novel approaches to the preclinical testing of anxiolytics. Neurosci Biobehav Rev 37:2318–2330

    CAS  PubMed  Google Scholar 

  • Hashemi MM et al (2019) Neural dynamics of shooting decisions and the switch from freeze to fight. Sci Rep 9:4240

    PubMed  PubMed Central  Google Scholar 

  • Headley DB et al (2019) Embracing complexity in defensive networks. Neuron 103:189–201

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hefner K et al (2008) Impaired fear extinction learning and cortico-amygdala circuit abnormalities in a common genetic mouse strain. J Neurosci 28:8074–8085

    CAS  PubMed  PubMed Central  Google Scholar 

  • Helmstetter FJ, Fanselow MS (1993) Aversively motivated changes in meal patterns of rats in a closed economy: the effects of shock density. Anim Learn Behav 21:168–175

    Google Scholar 

  • Hertenstein E et al (2021) Augmentation of psychotherapy with neurobiological methods. Neuropsychobiology 80:437–453

    CAS  PubMed  Google Scholar 

  • Hodgson R, Rachman S (1974) II. Desynchrony in measures of fear. Behav Res Ther 12:319–326

    CAS  PubMed  Google Scholar 

  • Hoffman AN et al (2022) Anxiety, fear, panic. Learn Behav

    Google Scholar 

  • Hofmann SG, Hayes SC (2019) The future of intervention science: process-based therapy. Clin Psychol Sci 7:37–50

    PubMed  Google Scholar 

  • Hoge EA et al (2012) Effect of acute posttrauma propranolol on PTSD outcome and physiological responses during script-driven imagery. CNS Neurosci Ther 18:21–27

    CAS  PubMed  Google Scholar 

  • Hollenstein T, Lanteigne D (2014) Models and methods of emotional concordance. Biol Psychol 98:1–5

    PubMed  Google Scholar 

  • Holmes A, Quirk GJ (2010) Pharmacological facilitation of fear extinction and the search for adjunct treatments for anxiety disorders – the case of yohimbine. Trends Pharmacol Sci 31:2–7

    CAS  PubMed  Google Scholar 

  • Huang L et al (2017) A retinoraphe projection regulates serotonergic activity and looming-evoked defensive behaviour. Nat Commun 8:14908

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hugdahl K (1981) The 3-systems-model of fear and emotion-a critical examination. Beh Res Ther 19:75–85

    CAS  Google Scholar 

  • Husek TR, Alexander S (1963) The effectiveness of the anxiety differential in examination stress situations. Educ Psychol Meas 23:309–318

    Google Scholar 

  • Hyman SE (2013) Psychiatric drug development: diagnosing a crisis. Cerebrum 2013:5

    PubMed  PubMed Central  Google Scholar 

  • Ising M et al (2007) High-affinity CRF1 receptor antagonist NBI-34041. Neuropsychopharmacology 32:1941–1949

    CAS  PubMed  Google Scholar 

  • Janak PH, Tye KM (2015) From circuits to behaviour in the amygdala. Nature 517:284–292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jean-Richard-Dit-Bressel P et al (2018) Behavioral and neurobiological mechanisms of punishment. Neuropsychopharmacology 43:1639–1650

    PubMed  PubMed Central  Google Scholar 

  • Jelen P et al (2003) 22-kHz ultrasonic vocalization in rats as an index of anxiety but not fear. Behav Brain Res 141:63–72

    PubMed  Google Scholar 

  • Johansen JP et al (2011) Molecular mechanisms of fear learning and memory. Cell 147:509–524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Josselyn SA, Tonegawa S (2020) Memory engrams. Science 367

    Google Scholar 

  • Jovanovic T et al (2009) PTSD may be associated with impaired fear inhibition. Psychiatry Res 167:151–160

    PubMed  PubMed Central  Google Scholar 

  • Jovanovic T et al (2010) Impaired fear inhibition is a biomarker of PTSD but not depression. Depress Anxiety 27:244–251

    PubMed  PubMed Central  Google Scholar 

  • Jovanovic T et al (2011) Cortisol suppression by dexamethasone reduces exaggerated fear responses in posttraumatic stress disorder. Psychoneuroendocrinology 36:1540–1552

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jovanovic T et al (2020) Psychophysiological treatment outcomes: CRF1 antagonist increases inhibition of fear-potentiated startle in PTSD patients. Psychophysiology 57:e13356

    PubMed  Google Scholar 

  • Kaffman A et al (2019) Enhancing the utility of preclinical research in neuropsychiatry drug development. Methods Mol Biol 2011:3–22

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kehne JH, Cain CK (2010) Therapeutic utility of non-peptidic CRF1 receptor antagonists in anxiety, depression, and stress-related disorders. Pharmacol Ther 128:460–487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kida S (2020) Function and mechanisms of memory destabilization and reconsolidation after retrieval. Proc Jpn Acad Ser B Phys Biol Sci 96:95–106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SY et al (2013) Diverging neural pathways assemble a behavioural state from separable features in anxiety. Nature 496:219–223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klein AS et al (2021) Fear balance is maintained by bodily feedback to the insular cortex in mice. Science 374:1010–1015

    CAS  PubMed  Google Scholar 

  • Klumpers F et al (2017) How human amygdala and bed nucleus of the stria terminalis may drive distinct defensive responses. J Neurosci 37:9645–9656

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lang PJ (1968) Fear reduction and fear behavior: problems in treating a construct. In: Shlien JM (ed) Research in psychotherapy. American Psychological Association, pp 90–102

    Google Scholar 

  • Lazaro-Munoz G et al (2010) Sidman instrumental avoidance initially depends on lateral and basal amygdala and is constrained by central amygdala-mediated Pavlovian processes. Biol Psychiatry 67:1120–1127

    PubMed  PubMed Central  Google Scholar 

  • Leaton RN, Borszcz GS (1985) Potentiated startle. J Exp Psychol 11:421–428

    Google Scholar 

  • LeDoux JE (2012) Rethinking the emotional brain. Neuron 73:653–676

    CAS  PubMed  PubMed Central  Google Scholar 

  • LeDoux JE (2015) Anxious. Viking, New York

    Google Scholar 

  • LeDoux JE (2019) The deep history of ourselves. Viking, New York

    Google Scholar 

  • LeDoux JE, Brown R (2017) A higher-order theory of emotional consciousness. PNAS 114:E2016–E2E25

    CAS  PubMed  PubMed Central  Google Scholar 

  • LeDoux J, Daw ND (2018) Surviving threats. Nat Rev Neurosci 19:269–282

    CAS  PubMed  Google Scholar 

  • LeDoux JE, Pine DS (2016) Using neuroscience to help understand fear and anxiety: a two-system framework. Am J Psychiatry 173:1083–1093

    PubMed  Google Scholar 

  • LeDoux JE et al (1988) Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J Neurosci 8:2517–2529

    CAS  PubMed  PubMed Central  Google Scholar 

  • LeDoux JE et al (2017) The birth, death and resurrection of avoidance. Mol Psychiatry 22:24–36

    CAS  PubMed  Google Scholar 

  • Lee SC et al (2017) Differential recruitment of competing valence-related amygdala networks during anxiety. Neuron 96:81–88 e5

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang KC et al (1986) Modulating effects of posttraining epinephrine on memory. Brain Res 368:125–133

    CAS  PubMed  Google Scholar 

  • Lissek S et al (2005) Classical fear conditioning in the anxiety disorders. Behav Res Ther 43:1391–1424

    PubMed  Google Scholar 

  • Lissek S et al (2006) The strong situation. Biol Psychol 72:265–270

    PubMed  Google Scholar 

  • Liu D et al (2022) Different coding characteristics between flight and freezing in dorsal periaqueductal gray of mice during exposure to innate threats. Animal Model Exp Med

    Google Scholar 

  • Low A et al (2015) When threat is near, get out of here. Psychol Sci 26:1706–1716

    PubMed  Google Scholar 

  • Luyten L et al (2021) Lack of drug-induced post-retrieval amnesia for auditory fear memories in rats. BMC Biol 19:17

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maier SF, Seligman ME (2016) Learned helplessness at fifty. Psychol Rev 123:349–367

    PubMed  PubMed Central  Google Scholar 

  • Maier SF, Watkins LR (2005) Stressor controllability and learned helplessness. Neurosci Biobehav Rev 29:829–841

    CAS  PubMed  Google Scholar 

  • Maren S (2005) Synaptic mechanisms of associative memory in the amygdala. Neuron 47:783–786

    CAS  PubMed  Google Scholar 

  • Maren S (2022) Unrelenting fear under stress. Front Syst Neurosci 16:888461

    PubMed  PubMed Central  Google Scholar 

  • Markou A et al (2009) Removing obstacles in neuroscience drug discovery. Neuropsychopharmacology 34:74–89

    CAS  PubMed  Google Scholar 

  • Markowitz S, Fanselow M (2020) Exposure therapy for PTSD. Brain Sci 10

    Google Scholar 

  • McCue MG et al (2014) Medial amygdala lesions selectively block aversive pavlovian-instrumental transfer in rats. Front Behav Neurosci 8:329

    PubMed  PubMed Central  Google Scholar 

  • McGhee LL et al (2009) The effect of propranolol on posttraumatic stress disorder in burned service members. J Burn Care Res 30:92–97

    PubMed  Google Scholar 

  • Meyerbroeker K et al (2012) Does yohimbine hydrochloride facilitate fear extinction in virtual reality treatment of fear of flying? Psychother Psychosom 81:29–37

    PubMed  Google Scholar 

  • Milad MR, Quirk GJ (2012) Fear extinction as a model for translational neuroscience. Annu Rev Psychol 63:129–151

    PubMed  PubMed Central  Google Scholar 

  • Milad MR et al (2009) Neurobiological basis of failure to recall extinction memory in PTSD. Biol Psychiatry 66:1075–1082

    PubMed  PubMed Central  Google Scholar 

  • Miller BV, Bernstein DA (1972) Instructional demand in a behavioral avoidance test for claustrophobic fears. J Abnorm Psychol 80:206–210

    CAS  PubMed  Google Scholar 

  • Minor TR et al (1991) Inverting the traditional view of “learned helplessness”. In: Denny MR (ed) Fear, avoidance and phobias. Erlbaum, Hillsdale, pp 87–133

    Google Scholar 

  • Mobbs D (2018) The ethological deconstruction of fear(s). Curr Opin Behav Sci 24:32–37

    PubMed  PubMed Central  Google Scholar 

  • Mobbs D et al (2007) When fear is near. Science 317:1079–1083

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mobbs D et al (2009) From threat to fear. J Neurosci 29:12236–12243

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mobbs D et al (2010) Neural activity associated with monitoring the oscillating threat value of a tarantula. PNAS 107:20582–20586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mobbs D et al (2015) The ecology of human fear. Front Neurosci 9:55

    PubMed  PubMed Central  Google Scholar 

  • Mobbs D et al (2019) Viewpoints: approaches to defining and investigating fear. Nat Neurosci 22:1205–1216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mobbs D et al (2020) Space, time, and fear. Trends Cogn Sci 24:228–241

    PubMed  Google Scholar 

  • Morris RW, Bouton ME (2007) The effect of yohimbine on the extinction of conditioned fear: a role for context. Behav Neurosci 121:501–514

    CAS  PubMed  Google Scholar 

  • Moscarello JM, Hartley CA (2017) Agency and the calibration of motivated behavior. Trends Cogn Sci 21:725–735

    PubMed  Google Scholar 

  • Moscarello JM, Maren S (2018) Flexibility in the face of fear. Curr Opin Behav Sci 19:44–49

    PubMed  Google Scholar 

  • Moscarello JM, Penzo MA (2022) The central nucleus of the amygdala and the construction of defensive modes across the threat-imminence continuum. Nat Neurosci 25:999–1008

    CAS  PubMed  Google Scholar 

  • Murrough JW, Charney DS (2017) Corticotropin-releasing factor type 1 receptor antagonists for stress-related disorders: time to call it quits? Biol Psychiatry 82:858–860

    PubMed  Google Scholar 

  • Neuhoff JG (2018) Chapter 12: Adaptive biases in visual and auditory looming perception. In: Hubbard TL (ed) Spatial biases in perception and cognition. Cambridge University Press, pp 180–192

    Google Scholar 

  • Nili U et al (2010) Fear thou not. Neuron 66:949–962

    CAS  PubMed  Google Scholar 

  • Norrholm SD, Jovanovic T (2018) Fear processing, psychophysiology, and PTSD. Harv Rev Psychiatry 26:129–141

    PubMed  Google Scholar 

  • Norrholm SD et al (2015) Fear load: the psychophysiological over-expression of fear as an intermediate phenotype associated with trauma reactions. Int J Psychophysiol 98:270–275

    PubMed  Google Scholar 

  • Nugent NR et al (2010) The efficacy of early propranolol administration at reducing PTSD symptoms in pediatric injury patients: a pilot study. J Trauma Stress 23:282–287

    PubMed  PubMed Central  Google Scholar 

  • Ohman A, Mineka S (2001) Fears, phobias, and preparedness: toward an evolved module of fear and fear learning. Psychol Rev 108:483–522

    CAS  PubMed  Google Scholar 

  • Ojala KE, Bach DR (2020) Measuring learning in human classical threat conditioning. Neurosci Biobehav Rev 114:96–112

    PubMed  Google Scholar 

  • Ost LG et al (1982) Individual response patterns and the effects of different behavioral methods in the treatment of claustrophobia. Behav Res Ther 20:445–460

    CAS  PubMed  Google Scholar 

  • Peng Y et al (2022) Threat neurocircuitry predicts the development of anxiety and depression symptoms in a longitudinal study. Biol Psychiatry Cogn Neurosci Neuroimaging

    Google Scholar 

  • Perusini JN, Fanselow MS (2015) Neurobehavioral perspectives on the distinction between fear and anxiety. Learn Mem 22:417–425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perusini JN et al (2016) Induction and expression of fear sensitization caused by acute traumatic stress. Neuropsychopharmacology 41:45–57

    CAS  PubMed  Google Scholar 

  • Pigeon S et al (2022) Impairing memory reconsolidation with propranolol in healthy and clinical samples: a meta-analysis. J Psychiatry Neurosci 47:E109–EE22

    PubMed  PubMed Central  Google Scholar 

  • Pine DS, LeDoux JE (2017) Elevating the role of subjective experience in the clinic: response to Fanselow and Pennington. Am J Psychiatry 174:1121–1122

    PubMed  Google Scholar 

  • Pitman RK et al (2002) Pilot study of secondary prevention of posttraumatic stress disorder with propranolol. Biol Psychiatry 51:189–192

    CAS  PubMed  Google Scholar 

  • Poulos AM et al (2014) Amnesia for early life stress does not preclude the adult development of posttraumatic stress disorder symptoms in rats. Biol Psychiatry 76:306–314

    PubMed  Google Scholar 

  • Powers MB et al (2009) Facilitation of fear extinction in phobic participants with a novel cognitive enhancer. J Anxiety Disord 23:350–356

    PubMed  Google Scholar 

  • Priebe K et al (2013) Frequency of intrusions and flashbacks in patients with PTSD related to childhood sexual abuse. Psychol Assess 25:1370–1376

    PubMed  Google Scholar 

  • Quinn JJ et al (2002) Post-training excitotoxic lesions of the dorsal hippocampus attenuate forward trace, backward trace, and delay fear conditioning in a temporally specific manner. Hip 12:495–504

    Google Scholar 

  • Rachman S, Hodgson R (1974) I. Synchrony and desynchrony in fear and avoidance. Behav Res Ther 12:311–318

    CAS  PubMed  Google Scholar 

  • Rau V, Fanselow MS (2009) Exposure to a stressor produces a long lasting enhancement of fear learning in rats. Stress 12:125–133

    PubMed  Google Scholar 

  • Raut SB et al (2022) Effects of propranolol on the modification of trauma memory reconsolidation in PTSD patients. J Psychiatr Res 150:246–256

    PubMed  Google Scholar 

  • Reist C et al (2001) β-Adrenergic blockade and emotional memory in PTSD. Neuropsychopharmacology 4:377–383

    CAS  Google Scholar 

  • Ressler KJ (2020) Translating across circuits and genetics toward progress in fear- and anxiety-related disorders. Am J Psychiatry 177:214–222

    PubMed  PubMed Central  Google Scholar 

  • Richter J et al (2012) Dynamics of defensive reactivity in patients with panic disorder and agoraphobia. Biol Psychiatry 72:512–520

    PubMed  Google Scholar 

  • Risbrough V (2010) Behavioral correlates of anxiety. Curr Top Behav Neurosci 2:205–228

    PubMed  Google Scholar 

  • Riskind JH et al (2014) Influence of anxiety, depression and looming cognitive style on auditory looming perception. J Anxiety Disord 28:45–50

    PubMed  Google Scholar 

  • Roberts LE, Young R (1971) Electrodermal responses are independent of movement during aversive conditioning in rats, but heart rate is not. J Comp Physiol Psychol 77:495–512

    CAS  PubMed  Google Scholar 

  • Robinson MD, Clore GL (2002) Episodic and semantic knowledge in emotional self-report. J Pers Soc Psychol 83:198–215

    PubMed  Google Scholar 

  • Roelofs K, Dayan P (2022) Freezing revisited. Nat Rev Neurosci 23:568–580

    CAS  PubMed  Google Scholar 

  • Rolls ET (2008) Emotion, higher-order syntactic thoughts, and consciousness. In: Weiskrantz L, Davies M (eds) Frontiers of consciousness: Chichele lectures. Oxford University Press, Oxford, pp 131–167

    Google Scholar 

  • Rosen JB, Schulkin J (1998) From normal fear to pathological anxiety. Psychol Rev 105:325–350

    CAS  PubMed  Google Scholar 

  • Rosenberg L et al (2018) Does acute propranolol treatment prevent posttraumatic stress disorder, anxiety, and depression in children with burns? J Child Adolesc Psychopharmacol 28:117–123

    CAS  PubMed  Google Scholar 

  • Rosler L, Gamer M (2019) Freezing of gaze during action preparation under threat imminence. Sci Rep 9:17215

    PubMed  PubMed Central  Google Scholar 

  • Sakamoto IM (2020) Individual differences in ultrasonic vocalizations and freezing during fear learning and extinction in female rats. In: Pharmacology, physiology and neuroscience. USC, Columbia, p 50

    Google Scholar 

  • Sanderson WC, Barlow DH (1990) A description of patients diagnosed with DSM-III-R generalized anxiety disorder. J Nerv Ment Dis 178:588–591

    CAS  PubMed  Google Scholar 

  • Schaffner KF (2020) Chapter 32: Approaches to multilevel models of fear. In: Kendler KS, Parnas J, Zachlar P (eds) Levels of analysis in psychopathology. Cambridge University Press, New York, pp 384–409

    Google Scholar 

  • Schipper P et al (2019) The association between serotonin transporter availability and the neural correlates of fear bradycardia. PNAS 116:25941–25947

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seligman ME, Maier SF (1967) Failure to escape traumatic shock. J Exp Psychol 74:1–9

    CAS  PubMed  Google Scholar 

  • Sewart A et al (2021) Pre-treatment hippocampal functioning impacts context renewal for cholinergic modulated exposure therapy. Biol Psychol 165:108167

    PubMed  Google Scholar 

  • Shackman AJ, Fox AS (2016) Contributions of the central extended amygdala to fear and anxiety. J Neurosci 36:8050–8063

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shang C et al (2015) A parvalbumin-positive excitatory visual pathway to trigger fear responses in mice. Science 348:1472–1477

    CAS  PubMed  Google Scholar 

  • Shear MK et al (1997) Multicenter collaborative panic disorder severity scale. Am J Psychiatry 154:1571–1575

    CAS  PubMed  Google Scholar 

  • Siegel EH et al (2018) Emotion fingerprints or emotion populations? Psychol Bull 144:343–393

    PubMed  PubMed Central  Google Scholar 

  • Signoret-Genest J et al (2023) Integrated cardio-behavioral responses to threat define defensive states. Nat Neurosci 26:447–457

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smits JA et al (2014) Yohimbine enhancement of exposure therapy for social anxiety disorder. Biol Psychiatry 75:840–846

    CAS  PubMed  Google Scholar 

  • Sotres-Bayon F, Quirk GJ (2010) Prefrontal control of fear. Curr Opin Neurobiol 20:231–235

    CAS  PubMed  PubMed Central  Google Scholar 

  • Southwick SM et al (1993) Abnormal noradrenergic function in posttraumatic stress disorder. Arch Gen Psychiatry 50:266–274

    CAS  PubMed  Google Scholar 

  • Stein MB et al (2007) Pharmacotherapy to prevent PTSD. J Trauma Stress 20:923–932

    PubMed  Google Scholar 

  • Stein MB et al (2021) Randomized, placebo-controlled trial of the angiotensin receptor antagonist losartan for posttraumatic stress disorder. Biol Psychiatry 90:473–481

    CAS  PubMed  Google Scholar 

  • Stemerding LE et al (2022) Demarcating the boundary conditions of memory reconsolidation: an unsuccessful replication. Sci Rep 12:2285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart AM et al (2015) The failure of anxiolytic therapies in early clinical trials. Expert Opin Investig Drugs 24:543–556

    CAS  PubMed  Google Scholar 

  • Sznycer D, Cohen AS (2021) Are emotions natural kinds after all? Evol Psychol 19:14747049211016009

    PubMed  PubMed Central  Google Scholar 

  • Taschereau-Dumouchel V et al (2020) Multivoxel pattern analysis reveals dissociations between subjective fear and its physiological correlates. Mol Psychiatry 25:2342–2354

    PubMed  Google Scholar 

  • Taschereau-Dumouchel V et al (2022) Putting the “mental” back in “mental disorders”. Mol Psychiatry

    Google Scholar 

  • Tovote P et al (2015) Neuronal circuits for fear and anxiety. Nat Rev Neurosci 16:317–331

    CAS  PubMed  Google Scholar 

  • Tuerk PW et al (2018) Augmenting treatment efficiency in exposure therapy for PTSD. Cogn Beh Ther 47:351–371

    Google Scholar 

  • Vaiva G et al (2003) Immediate treatment with propranolol decreases posttraumatic stress disorder two months after trauma. Biol Psychiatry 54:947–949

    CAS  PubMed  Google Scholar 

  • Waddell J et al (2006) Effects of bed nucleus of the stria terminalis lesions on conditioned anxiety. Behav Neurosci 120:324–336

    PubMed  Google Scholar 

  • Walker DL et al (2002) Facilitation of conditioned fear extinction by systemic administration or intra-amygdala infusions of D-cycloserine as assessed with fear-potentiated startle in rats. J Neurosci 22:2343–2351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walker D et al (2009) Differential effects of the CRF-R1 antagonist GSK876008 on fear-potentiated, light- and CRF-enhanced startle suggest preferential involvement in sustained vs phasic threat responses. Neuropsychopharmacology 34:1533–1542

    CAS  PubMed  Google Scholar 

  • Wei P et al (2015) Processing of visually evoked innate fear by a non-canonical thalamic pathway. Nat Commun 6:6756

    CAS  PubMed  Google Scholar 

  • Wen Z et al (2021) Fear extinction learning modulates large-scale brain connectivity. NeuroImage 238:118261

    PubMed  Google Scholar 

  • Wendt J et al (2017) Active avoidance and attentive freezing in the face of approaching threat. NeuroImage 158:196–204

    PubMed  Google Scholar 

  • White KS et al (2006) Avoidance behavior in panic disorder: the moderating influence of perceived control. Behav Res Ther 44:147–157

    PubMed  Google Scholar 

  • White LK et al (2017) Complementary features of attention bias modification therapy and cognitive-behavioral therapy in pediatric anxiety disorders. Am J Psychiatry 174:775–784

    PubMed  PubMed Central  Google Scholar 

  • Woods AM, Bouton ME (2006) D-cycloserine facilitates extinction but does not eliminate renewal of the conditioned emotional response. Behav Neurosci 120:1159–1162

    CAS  PubMed  Google Scholar 

  • Woon EP et al (2020) Differential effects of prior stress on conditioned inhibition of fear and fear extinction. Behav Brain Res 381:112414

    PubMed  Google Scholar 

  • Yilmaz M, Meister M (2013) Rapid innate defensive responses of mice to looming visual stimuli. Curr Biol 23:2011–2015

    CAS  PubMed  Google Scholar 

  • Young KS et al (2021) Dysregulation of threat neurocircuitry during fear extinction: the role of anhedonia. Neuropsychopharmacology 46:1650–1657

    PubMed  PubMed Central  Google Scholar 

  • Zambetti PR et al (2022) Ecological analysis of Pavlovian fear conditioning in rats. Commun Biol 5:830

    PubMed  PubMed Central  Google Scholar 

  • Zhou F et al (2021) A distributed fMRI-based signature for the subjective experience of fear. Nat Commun 12:6643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zinbarg RE (1998) Concordance and synchrony in measures of anxiety and panic reconsidered. Behav Ther 29:301–323

    Google Scholar 

Download references

Acknowledgments

Thanks to Rob Sears for helpful comments on drafts of this manuscript and Joseph LeDoux for permission to publish data collected in his lab during my post-doctoral fellowship (Fig. 5b). The project described was supported by Award Number R01MH114931 to C.K.C. from the U.S. National Institutes of Health. The content is solely the responsibility of the author and does not necessarily represent the official views of the National Institute of Health and National Institute of Mental Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher K. Cain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cain, C.K. (2023). Beyond Fear, Extinction, and Freezing: Strategies for Improving the Translational Value of Animal Conditioning Research. In: Milad, M.R., Norrholm, S.D. (eds) Fear Extinction. Current Topics in Behavioral Neurosciences, vol 64. Springer, Cham. https://doi.org/10.1007/7854_2023_434

Download citation

Publish with us

Policies and ethics