Skip to main content

Dopamine D3 Receptor in Parkinson Disease: A Prognosis Biomarker and an Intervention Target

  • Chapter
  • First Online:
Book cover Therapeutic Applications of Dopamine D3 Receptor Function

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 60))

Abstract

Parkinson disease (PD) dementia, pathologically featured as nigrostriatal dopamine (DA) neuronal loss with motor and non-motor manifestations, leads to substantial disability and economic burden. DA therapy targets the DA D3 receptor (D3R) with high affinity and selectivity. The pathological involvement of D3R is evidenced as an effective biomarker for disease progression and DA agnostic interventions, with compensations of increased DA, decreased aggregates of α-synuclein (α-Syn), enhanced secretion of brain-derived neurotrophic factors (BDNF), attenuation of neuroinflammation and oxidative damage, and promoting neurogenesis in the brain. D3R also interacts with D1R to reduce PD-associated motor symptoms and alleviate the side effects of levodopa (L-DOPA) treatment. We recently found that DA D2 receptor (D2R) density decreases in the late-stage PDs, while high D3R or DA D1 receptor (D1R) + D3R densities in the postmortem PD brains correlate with survival advantages. These new essential findings warrant renewed investigations into the understanding of D3R neuron populations and their cross-sectional and longitudinal regulations in PD progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antonini A, Barone P, Ceravolo R, Fabbrini G, Tinazzi M, Abbruzzese G (2010) Role of pramipexole in the management of Parkinson’s disease. CNS Drugs 24:829–841

    Article  CAS  Google Scholar 

  • Ballanger B, Beaudoin-Gobert M, Neumane S, Epinat J, Metereau E, Duperrier S, Broussolle E, Thobois S, Bonnefoi F, Tourvielle C, Lavenne F, Costes N, Lebars D, Zimmer L, Sgambato-Faure V, Tremblay L (2016) Imaging dopamine and serotonin systems on MPTP monkeys: a longitudinal PET investigation of compensatory mechanisms. J Neurosci Off J Soc Neurosci 36:1577–1589

    Article  CAS  Google Scholar 

  • Benitez A, Edens H, Fishman J, Moran K, Asgharnejad M (2014) Rotigotine transdermal system: developing continuous dopaminergic delivery to treat Parkinson's disease and restless legs syndrome. Ann N Y Acad Sci 1329:45–66

    Article  CAS  Google Scholar 

  • Boileau I, Guttman M, Rusjan P, Adams JR, Houle S, Tong J, Hornykiewicz O, Furukawa Y, Wilson AA, Kapur S, Kish SJ (2009) Decreased binding of the D3 dopamine receptor-preferring ligand [11C]-(+)-PHNO in drug-naive Parkinson's disease. Brain 132:1366–1375

    Article  Google Scholar 

  • Boileau I, Payer D, Houle S, Behzadi A, Rusjan PM, Tong J, Wilkins D, Selby P, George TP, Zack M, Furukawa Y, McCluskey T, Wilson AA, Kish SJ (2012) Higher binding of the dopamine D3 receptor-preferring ligand [11C]-(+)-propyl-hexahydro-naphtho-oxazin in methamphetamine polydrug users: a positron emission tomography study. J Neurosci Off J Soc Neurosci 32:1353–1359

    Article  CAS  Google Scholar 

  • Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson's disease-related pathology. Cell Tissue Res 318:121–134

    Article  Google Scholar 

  • Briand LA, Flagel SB, Seeman P, Robinson TE (2008) Cocaine self-administration produces a persistent increase in dopamine D2 high receptors. Eur Neuropsychopharmacol 18:551–556

    Article  CAS  Google Scholar 

  • Brooks DJ, Frey KA, Marek KL, Oakes D, Paty D, Prentice R, Shults CW, Stoessl AJ (2003) Assessment of neuroimaging techniques as biomarkers of the progression of Parkinson's disease. Exp Neurol 184(Suppl 1):S68–S79

    Article  CAS  Google Scholar 

  • Brown JA, Xu J, Diggs-Andrews KA, Wozniak DF, Mach RH, Gutmann DH (2011) PET imaging for attention deficit preclinical drug testing in neurofibromatosis-1 mice. Exp Neurol 232:333–338

    Article  CAS  Google Scholar 

  • Chen J, Jiang C, Levant B, Li X, Zhao T, Wen B, Luo R, Sun D, Wang S (2014) Pramipexole derivatives as potent and selective dopamine D(3) receptor agonists with improved human microsomal stability. ChemMedChem 9:2653–2660

    Article  CAS  Google Scholar 

  • Chu W, Tu Z, McElveen E, Xu J, Taylor M, Luedtke RR, Mach RH (2005) Synthesis and in vitro binding of N-phenyl piperazine analogs as potential dopamine D3 receptor ligands. Bioorg Med Chem 13:77–87

    Article  Google Scholar 

  • Cortes A, Moreno E, Rodriguez-Ruiz M, Canela EI, Casado V (2016) Targeting the dopamine D3 receptor: an overview of drug design strategies. Expert Opin Drug Discov 11:641–664

    Article  CAS  Google Scholar 

  • Danzeisen R, Schwalenstoecker B, Gillardon F, Buerger E, Krzykalla V, Klinder K, Schild L, Hengerer B, Ludolph AC, Dorner-Ciossek C, Kussmaul L (2006) Targeted antioxidative and neuroprotective properties of the dopamine agonist pramipexole and its nondopaminergic enantiomer SND919CL2x [(+)2-amino-4,5,6,7-tetrahydro-6-L-propylamino-benzathiazole dihydrochloride]. J Pharmacol Exp Ther 316:189–199

    Article  CAS  Google Scholar 

  • Dauer W, Przedborski S (2003) Parkinson's disease: mechanisms and models. Neuron 39:889–909

    Article  CAS  Google Scholar 

  • Dugan LL, Tian L, Quick KL, Hardt JI, Karimi M, Brown C, Loftin S, Flores H, Moerlein SM, Polich J, Tabbal SD, Mink JW, Perlmutter JS (2014) Carboxyfullerene neuroprotection postinjury in parkinsonian nonhuman primates. Ann Neurol 76:393–402

    Article  CAS  Google Scholar 

  • Eden RJ, Wallduck MS, Patel B, Owen DA (1990) Autonomic and haemodynamic responses to SK & F 101468 (ropinirole), a DA2 agonist, in anaesthetised cats. Eur J Pharmacol 175:333–340

    Article  CAS  Google Scholar 

  • Elmer LW, Surmann E, Boroojerdi B, Jankovic J (2012) Long-term safety and tolerability of rotigotine transdermal system in patients with early-stage idiopathic Parkinson's disease: a prospective, open-label extension study. Parkinsonism Relat Disord 18:488–493

    Article  Google Scholar 

  • Fisher BE, Li Q, Nacca A, Salem GJ, Song J, Yip J, Hui JS, Jakowec MW, Petzinger GM (2013) Treadmill exercise elevates striatal dopamine D2 receptor binding potential in patients with early Parkinson's disease. Neuroreport 24:509–514

    Article  CAS  Google Scholar 

  • Frampton JE (2014) Pramipexole extended-release: a review of its use in patients with Parkinson's disease. Drugs 74:2175–2190

    Article  CAS  Google Scholar 

  • Gehlert DR, Gackenheimer SL, Seeman P, Schaus J (1992) Autoradiographic localization of [3H]quinpirole binding to dopamine D2 and D3 receptors in rat brain. Eur J Pharmacol 211:189–194

    Article  CAS  Google Scholar 

  • George SR, Watanabe M, Di Paolo T, Falardeau P, Labrie F, Seeman P (1985) The functional state of the dopamine receptor in the anterior pituitary is in the high affinity form. Endocrinology 117:690–697

    Article  CAS  Google Scholar 

  • Ginovart N, Galineau L, Willeit M, Mizrahi R, Bloomfield PM, Seeman P, Houle S, Kapur S, Wilson AA (2006) Binding characteristics and sensitivity to endogenous dopamine of [11C]-(+)-PHNO, a new agonist radiotracer for imaging the high-affinity state of D2 receptors in vivo using positron emission tomography. J Neurochem 97:1089–1103

    Article  CAS  Google Scholar 

  • Girault JA, Greengard P (2004) The neurobiology of dopamine signaling. Arch Neurol 61:641–644

    Article  Google Scholar 

  • Graff-Guerrero A, Mizrahi R, Agid O, Marcon H, Barsoum P, Rusjan P, Wilson AA, Zipursky R, Kapur S (2009) The dopamine D2 receptors in high-affinity state and D3 receptors in schizophrenia: a clinical [11C]-(+)-PHNO PET study. Neuropsychopharmacology 34:1078–1086

    Article  CAS  Google Scholar 

  • Guo N, Guo W, Kralikova M, Jiang M, Schieren I, Narendran R, Slifstein M, Abi-Dargham A, Laruelle M, Javitch JA, Rayport S (2010) Impact of D2 receptor internalization on binding affinity of neuroimaging radiotracers. Neuropsychopharmacology 35:806–817

    Article  CAS  Google Scholar 

  • Han F, Perrin RJ, Wang Q, Wang Y, Perlmutter JS, Morris JC, Benzinger TLS, Xu J (2019) Neuroinflammation and myelin status in Alzheimer's disease, Parkinson's disease, and normal aging brains: a small sample study. Parkinsons Dis 2019:7975407

    Google Scholar 

  • Hillefors M, von Euler G (2001) Pharmacology of [3H]R(+)-7-OH-DPAT binding in the rat caudate-putamen. Neurochem Int 38:31–42

    Article  CAS  Google Scholar 

  • Hillefors M, von Euler M, Hedlund PB, von Euler G (1999) Prominent binding of the dopamine D3 agonist [3H]PD 128907 in the caudate-putamen of the adult rat. Brain Res 822:126–131

    Article  CAS  Google Scholar 

  • Joyce JN, Ryoo HL, Beach TB, Caviness JN, Stacy M, Gurevich EV, Reiser M, Adler CH (2002) Loss of response to levodopa in Parkinson's disease and co-occurrence with dementia: role of D3 and not D2 receptors. Brain Res 955:138–152

    Article  CAS  Google Scholar 

  • Kaichi Y, Nonaka R, Hagino Y, Watanabe M (2000) Dopamine D3 receptor binding by D3 agonist 7-OH-DPAT (7-hydroxy-dipropylaminotetralin) and antipsychotic drugs measured ex vivo by quantitative autoradiography. Can J Physiol Pharmacol 78:7–11

    Article  CAS  Google Scholar 

  • Kalia LV, Lang AE (2015) Parkinson's disease. Lancet (London, England) 386:896–912

    Article  CAS  Google Scholar 

  • Kaneko S, Eisner GM, Jose PA (1990) Effect of pramipexole, a dopamine-1/dopamine-2 receptor agonist, on sodium excretion and blood pressure in spontaneously hypertensive rats. J Auton Pharmacol 10(Suppl 1):s53–s60

    Article  CAS  Google Scholar 

  • Karimi M, Tian L, Brown CA, Flores HP, Loftin SK, Videen TO, Moerlein SM, Perlmutter JS (2013) Validation of nigrostriatal positron emission tomography measures: critical limits. Ann Neurol 73:390–396

    Article  CAS  Google Scholar 

  • Kessler RM, Woodward ND, Riccardi P, Li R, Ansari MS, Anderson S, Dawant B, Zald D, Meltzer HY (2009) Dopamine D2 receptor levels in striatum, thalamus, substantia nigra, limbic regions, and cortex in schizophrenic subjects. Biol Psychiatry 65:1024–1031

    Article  CAS  Google Scholar 

  • King MV, Seeman P, Marsden CA, Fone KC (2009) Increased dopamine D2High receptors in rats reared in social isolation. Synapse 63:476–483

    Article  CAS  Google Scholar 

  • Kordower JH, Olanow CW, Dodiya HB, Chu Y, Beach TG, Adler CH, Halliday GM, Bartus RT (2013) Disease duration and the integrity of the nigrostriatal system in Parkinson's disease. Brain 136:2419–2431

    Article  Google Scholar 

  • Kotzbauer PT, Cairns NJ, Campbell MC, Willis AW, Racette BA, Tabbal SD, Perlmutter JS (2012) Pathologic accumulation of α-synuclein and Aβ in Parkinson disease patients with dementia. Arch Neurol:1–6

    Google Scholar 

  • Kuramoto L, Cragg J, Nandhagopal R, Mak E, Sossi V, de la Fuente-Fernandez R, Stoessl AJ, Schulzer M (2013) The nature of progression in Parkinson's disease: an application of non-linear, multivariate, longitudinal random effects modelling. PLoS One 8:e76595

    Article  CAS  Google Scholar 

  • Lach B, Grimes D, Benoit B, Minkiewicz-Janda A (1992) Caudate nucleus pathology in Parkinson's disease: ultrastructural and biochemical findings in biopsy material. Acta Neuropathol 83:352–360

    Article  CAS  Google Scholar 

  • Laforest R, Karimi M, Moerlein SM, Xu J, Flores HP, Bognar C, Li A, Mach RH, Perlmutter JS, Tu Z (2016) Absorbed radiation dosimetry of the D3-specific PET radioligand [(18)F]FluorTriopride estimated using rodent and nonhuman primate. Am J Nucl Med Mol Imaging 6:301–309

    CAS  Google Scholar 

  • Lao CL, Kuo YH, Hsieh YT, Chen JC (2013) Intranasal and subcutaneous administration of dopamine D3 receptor agonists functionally restores nigrostriatal dopamine in MPTP-treated mice. Neurotox Res 24:523–531

    Article  CAS  Google Scholar 

  • Le Foll B, Wilson AA, Graff A, Boileau I, Di Ciano P (2014) Recent methods for measuring dopamine D3 receptor occupancy in vivo: importance for drug development. Front Pharmacol 5:161

    Google Scholar 

  • Leff P (1995) The two-state model of receptor activation. Trends Pharmacol Sci 16:89–97

    Article  CAS  Google Scholar 

  • Levesque D, Diaz J, Pilon C, Martres MP, Giros B, Souil E, Schott D, Morgat JL, Schwartz JC, Sokoloff P (1992) Identification, characterization, and localization of the dopamine D3 receptor in rat brain using 7-[3H]hydroxy-N,N-di-n-propyl-2-aminotetralin. Proc Natl Acad Sci U S A 89:8155–8159

    Article  CAS  Google Scholar 

  • Levesque D, Martres MP, Diaz J, Griffon N, Lammers CH, Sokoloff P, Schwartz JC (1995) A paradoxical regulation of the dopamine D3 receptor expression suggests the involvement of an anterograde factor from dopamine neurons. Proc Natl Acad Sci U S A 92:1719–1723

    Article  CAS  Google Scholar 

  • Lewis MM, Huang X, Nichols DE, Mailman RB (2006) D1 and functionally selective dopamine agonists as neuroprotective agents in Parkinson's disease. CNS Neurol Disord Drug Targets 5:345–353

    Article  CAS  Google Scholar 

  • LeWitt PA, Lyons KE, Pahwa R (2007) Advanced Parkinson disease treated with rotigotine transdermal system: PREFER study. Neurology 68:1262–1267

    Article  CAS  Google Scholar 

  • Li H, Xu J (2020) “The striatal DNA damage and neurodegenerations” in DNA-damages and repair mechanisms. IntechOpen, London

    Google Scholar 

  • Li C, Biswas S, Li X, Dutta AK, Le W (2010) Novel D3 dopamine receptor-preferring agonist D-264: evidence of neuroprotective property in Parkinson's disease animal models induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and lactacystin. J Neurosci Res 88:2513–2523

    CAS  Google Scholar 

  • Li H, Yang P, Knight W, Guo Y, Perlmutter JS, Benzinger TLS, Morris JC, Xu J (2020) The interactions of dopamine and oxidative damage in the striatum of patients with neurodegenerative diseases. J Neurochem 152:235–251

    Article  CAS  Google Scholar 

  • Li H, Knight WC, Xu J (2022) Striatal oxidative damages and neuroinflammation correlate with progression and survival of Lewy body and Alzheimer diseases. Neural Regen Res 17:867–874

    Article  CAS  Google Scholar 

  • Lim MM, Xu J, Holtzman DM, Mach RH (2011) Sleep deprivation differentially affects dopamine receptor subtypes in mouse striatum. Neuroreport 22:489–493

    Article  CAS  Google Scholar 

  • Luedtke RR, Mach RH (2003) Progress in developing D3 dopamine receptor ligands as potential therapeutic agents for neurological and neuropsychiatric disorders. Curr Pharm Des 9:643–671

    Article  CAS  Google Scholar 

  • Macdonald R, Barnes K, Hastings C, Mortiboys H (2018) Mitochondrial abnormalities in Parkinson's disease and Alzheimer's disease: can mitochondria be targeted therapeutically? Biochem Soc Trans

    Google Scholar 

  • Mach RH, Tu Z, Xu J, Li S, Jones LA, Taylor M, Luedtke RR, Derdeyn CP, Perlmutter JS, Mintun MA (2011) Endogenous dopamine (DA) competes with the binding of a radiolabeled D(3) receptor partial agonist in vivo: a positron emission tomography study. Synapse 65:724–732

    Article  CAS  Google Scholar 

  • Magnard R, Vachez Y, Carcenac C, Krack P, David O, Savasta M, Boulet S, Carnicella S (2016) What can rodent models tell us about apathy and associated neuropsychiatric symptoms in Parkinson's disease? Transl Psychiatry 6:e753

    Article  CAS  Google Scholar 

  • Marsden CA (2006) Dopamine: the rewarding years. Br J Pharmacol 147(Suppl 1):S136–S144

    Article  CAS  Google Scholar 

  • Martin WR, Perlmutter JS (1994) Assessment of fetal tissue transplantation in Parkinson's disease: does PET play a role? Neurology 44:1777–1780

    Article  CAS  Google Scholar 

  • Matsukawa N, Maki M, Yasuhara T, Hara K, Yu G, Xu L, Kim KM, Morgan JC, Sethi KD, Borlongan CV (2007) Overexpression of D2/D3 receptors increases efficacy of ropinirole in chronically 6-OHDA-lesioned parkinsonian rats. Brain Res 1160:113–123

    Article  CAS  Google Scholar 

  • Min C, Zheng M, Zhang X, Caron MG, Kim KM (2013) Novel roles for beta-arrestins in the regulation of pharmacological sequestration to predict agonist-induced desensitization of dopamine D3 receptors. Br J Pharmacol 170:1112–1129

    Article  CAS  Google Scholar 

  • Moore RJ, Vinsant SL, Nader MA, Porrino LJ, Friedman DP (1998) Effect of cocaine self-administration on dopamine D2 receptors in rhesus monkeys. Synapse 30:88–96

    Article  CAS  Google Scholar 

  • Morgan D, Grant KA, Gage HD, Mach RH, Kaplan JR, Prioleau O, Nader SH, Buchheimer N, Ehrenkaufer RL, Nader MA (2002) Social dominance in monkeys: dopamine D2 receptors and cocaine self-administration. Nat Neurosci 5:169–174

    Article  CAS  Google Scholar 

  • Morissette M, Goulet M, Grondin R, Blanchet P, Bedard PJ, Di Paolo T, Levesque D (1998) Associative and limbic regions of monkey striatum express high levels of dopamine D3 receptors: effects of MPTP and dopamine agonist replacement therapies. Eur J Neurosci 10:2565–2573

    Article  CAS  Google Scholar 

  • Mukherjee J, Constantinescu CC, Hoang AT, Jerjian T, Majji D, Pan ML (2015) Dopamine D3 receptor binding of (18)F-fallypride: evaluation using in vitro and in vivo PET imaging studies. Synapse 69:577–591

    Article  CAS  Google Scholar 

  • Muralikrishnan D, Mohanakumar KP (1998) Neuroprotection by bromocriptine against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in mice. FASEB J 12:905–912

    Article  CAS  Google Scholar 

  • Nabulsi N, Weinzimmer D, Gentile G, Laruelle M, Tu Z, Mach RH, Ding YS, Carson R, Huang Y (2008) Evaluation of the putative dopamine D3 PET tracer [11C]WC-10 in non-human primates. J Nucl Med 49:286P

    Google Scholar 

  • Nader MA, Morgan D, Gage HD, Nader SH, Calhoun TL, Buchheimer N, Ehrenkaufer R, Mach RH (2006) PET imaging of dopamine D2 receptors during chronic cocaine self-administration in monkeys. Nat Neurosci 9:1050–1056

    Article  CAS  Google Scholar 

  • Neve KA, Seamans JK, Trantham-Davidson H (2004) Dopamine receptor signaling. J Recept Signal Transduct Res 24:165–205

    Article  CAS  Google Scholar 

  • Pate BD, Kawamata T, Yamada T, McGeer EG, Hewitt KA, Snow BJ, Ruth TJ, Calne DB (1993) Correlation of striatal fluorodopa uptake in the MPTP monkey with dopaminergic indices. Ann Neurol 34:331–338

    Article  CAS  Google Scholar 

  • Peng X, Wang Q, Mishra Y, Xu J, Reichert DE, Malik M, Taylor M, Luedtke RR, Mach RH (2015) Synthesis, pharmacological evaluation and molecular modeling studies of triazole containing dopamine D3 receptor ligands. Bioorg Med Chem Lett 25:519–523

    Article  CAS  Google Scholar 

  • Pham DQ, Nogid A (2008) Rotigotine transdermal system for the treatment of Parkinson's disease. Clin Ther 30:813–824

    Article  CAS  Google Scholar 

  • Prieto GA (2017) Abnormalities of dopamine D3 receptor signaling in the diseased brain. J Cent Nerv Syst Dis 9:1179573517726335

    Article  Google Scholar 

  • Rinne JO, Laihinen A, Ruottinen H, Ruotsalainen U, Nagren K, Lehikoinen P, Oikonen V, Rinne UK (1995) Increased density of dopamine D2 receptors in the putamen, but not in the caudate nucleus in early Parkinson's disease: a PET study with [11C]raclopride. J Neurol Sci 132:156–161

    Article  CAS  Google Scholar 

  • Ryoo HL, Pierrotti D, Joyce JN (1998) Dopamine D3 receptor is decreased and D2 receptor is elevated in the striatum of Parkinson's disease. Mov Disord 13:788–797

    Article  CAS  Google Scholar 

  • Schapira AH, Barone P, Hauser RA, Mizuno Y, Rascol O, Busse M, Salin L, Juhel N, Poewe W (2011) Extended-release pramipexole in advanced Parkinson disease: a randomized controlled trial. Neurology 77:767–774

    Article  CAS  Google Scholar 

  • Sibley DR, De Lean A, Creese I (1982) Anterior pituitary dopamine receptors. Demonstration of interconvertible high and low affinity states of the D-2 dopamine receptor. J Biol Chem 257:6351–6361

    Article  CAS  Google Scholar 

  • Skinbjerg M, Namkung Y, Halldin C, Innis RB, Sibley DR (2009) Pharmacological characterization of 2-methoxy-N-propylnorapomorphine's interactions with D2 and D3 dopamine receptors. Synapse 63:462–475

    Article  CAS  Google Scholar 

  • Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JC (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347:146–151

    Article  CAS  Google Scholar 

  • Srivanitchapoom P, Pitakpatapee Y, Suengtaworn A (2018) Parkinsonian syndromes: a review. Neurol India 66:S15–s25

    Article  Google Scholar 

  • Staley JK, Mash DC (1996) Adaptive increase in D3 dopamine receptors in the brain reward circuits of human cocaine fatalities. J Neurosci Off J Soc Neurosci 16:6100–6106

    Article  CAS  Google Scholar 

  • Sun J, Xu J, Cairns NJ, Perlmutter JS, Mach RH (2012) Dopamine D1, D2, D3 receptors, vesicular monoamine transporter type-2 (VMAT2) and dopamine transporter (DAT) densities in aged human brain. PLoS One 7:e49483

    Article  CAS  Google Scholar 

  • Sun J, Cairns NJ, Perlmutter JS, Mach RH, Xu J (2013a) Regulation of dopamine D(3) receptor in the striatal regions and substantia nigra in diffuse Lewy body disease. Neuroscience 248:112–126

    Article  CAS  Google Scholar 

  • Sun J, Kouranova E, Cui X, Mach RH, Xu J (2013b) Regulation of dopamine presynaptic markers and receptors in the striatum of DJ-1 and Pink1 knockout rats. Neurosci Lett 557 Pt B:123–128

    Google Scholar 

  • Tabbal SD, Tian L, Karimi M, Brown CA, Loftin SK, Perlmutter JS (2012) Low nigrostriatal reserve for motor parkinsonism in nonhuman primates. Exp Neurol 237:355–362

    Article  Google Scholar 

  • Tian LL, Karimi M, Loftin SK, Brown CA, Xia HC, Xu JB, Mach RH, Perlmutter JS (2012) No differential regulation of dopamine transporter (DAT) and vesicular monoamine transporter 2 (VMAT2) binding in a primate model of Parkinson disease. PLoS One 7

    Google Scholar 

  • Umegaki H, Chernak JM, Ikari H, Roth GS, Ingram DK (1997) Rotational behavior produced by adenovirus-mediated gene transfer of dopamine D2 receptor into rat striatum. Neuroreport 8:3553–3558

    Article  CAS  Google Scholar 

  • Van der Weide J, De Vries JB, Tepper PG, Krause DN, Dubocovich ML, Horn AS (1988) N-0437: a selective D-2 dopamine receptor agonist in in vitro and in vivo models. Eur J Pharmacol 147:249–258

    Article  Google Scholar 

  • Vasdev N, Seeman P, Garcia A, Stableford WT, Nobrega JN, Houle S, Wilson AA (2007) Syntheses and in vitro evaluation of fluorinated naphthoxazines as dopamine D2/D3 receptor agonists: radiosynthesis, ex vivo biodistribution and autoradiography of [18F]F-PHNO. Nucl Med Biol 34:195–203

    Article  CAS  Google Scholar 

  • Volkow ND, Fowler JS, Wolf AP, Schlyer D, Shiue CY, Alpert R, Dewey SL, Logan J, Bendriem B, Christman D et al (1990) Effects of chronic cocaine abuse on postsynaptic dopamine receptors. Am J Psychiatry 147:719–724

    Article  CAS  Google Scholar 

  • Volkow ND, Fowler JS, Wang GJ, Hitzemann R, Logan J, Schlyer DJ, Dewey SL, Wolf AP (1993) Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers. Synapse 14:169–177

    Article  CAS  Google Scholar 

  • Wijeyekoon R, Barker RA (2009) Cell replacement therapy for Parkinson's disease. Biochim Biophys Acta 1792:688–702

    Article  CAS  Google Scholar 

  • Wood M, Dubois V, Scheller D, Gillard M (2015) Rotigotine is a potent agonist at dopamine D1 receptors as well as at dopamine D2 and D3 receptors. Br J Pharmacol 172:1124–1135

    Article  CAS  Google Scholar 

  • Xu J, Chu W, Tu Z, Jones LA, Luedtke RR, Perlmutter JS, Mintun MA, Mach RH (2009) [(3)H]4-(Dimethylamino)-N-[4-(4-(2-methoxyphenyl)piperazin- 1-yl)butyl]benzamide, a selective radioligand for dopamine D(3) receptors. I. In vitro characterization. Synapse 63:717–728

    Article  CAS  Google Scholar 

  • Xu J, Hassanzadeh B, Chu W, Tu Z, Jones LA, Luedtke RR, Perlmutter JS, Mintun MA, Mach RH (2010) [3H]4-(dimethylamino)-N-(4-(4-(2-methoxyphenyl)piperazin-1-yl) butyl)benzamide: a selective radioligand for dopamine D(3) receptors. II. Quantitative analysis of dopamine D(3) and D(2) receptor density ratio in the caudate-putamen. Synapse 64:449–459

    Article  CAS  Google Scholar 

  • Xu J, Sun J, Perrin RJ, Mach RH, Bales KR, Morris JC, Benzinger TLS, Holtzman DM (2019) Translocator protein in late stage Alzheimer's disease and dementia with Lewy bodies brains. Ann Clin Transl Neurol 6:1423–1434

    Article  CAS  Google Scholar 

  • Yang P, Perlmutter JS, Benzinger TLS, Morris JC, Xu J (2020) Dopamine D3 receptor: a neglected participant in Parkinson disease pathogenesis and treatment? Ageing Res Rev 57:100994

    Article  CAS  Google Scholar 

  • Yang P, Knight WC, Li H, Guo Y, Perlmutter JS, Benzinger TLS, Morris JC, Xu J (2021) Dopamine D1 + D3 receptor density may correlate with parkinson disease clinical features. Ann Clin Transl Neurol 8:224–237

    Article  CAS  Google Scholar 

  • Zhang Z, Chu SF, Wang SS, Jiang YN, Gao Y, Yang PF, Ai QD, Chen NH (2018) RTP801 is a critical factor in the neurodegeneration process of A53T alpha-synuclein in a mouse model of Parkinson's disease under chronic restraint stress. Br J Pharmacol 175:590–605

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to Mr. William Knight and Dr. Pengfei Yang for editorial assistance and the funding support from the National Institutes of Health (R01 NS092865).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinbin Xu .

Editor information

Editors and Affiliations

Ethics declarations

The author has no conflicts of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, J. (2022). Dopamine D3 Receptor in Parkinson Disease: A Prognosis Biomarker and an Intervention Target. In: Boileau, I., Collo, G. (eds) Therapeutic Applications of Dopamine D3 Receptor Function. Current Topics in Behavioral Neurosciences, vol 60. Springer, Cham. https://doi.org/10.1007/7854_2022_373

Download citation

Publish with us

Policies and ethics