Skip to main content

Abstract

Immersive virtual reality (VR) allows its users to experience physical space in a non-physical world. It has developed into a powerful research tool to investigate the neural basis of human spatial navigation as an embodied experience. The task of wayfinding can be carried out by using a wide range of strategies, leading to the recruitment of various sensory modalities and brain areas in real-life scenarios. While traditional desktop-based VR setups primarily focus on vision-based navigation, immersive VR setups, especially mobile variants, can efficiently account for motor processes that constitute locomotion in the physical world, such as head-turning and walking. When used in combination with mobile neuroimaging methods, immersive VR affords a natural mode of locomotion and high immersion in experimental settings, designing an embodied spatial experience. This in turn facilitates ecologically valid investigation of the neural underpinnings of spatial navigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bálint R (1909) Psychic paralysis of gaze, optic ataxia, and spatial disorder of attention. Eur Neurol 25:67–81

    Google Scholar 

  • Barry DN, Tierney TM, Holmes N, Boto E, Roberts G, Leggett J, Bowtell R, Brookes MJ, Barnes GR, Maguire EA (2019) Imaging the human hippocampus with optically-pumped magnetoencephalography. NeuroImage 203:116192

    PubMed  Google Scholar 

  • Baumann O, Mattingley JB (2021) Extrahippocampal contributions to spatial navigation in humans: a review of the neuroimaging evidence. Hippocampus, 1–18. https://doi.org/10.1002/hipo.23313

  • Becker S, Burgess N (2000) Modelling spatial recall, mental imagery and neglect. Adv Neural Inf Proces Syst 13

    Google Scholar 

  • Bécu M, Sheynikhovich D, Tatur G, Agathos CP, Bologna LL, Sahel JA, Arleo A (2020) Age-related preference for geometric spatial cues during real-world navigation. Nat Hum Behav 4:88–99

    PubMed  Google Scholar 

  • Bellmund JL, De Cothi W, Ruiter TA, Nau M, Barry C, Doeller CF (2020) Deforming the metric of cognitive maps distorts memory. Nat Hum Behav 4:177–188

    PubMed  Google Scholar 

  • Blades M et al (1992) Developmental differences in the ability to give route directions from a map. J Environ Psychol 12:175–185

    Google Scholar 

  • Bolding K, Rudy JW (2006) Place learning in the Morris water task: making the memory stick. Learn Mem 13:278–286

    PubMed  PubMed Central  Google Scholar 

  • Boto E, Holmes N, Leggett J, Roberts G, Shah V, Meyer SS et al (2018) Moving magnetoencephalography towards real-world applications with a wearable system. Nature 555(7698):657–661

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brang D, Taich ZJ, Hillyard SA, Grabowecky M, Ramachandran VS (2013) Parietal connectivity mediates multisensory facilitation. NeuroImage 78:396–401

    PubMed  Google Scholar 

  • Brooks J, Nagels S, Lopes P (2020) Trigeminal-based temperature illusions. In: Proceedings of the 2020 CHI conference on human factors in computing systems, pp 1–12

    Google Scholar 

  • Buzsáki G (2005) Theta rhythm of navigation: link between path integration and landmark navigation, episodic and semantic memory. Hippocampus 15:827–840

    PubMed  Google Scholar 

  • Byrne P, Becker S, Burgess N (2007) Remembering the past and imagining the future: a neural model of spatial memory and imagery. Psychol Rev 114:340

    PubMed  PubMed Central  Google Scholar 

  • Campos JL, Butler JS, Bülthoff HH (2012) Multisensory integration in the estimation of walked distances. Exp Brain Res 218:551–565

    PubMed  Google Scholar 

  • Chan E, Baumann O, Bellgrove MA, Mattingley JB (2012) From objects to landmarks: the function of visual location information in spatial navigation. Front Psychol 3:304

    PubMed  PubMed Central  Google Scholar 

  • Chance SS, Gaunet F, Beall AC, Loomis JM (1998) Locomotion mode affects the updating of objects encountered during travel: the contribution of vestibular and proprioceptive inputs to path integration. Presence 7:168–178

    Google Scholar 

  • Chen X, McNamara TP, Kelly JW, Wolbers T (2017) Cue combination in human spatial navigation. Cogn Psychol 95:105–144

    CAS  PubMed  Google Scholar 

  • Chrastil ER (2013) Neural evidence supports a novel framework for spatial navigation. Psychon Bull Rev 20:208–227. https://doi.org/10.3758/s13423-012-0351-6

    Article  PubMed  Google Scholar 

  • Chrastil ER, Nicora GL, Huang A (2019) Vision and proprioception make equal contributions to path integration in a novel homing task. Cognition 192:103998

    PubMed  Google Scholar 

  • Clark A (2013) Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav Brain Sci 36:181–204. https://doi.org/10.1017/S0140525X12000477

    Article  PubMed  Google Scholar 

  • Clark A (2015) Surfing uncertainty: prediction, action, and the embodied mind. Oxford University Press

    Google Scholar 

  • Clark BJ, Simmons CM, Berkowitz LE, Wilber AA (2018) The retrosplenial-parietal network and reference frame coordination for spatial navigation. Behav Neurosci 132:416–429

    PubMed  PubMed Central  Google Scholar 

  • Coutrot A, Manley E, Yesiltepe D, Dalton RC, Wiener JM, Holscher C, Hornberger M, Spiers HJ (2020) Cities have a negative impact on navigation ability: evidence from 38 countries. Biorxiv

    Google Scholar 

  • Critchley M (1953) The parietal lobes. Hafner, New York

    Google Scholar 

  • Cruz-Neira C, Sandin DJ, DeFanti TA, Kenyon RV, Hart JC (1992) The cave: audio visual experience automatic virtual environment. Commun ACM 35:64–73

    Google Scholar 

  • Delaux A, Aubert JBS, Ramanöel S, Bécu M, Gehrke L, Klug M, Chavarriaga R, Sahel JA, Gramann K, Arleo A (2021) Mobile brain/body imaging of landmark-based navigation with high-density EEG. Eur J Neurosci. https://doi.org/10.1111/ejn.15190

  • Djebbara Z, Fich LB, Petrini L, Gramann K (2019) Sensorimotor brain dynamics reflect architectural affordances. Proc Natl Acad Sci 116:14769–14778

    CAS  PubMed  PubMed Central  Google Scholar 

  • Do TTN, Lin CT, Gramann K (2021) Human brain dynamics in active spatial navigation. Sci Rep 11:1–12

    Google Scholar 

  • Dodsworth C, Norman L, Thaler L (2020) Navigation and perception of spatial layout in virtual echo-acoustic space. Cognition 197:104185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doeller CF, Barry C, Burgess N (2010) Evidence for grid cells in a human memory network. Nature 463:657–661

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong D, Wong LK, Luo Z et al (2017) Assessment of prospective memory using fnirs in immersive virtual reality environment. J Behav Brain Sci 7:247

    Google Scholar 

  • Ehinger BV, Fischer P, Gert AL, Kaufhold L, Weber F, Pipa G, König P (2014) Kinesthetic and vestibular information modulate alpha activity during spatial navigation: a mobile EEG study. Front Hum Neurosci 8:71

    PubMed  PubMed Central  Google Scholar 

  • Ekstrom AD (2015) Why vision is important to how we navigate. Hippocampus 25:731–735

    PubMed  PubMed Central  Google Scholar 

  • Epstein RA, Patai EZ, Julian JB, Spiers HJ (2017) The cognitive map in humans: spatial navigation and beyond. Nat Neurosci 20:1504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Etienne AS, Jeffery KJ (2004) Path integration in mammals. Hippocampus 14:180–192

    PubMed  Google Scholar 

  • Farrell MJ, Robertson IH (1998) Mental rotation and automatic updating of body centered spatial relationships. J Exp Psychol Learn Mem Cogn 24:227

    Google Scholar 

  • Fetsch CR, Turner AH, DeAngelis GC, Angelaki DE (2009) Dynamic reweighting of visual and vestibular cues during self-motion perception. J Neurosci 29:15601–15612

    CAS  PubMed  PubMed Central  Google Scholar 

  • Friston K (2010) The free-energy principle: a unified brain theory? Nat Rev Neurosci 11:127–138

    CAS  PubMed  Google Scholar 

  • Friston K (2012) Embodied inference and spatial cognition. Cogn Process 13

    Google Scholar 

  • Gehrke L, Gramann K (2021) Single-trial regression of spatial exploration behavior indicates posterior EEG alpha modulation to reflect egocentric coding. Eur J Neurosci 54(12):8318–8335

    PubMed  Google Scholar 

  • Gehrke L, Iversen JR, Makeig S, Gramann K (2018) The invisible maze task (IMT): interactive exploration of sparse virtual environments to investigate ActionDriven formation of spatial representations. In: Creem-Regehr S, Schöning J, Klippel A (eds) Spatial cognition XI. Springer, Cham, pp 293–310

    Google Scholar 

  • Gehrke L, Akman S, Lopes P, Chen A, Singh AK, Chen HT, Lin CT, Gramann K (2019) Detecting visuo-haptic mismatches in virtual reality using the prediction error negativity of event-related brain potentials. In: Proceedings of the 2019 CHI conference on human factors in computing systems – CHI’19. ACM Press, New York, 427:1–427:11

    Google Scholar 

  • Gehrke L, Lopes P, Klug M, Akman K, Gramann K (2022) Neural sources of prediction errors detect unrealistic VR interactions. J Neural Eng 19(3):036002. https://doi.org/10.1088/1741-2552/ac69bc

    Article  Google Scholar 

  • Geronazzo M, Avanzini F, Fontana F (2016) Auditory navigation with a tubular acoustic model for interactive distance cues and personalized head-related transfer functions. J Multimodal User Interf 10:273–284

    Google Scholar 

  • Gibson JJ (1979) The ecological approach to visual perception. Mifflin and Company, Houghton

    Google Scholar 

  • Goeke C, Kornpetpanee S, Köster M, Fernández-Revelles AB, Gramann K, König P (2015) Cultural background shapes spatial reference frame proclivity. Sci Rep 5:1–13

    Google Scholar 

  • Goeke CM, König P, Gramann K (2013) Different strategies for spatial updating in yaw and pitch path integration. Front Behav Neurosci 7:5

    PubMed  PubMed Central  Google Scholar 

  • Goldberg JM, Wilson VJ, Angelaki DE, Cullen KE, Broussard DM, Fukushima K, Buttner-Ennever J, Minor LB (2012) The vestibular system: a sixth sense. Oxford University Press

    Google Scholar 

  • Golledge RG (1995) Path selection and route preference in human navigation: a progress report. In: International conference on spatial information theory. Springer, pp 207–222

    Google Scholar 

  • Goodrich-Hunsaker NJ, Livingstone SA, Skelton RW, Hopkins RO (2010) Spatial deficits in a virtual water maze in amnesic participants with hippocampal damage. Hippocampus 20:481–491

    PubMed  Google Scholar 

  • Gramann K (2013) Embodiment of spatial reference frames and individual differences in reference frame proclivity. Spatial Cogn Comput 13:1–25

    Google Scholar 

  • Gramann K, Müller HJ, Eick EM, Schönebeck B (2005) Evidence of separable spatial representations in a virtual navigation task. J Exp Psychol Hum Percept Perform 31:1199

    PubMed  Google Scholar 

  • Gramann K, Müller H, Schönebeck B, Debus G (2006) The neural basis of ego-and allocentric reference frames in spatial navigation: evidence from spatiotemporal coupled current density reconstruction. Brain Res 1118:116–129

    CAS  PubMed  Google Scholar 

  • Gramann K, Onton J, Riccobon D, Mueller HJ, Bardins S, Makeig S (2010) Human brain dynamics accompanying use of egocentric and allocentric reference frames during navigation. J Cogn Neurosci 22:2836–2849

    PubMed  PubMed Central  Google Scholar 

  • Gramann K, Gwin JT, Ferris DP, Oie K, Jung TP, Lin CT, Liao LD, Makeig S (2011) Cognition in action: imaging brain/body dynamics in mobile humans. Rev Neurosci 22:593–608

    Google Scholar 

  • Gramann K, Ferris DP, Gwin J, Makeig S (2014) Imaging natural cognition in action. Int J Psychophysiol 91:22–29

    PubMed  Google Scholar 

  • Gramann K, Hohlefeld FU, Gehrke L, Klug M (2021) Human cortical dynamics during full-body heading changes. Sci Rep 11:1–12

    Google Scholar 

  • Grzeschik R, Hilton C, Dalton RC, Konovalova I, Cotterill E, Innes A, Wiener JM (2020) From repeating routes to planning novel routes: the impact of landmarks and ageing on route integration and cognitive mapping. Psychol Res 85(6):1–13

    Google Scholar 

  • Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–806

    CAS  PubMed  Google Scholar 

  • Hamburger K, Knauff M (2019) Odors can serve as landmarks in human wayfinding. Cogn Sci 43:e12798

    PubMed  Google Scholar 

  • Head H, Holmes G (1911) Sensory disturbances from cerebral lesions. Brain 34:102–254

    Google Scholar 

  • Hejtmanek L, Starrett M, Ferrer E, Ekstrom AD (2020) How much of what we learn in virtual reality transfers to real-world navigation? Multisens Res 33:479–503

    PubMed  Google Scholar 

  • Hodges H (1996) Maze procedures: the radial-arm and water maze compared. Cogn Brain Res 3:167–181

    CAS  Google Scholar 

  • Huffman DJ, Ekstrom AD (2019) A modality-independent network underlies the retrieval of large-scale spatial environments in the human brain. Neuron 104:611–622.e7

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ijaz K, Ahmadpour N, Naismith SL, Calvo RA (2019) An immersive virtual reality platform for assessing spatial navigation memory in predementia screening: feasibility and usability study. JMIR Mental Health 6:e13887

    PubMed  PubMed Central  Google Scholar 

  • Jacob PY, Poucet B, Liberge M, Save E, Sargolini F (2014) Vestibular control of entorhinal cortex activity in spatial navigation. Front Integr Neurosci 8:38

    PubMed  PubMed Central  Google Scholar 

  • Jacobs J (2014) Hippocampal theta oscillations are slower in humans than in rodents: implications for models of spatial navigation and memory. Philos Transact R Soc B Biol Sci 369:20130304

    Google Scholar 

  • Janzen G (2006) Memory for object location and route direction in virtual large-scale space. Q J Exp Psychol 59:493–508

    Google Scholar 

  • Janzen G, Van Turennout M (2004) Selective neural representation of objects relevant for navigation. Nat Neurosci 7:673–677

    CAS  PubMed  Google Scholar 

  • Jeneson A, Mauldin KN, Hopkins RO, Squire LR (2011) The role of the hippocampus in retaining relational information across short delays: the importance of memory load. Learn Mem 18:301–305

    PubMed  PubMed Central  Google Scholar 

  • Jungnickel E, Gramann K (2016) Mobile brain/body imaging (mobi) of physical interaction with dynamically moving objects. Front Hum Neurosci 10:306

    PubMed  PubMed Central  Google Scholar 

  • Kessels RP, de Haan EH, Kappelle LJ, Postma A (2001) Varieties of human spatial memory: a meta-analysis on the effects of hippocampal lesions. Brain Res Rev 35:295–303

    CAS  PubMed  Google Scholar 

  • Klippel A (2003, September) Wayfinding choremes. In: International conference on spatial information theory. Springer, Berlin, pp 301–315

    Google Scholar 

  • Kluss T, Marsh WE, Zetzsche C, Schill K (2015) Representation of impossible worlds in the cognitive map. Cogn Process 16(1):271–276

    PubMed  Google Scholar 

  • Kobayashi Y, Amaral DG (2003) Macaque monkey retrosplenial cortex: II. Cortical afferents. J Comp Neurol 466:48–79

    PubMed  Google Scholar 

  • Kolarik AJ, Moore BCJ, Zahorik P, Cirstea S, Pardhan S (2016) Auditory distance perception in humans: a review of cues, development, neuronal bases, and effects of sensory loss. Atten Percept Psychophys 78:373–395

    PubMed  Google Scholar 

  • Krohn S, Tromp J, Quinque EM, Belger J, Klotzsche F, Rekers S, Chojecki P, De Mooij J, Akbal M, McCall C, Villringer A, Gaebler M, Finke C, ThöneOtto A (2020) Multidimensional evaluation of virtual reality paradigms in clinical neuropsychology: application of the VR-check framework. J Med Internet Res 22

    Google Scholar 

  • Kunz L, Schröder TN, Lee H, Montag C, Lachmann B, Sariyska R, Reuter M, Stirnberg R, Stöcker T, Messing-Floeter PC et al (2015) Reduced grid-cell–like representations in adults at genetic risk for alzheimer’s disease. Science 350:430–433

    CAS  PubMed  Google Scholar 

  • Laczó J, Andel R, Vyhnalek M, Vlcek K, Magerova H, Varjassyova A, Tolar M, Hort J (2010) Human analogue of the Morris water maze for testing subjects at risk of alzheimer’s disease. Neurodegener Dis 7:148–152

    PubMed  Google Scholar 

  • Lancia S, Mammarella S, Bianco D, Quaresima V (2017) Is wireless functional nearinfrared spectroscopy (fnirs) 3d neuroimaging feasible to map human navigation in the real-world? In: International conference on spatial information theory. Springer, pp 73–78

    Google Scholar 

  • Lappe M, Jenkin M, Harris LR (2007) Travel distance estimation from visual motion by leaky path integration. Exp Brain Res 180:35–48

    PubMed  Google Scholar 

  • Liang M, Starrett MJ, Ekstrom AD (2018) Dissociation of frontal-midline delta, theta and posterior alpha oscillations: A mobile EEG study. Psychophysiology 55:e13090

    PubMed  Google Scholar 

  • Limanowski J, Kirilina E, Blankenburg F (2017) Neuronal correlates of continuous manual tracking under varying visual movement feedback in a virtual reality environment. NeuroImage 146:81–89

    PubMed  Google Scholar 

  • Lopes P, Ion A, Baudisch P (2015) Impacto: simulating physical impact by combining tactile stimulation with electrical muscle stimulation. In: Proceedings of the 28th annual ACM symposium on user interface software & technology, pp 11–19

    Google Scholar 

  • Lövdén M, Schellenbach M, Grossman-Hutter B, Krüger A, Lindenberger U (2005) Environmental topography and postural control demands shape aging-associated decrements in spatial navigation performance. Psychol Aging 20:683

    PubMed  Google Scholar 

  • Lövdén M, Schaefer S, Noack H, Bodammer NC, Kühn S, Heinze HJ, Düzel E, Bäckman L, Lindenberger U (2012) Spatial navigation training protects the hippocampus against age-related changes during early and late adulthood. Neurobiol Aging 33:620–6e9

    Google Scholar 

  • Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J, Frackowiak RS, Frith CD (2000) Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci 97:4398–4403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Makeig S, Gramann K, Jung TP, Sejnowski TJ, Poizner H (2009) Linking brain, mind and behavior. Int J Psychophysiol 73:95–100

    PubMed  PubMed Central  Google Scholar 

  • Mallory CS, Hardcastle K, Campbell MG, Attinger A, Low IIC, Raymond JL, Giocomo LM (2021) Mouse entorhinal cortex encodes a diverse repertoire of self-motion signals. Nat Commun 12:671

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meilinger T, Franz G, Bülthoff HH (2012) From Isovists via mental representations to behaviour: first steps toward closing the causal chain. Environ Plan B Plan Design 39:48–62

    Google Scholar 

  • Meilinger T, Riecke BE, Bülthoff HH (2014) Local and global reference frames for environmental spaces. Q J Exp Psychol 67:542–569

    Google Scholar 

  • Millar S (1994) Understanding and representing space theory and evidence from studies with blind and sighted children. Oxford University Press

    Google Scholar 

  • Mittelstaedt H, Mittelstaedt ML (1982) Homing by path integration. In: Avian navigation. Springer, pp 290–297

    Google Scholar 

  • Miyakoshi M, Gehrke L, Gramann K, Makeig S, Iversen J (2021) The AudioMaze: an EEG and motion capture study of human spatial navigation in sparse augmented reality. Eur J Neurosci 54(12):8283–8307

    PubMed  Google Scholar 

  • Montello DR (2005) Navigation. Cambridge University Press

    Google Scholar 

  • Morris RG (1981) Spatial localization does not require the presence of local cues. Learn Motiv 12:239–260

    Google Scholar 

  • Muller RU, Ranck JB Jr, Taube JS (1996) Head direction cells: properties and functional significance. Curr Opin Neurobiol 6:196–206

    CAS  PubMed  Google Scholar 

  • Muryy A, Glennerster A (2021) Route selection in non-euclidean virtual environments. PLoS One 16:e0247818

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nardini M, Jones P, Bedford R, Braddick O (2008) Development of cue integration in human navigation. Curr Biol 18:689–693

    CAS  PubMed  Google Scholar 

  • O’Keefe J, Burgess N, Donnett JG, Jeffery KJ, Maguire EA (1998) Place cells, navigational accuracy, and the human hippocampus. Philos Transact R Soc London Ser B Biol Sci 353:1333–1340

    Google Scholar 

  • Parong J, Pollard KA, Files BT, Oiknine AH, Sinatra AM, Moss JD, Passaro A, Khooshabeh P (2020) The mediating role of presence differs across types of spatial learning in immersive technologies. Comput Hum Behav 107:106290

    Google Scholar 

  • Parslow DM, Morris RG, Fleminger S, Rahman Q, Abrahams S, Recce M (2005) Allocentric spatial memory in humans with hippocampal lesions. Acta Psychol 118:123–147

    Google Scholar 

  • Rao RP, Ballard DH (1999) Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nat Neurosci 2:79–87

    CAS  PubMed  Google Scholar 

  • Richardson AE, Montello DR, Hegarty M (1999) Spatial knowledge acquisition from maps and from navigation in real and virtual environments. Mem Cogn 27:741–750

    CAS  Google Scholar 

  • Riva G, Wiederhold BK, Mantovani F (2019) Neuroscience of virtual reality: from virtual exposure to embodied medicine. Cyberpsychol Behav Soc Netw 22:82–96

    PubMed  PubMed Central  Google Scholar 

  • Roberts G, Holmes N, Alexander N, Boto E, Leggett J, Hill RM, Shah V, Rea M, Vaughan R, Maguire EA et al (2019) Towards OPM-MEG in a virtual reality environment. NeuroImage 199:408–417

    PubMed  Google Scholar 

  • Rossier J, Haeberli C, Schenk F (2000) Auditory cues support place navigation in rats when associated with a visual cue. Behav Brain Res 117:209–214

    CAS  PubMed  Google Scholar 

  • Ruddle RA, Volkova E, Bülthoff HH (2013) Learning to walk in virtual reality. ACM Transact Appl Percept (TAP) 10:1–17

    Google Scholar 

  • Russell NA, Horii A, Smith PF, Darlington CL, Bilkey DK (2006) Lesions of the vestibular system disrupt hippocampal theta rhythm in the rat. J Neurophysiol 96:4–14

    PubMed  Google Scholar 

  • Save E, Poucet B (2009) Role of the parietal cortex in long-term representation of spatial information in the rat. Neurobiol Learn Mem 91:172–178

    PubMed  Google Scholar 

  • Schellenbach M, Lövdén M, Verrel J, Krüger A, Lindenberger U (2010) Sensorimotor-cognitive couplings in the context of assistive spatial navigation for older adults. GeroPsych 23(2):69

    Google Scholar 

  • Schinazi VR, Thrash T, Chebat D (2016) Spatial navigation by congenitally blind individuals. WIREs Cogn Sci 7:37–58

    Google Scholar 

  • Schoenfeld R, Schiffelholz T, Beyer C, Leplow B, Foreman N (2017) Variants of the Morris water maze task to comparatively assess human and rodent place navigation. Neurobiol Learn Mem 139:117–127

    PubMed  Google Scholar 

  • Seubert J, Humphreys GW, Müller HJ, Gramann K (2008) Straight after the turn: the role of the parietal lobes in egocentric space processing. Neurocase 14:204–219

    PubMed  Google Scholar 

  • Sheeran WM, Ahmed OJ (2020) The neural circuitry supporting successful spatial navigation despite variable movement speeds. Neurosci Biobehav Rev 108:821–833

    PubMed  Google Scholar 

  • Simons DJ, Wang RF (1998) Perceiving real-world viewpoint changes. Psychol Sci 9:315–320

    Google Scholar 

  • Slater M (2009) Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philos Transact R Soc B Biol Sci 364:3549–3557

    Google Scholar 

  • Spiers HJ, Maguire EA (2006) Thoughts, behaviour, and brain dynamics during navigation in the real world. NeuroImage 31:1826–1840

    PubMed  Google Scholar 

  • Spiers HJ, Maguire EA (2007) A navigational guidance system in the human brain. Hippocampus 17:618–626

    PubMed  PubMed Central  Google Scholar 

  • Starrett MJ, McAvan AS, Huffman DJ, Stokes JD, Kyle CT, Smuda DN et al (2021) Landmarks: a solution for spatial navigation and memory experiments in virtual reality. Behav Res Methods 53(3):1046–1059

    PubMed  Google Scholar 

  • Staudigl T, Leszczynski M, Jacobs J, Sheth SA, Schroeder CE, Jensen O, Doeller CF (2018) Hexadirectional modulation of high-frequency electrophysiological activity in the human anterior medial temporal lobe maps visual space. Curr Biol 28:3325–3329

    CAS  PubMed  Google Scholar 

  • Takeuchi N, Mori T, Suzukamo Y, Tanaka N, Izumi SI (2016) Parallel processing of cognitive and physical demands in left and right prefrontal cortices during smartphone use while walking. BMC Neurosci 17:1–11

    Google Scholar 

  • Taube JS, Muller RU, Ranck JB (1990) Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J Neurosci 10(2):420–435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taube JS, Valerio S, Yoder RM (2013) Is navigation in virtual reality with fMRI really navigation? J Cogn Neurosci 25:1008–1019

    PubMed  PubMed Central  Google Scholar 

  • Thornberry C, Cimadevilla JM, Commins S (2021) Virtual Morris water maze: opportunities and challenges. Rev Neurosci 32(8):887–903

    PubMed  Google Scholar 

  • Tolman EC (1948) Cognitive maps in rats and men. Psychol Rev 55:189

    CAS  PubMed  Google Scholar 

  • Tucker LB, Velosky AG, McCabe JT (2018) Applications of the Morris water maze in translational traumatic brain injury research. Neurosci Biobehav Rev 88:187–200

    PubMed  Google Scholar 

  • Tversky B (1992) Distortions in cognitive maps. Geoforum 23:131–138

    Google Scholar 

  • Van Veen HA, Distler HK, Braun SJ, Bülthoff HH (1998) Navigating through a virtual city: using virtual reality technology to study human action and perception. Futur Gener Comput Syst 14:231–242

    Google Scholar 

  • Vann SD, Aggleton JP, Maguire EA (2009) What does the retrosplenial cortex do? Nat Rev Neurosci 10:792–802

    CAS  PubMed  Google Scholar 

  • Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1:848–858

    PubMed  PubMed Central  Google Scholar 

  • Waller D, Lippa Y (2007) Landmarks as beacons and associative cues: their role in route learning. Mem Cogn 35:910–924

    Google Scholar 

  • Waller D, Hunt E, Knapp D (1998) The transfer of spatial knowledge in virtual environment training. Presence Teleop Virt 7:129–143

    Google Scholar 

  • Wang RF, Simons DJ (1999) Active and passive scene recognition across views. Cognition 70(2):191–210

    CAS  PubMed  Google Scholar 

  • Warren WH, Rothman DB, Schnapp BH, Ericson JD (2017) Wormholes in virtual space: from cognitive maps to cognitive graphs. Cognition 166:152–163

    PubMed  Google Scholar 

  • Weisberg SM, Schinazi VR, Newcombe NS, Shipley TF, Epstein RA (2014) Variations in cognitive maps: understanding individual differences in navigation. J Exp Psychol Learn Mem Cogn 40:669

    PubMed  Google Scholar 

  • Werkhoven P, van Erp JB, Philippi TG (2014) Navigating virtual mazes: the benefits of audiovisual landmarks. Displays 35:110–117

    Google Scholar 

  • Whitlock JR (2017) Posterior parietal cortex. Curr Biol 27:R691–R695

    CAS  PubMed  Google Scholar 

  • Whitlock JR, Sutherland RJ, Witter MP, Moser MB, Moser EI (2008) Navigating from hippocampus to parietal cortex. Proc Natl Acad Sci 105:14755–14762

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wiederhold BK, Wiederhold MD (2008) Virtual reality with fMRI: a breakthrough cognitive treatment tool. Virtual Reality 12:259–267

    Google Scholar 

  • Wiener JM, Hölscher C, Büchner S, Konieczny L (2012) Gaze behaviour during space perception and spatial decision making. Psychol Res 76:713–729

    PubMed  Google Scholar 

  • Wiener JM, de Condappa O, Harris MA, Wolbers T (2013) Maladaptive bias for extrahippocampal navigation strategies in aging humans. J Neurosci 33:6012–6017

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wiener JM, Carroll D, Moeller S, Bibi I, Ivanova D, Allen P, Wolbers T (2020) A novel virtual-reality-based route-learning test suite: assessing the effects of cognitive aging on navigation. Behav Res Methods 52:630–640

    PubMed  Google Scholar 

  • Wolbers T, Wiener JM (2014) Challenges for identifying the neural mechanisms that support spatial navigation: the impact of spatial scale. Front Hum Neurosci 8:571

    PubMed  PubMed Central  Google Scholar 

  • Wolbers T, Wiener JM, Mallot HA, Büchel C (2007) Differential recruitment of the hippocampus, medial prefrontal cortex, and the human motion complex during path integration in humans. J Neurosci 27:9408–9416

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Chen K, Ye Y, Zhang T, Zhou W (2020) Humans navigate with stereo olfaction. Proc Natl Acad Sci 117:16065–16071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wunderlich A, Gramann K (2021) Eye movement-related brain potentials during assisted navigation in real-world environments. Eur J Neurosci 54(12):8336–8354

    PubMed  Google Scholar 

  • Young CK, Ruan M, McNaughton N (2021) Speed modulation of hippocampal theta frequency and amplitude predicts water maze learning. Hippocampus 31:201–212

    PubMed  Google Scholar 

  • Zhong JY, Magnusson KR, Swarts ME, Clendinen CA, Reynolds NC, Moffat SD (2017) The application of a rodent-based Morris water maze (mwm) protocol to an investigation of age-related differences in human spatial learning. Behav Neurosci 131:470

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Gramann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jeung, S., Hilton, C., Berg, T., Gehrke, L., Gramann, K. (2023). Virtual Reality for Spatial Navigation. In: Maymon, C., Grimshaw, G., Wu, Y.C. (eds) Virtual Reality in Behavioral Neuroscience: New Insights and Methods. Current Topics in Behavioral Neurosciences, vol 65. Springer, Cham. https://doi.org/10.1007/7854_2022_403

Download citation

Publish with us

Policies and ethics