Skip to main content

Probabilistic Reinforcement Learning and Anhedonia

  • Chapter
  • First Online:
Anhedonia: Preclinical, Translational, and Clinical Integration

Abstract

Despite the prominence of anhedonic symptoms associated with diverse neuropsychiatric conditions, there are currently no approved therapeutics designed to attenuate the loss of responsivity to previously rewarding stimuli. However, the search for improved treatment options for anhedonia has been reinvigorated by a recent reconceptualization of the very construct of anhedonia, including within the Research Domain Criteria (RDoC) initiative. This chapter will focus on the RDoC Positive Valence Systems construct of reward learning generally and sub-construct of probabilistic reinforcement learning specifically. The general framework emphasizes objective measurement of a subject’s responsivity to reward via reinforcement learning under asymmetrical probabilistic contingencies as a means to quantify reward learning. Indeed, blunted reward responsiveness and reward learning are central features of anhedonia and have been repeatedly described in major depression. Moreover, these probabilistic reinforcement techniques can also reveal neurobiological mechanisms to aid development of innovative treatment approaches. In this chapter, we describe how investigating reward learning can improve our understanding of anhedonia via the four RDoC-recommended tasks that have been used to probe sensitivity to probabilistic reinforcement contingencies and how such task performance is disrupted in various neuropsychiatric conditions. We also illustrate how reverse translational approaches of probabilistic reinforcement assays in laboratory animals can inform understanding of pharmacological and physiological mechanisms. Next, we briefly summarize the neurobiology of probabilistic reinforcement learning, with a focus on the prefrontal cortex, anterior cingulate cortex, striatum, and amygdala. Finally, we discuss treatment implications and future directions in this burgeoning area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abler B, Walter H, Erk S, Kammerer H, Spitzer M (2006) Prediction error as a linear function of reward probability is coded in human nucleus accumbens. NeuroImage 31:790–795

    Article  PubMed  Google Scholar 

  • Admon R, Pizzagalli DA (2015) Dysfunctional reward processing in depression. Curr Opin Psychol 4:114–118

    Article  PubMed  Google Scholar 

  • Admon R, Kaiser RH, Dillon DG, Beltzer M, Goer F, Olson DP, Vitaliano G, Pizzagalli DA (2017) Dopaminergic enhancement of striatal response to reward in major depression. Am J Psychiatry 174:378–386

    Article  PubMed  Google Scholar 

  • Ahn HM, Kim SE, Kim SH (2013) The effects of high-frequency rTMS over the left dorsolateral prefrontal cortex on reward responsiveness. Brain Stimul 6:310–314

    Article  PubMed  Google Scholar 

  • American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders: DSM-V. American Psychiatric Association, Washington

    Book  Google Scholar 

  • Amiez C, Joseph JP, Procyk E (2006) Reward encoding in the monkey anterior cingulate cortex. Cereb Cortex 16:1040–1055

    Article  CAS  PubMed  Google Scholar 

  • Ang YS, Kaiser R, Deckersbach T, Almeida J, Phillips ML, Chase HW, Webb CA, Parsey R, Fava M, McGrath P, Weissman M, Adams P, Deldin P, Oquendo MA, McInnis MG, Carmody T, Bruder G, Cooper CM, Chin Fatt CR, Trivedi MH, Pizzagalli DA (2020) Pretreatment reward sensitivity and frontostriatal resting-state functional connectivity are associated with response to bupropion after sertraline nonresponse. Biol Psychiatry 88:657–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aston-Jones G, Cohen JD (2005) An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci 28:403–450

    Article  CAS  PubMed  Google Scholar 

  • Aston-Jones G, Rajkowski J, Cohen J (1999) Role of locus coeruleus in attention and behavioral flexibility. Biol Psychiatry 46:1309–1320

    Article  CAS  PubMed  Google Scholar 

  • Audrain-McGovern J, Wileyto EP, Ashare R, Cuevas J, Strasser AA (2014) Reward and affective regulation in depression-prone smokers. Biol Psychiatry 76:689–697

    Article  PubMed  PubMed Central  Google Scholar 

  • Barch DM, Carter CS, Gold JM, Johnson SL, Kring AM, MacDonald AW, Pizzagalli DA, Ragland JD, Silverstein SM, Strauss ME (2017) Explicit and implicit reinforcement learning across the psychosis spectrum. J Abnorm Psychol 126:694–711

    Article  PubMed  PubMed Central  Google Scholar 

  • Barr RS, Pizzagalli DA, Culhane MA, Goff DC, Evins AE (2008) A single dose of nicotine enhances reward responsiveness in nonsmokers: implications for development of dependence. Biol Psychiatry 63:1061–1065

    Article  CAS  PubMed  Google Scholar 

  • Berghorst LH, Bogdan R, Frank MJ, Pizzagalli DA (2013) Acute stress selectively reduces reward sensitivity. Front Hum Neurosci 7:133

    Article  PubMed  PubMed Central  Google Scholar 

  • Bogdan R, Santesso DL, Fagerness J, Perlis RH, Pizzagalli DA (2011) Corticotropin-releasing hormone receptor type 1 (CRHR1) genetic variation and stress interact to influence reward learning. J Neurosci 31:13246–13254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouton ME (2016) Learning and behavior: a contemporary synthesis, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Brown VM, Zhu L, Solway A, Wang JM, McCurry KL, King-Casas B, Chiu PH (2021) Reinforcement learning disruptions in individuals with depression and sensitivity to symptom change following cognitive behavioral therapy. JAMA Psychiat 78:1113–1122

    Article  Google Scholar 

  • Calabrese JR, Fava M, Garibaldi G, Grunze H, Krystal AD, Laughren T, Macfadden W, Marin R, Nierenberg AA, Tohen M (2014) Methodological approaches and magnitude of the clinical unmet need associated with amotivation in mood disorders. J Affect Disord 168:439–451

    Article  PubMed  Google Scholar 

  • Cardinal RN, Howes NJ (2005) Effects of lesions of the nucleus accumbens core on choice between small certain rewards and large uncertain rewards in rats. BMC Neurosci 6:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Cardinal RN, Parkinson JA, Hall J, Everitt BJ (2002) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 26:321–352

    Article  PubMed  Google Scholar 

  • Cavanagh JF, Bismark AW, Frank MJ, Allen JJB (2019) Multiple dissociations between comorbid depression and anxiety on reward and punishment processing: evidence from computationally informed EEG. Comput Psychiatr 3:1–17

    Article  PubMed  PubMed Central  Google Scholar 

  • Costa VD, Dal Monte O, Lucas DR, Murray EA, Averbeck BB (2016) Amygdala and ventral striatum make distinct contributions to reinforcement learning. Neuron 92:505–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daw ND, Gershman SJ, Seymour B, Dayan P, Dolan RJ (2011) Model-based influences on humans’ choices and striatal prediction errors. Neuron 69:1204–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Der-Avakian A, Pizzagalli DA (2018) Translational assessments of reward and anhedonia: a tribute to Athina Markou. Biol Psychiatry 83:932–939

    Article  PubMed  PubMed Central  Google Scholar 

  • Der-Avakian A, D’Souza MS, Pizzagalli DA, Markou A (2013) Assessment of reward responsiveness in the response bias probabilistic reward task in rats: implications for cross-species translational research. Transl Psychiatry 3(8):e297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Der-Avakian A, Barnes SA, Markou A, Pizzagalli DA (2016) Translational assessment of reward and motivational deficits in psychiatric disorders. Curr Top Behav Neurosci 28:231–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Der-Avakian A, D’Souza MS, Potter DN, Chartoff EH, Carlezon WA, Pizzagalli DA, Markou A (2017) Social defeat disrupts reward learning and potentiates striatal nociceptin/orphanin FQ mRNA in rats. Psychopharmacology 234:1603–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dichter GS, Rodriguez-Romaguera J (2022) Anhedonia and hyperhedonia in autism and related neurodevelopmental disorders. Curr Top Behav Neurosci. https://doi.org/10.1007/7854_2022_312

  • Dowd EC, Frank MJ, Collins A, Gold JM, Barch DM (2016) Probabilistic reinforcement learning in patients with schizophrenia: relationships to anhedonia and avolition. Biol Psychiatry Cogn Neurosci Neuroimaging 1:460–473

    PubMed  PubMed Central  Google Scholar 

  • Dreher JC, Kohn P, Berman KF (2006) Neural coding of distinct statistical properties of reward information in humans. Cereb Cortex 16:561–573

    Article  PubMed  Google Scholar 

  • Duprat R, De Raedt R, Wu G-R, Baeken C (2016) Intermittent theta burst stimulation increases reward responsiveness in individuals with higher hedonic capacity. Front Hum Neurosci 10:294

    Article  PubMed  PubMed Central  Google Scholar 

  • Eskelund K, Karstoft KI, Andersen SB (2018) Anhedonia and emotional numbing in treatment-seeking veterans: behavioural and electrophysiological responses to reward. Eur J Psychotraumatol 9:1–12

    Article  Google Scholar 

  • Fletcher K, Parker G, Paterso A, Fava M, Iosifesc D, Pizzagalli DA (2015) Anhedonia in melancholic and non-melancholic depressive disorders. J Affect Disord 184:81–88

    Article  PubMed  PubMed Central  Google Scholar 

  • Frank MJ (2005) Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated parkinsonism. J Cogn Neurosci 17:51–72

    Article  PubMed  Google Scholar 

  • Frank MJ, Seeberger LC, O’Reilly RC (2004) By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science 306:1940–1943

    Article  CAS  PubMed  Google Scholar 

  • Gershon AA, Vishne T, Grunhaus L (2007) Dopamine D2-like receptors and the antidepressant response. Biol Psychiatry 61:145–153

    Article  CAS  PubMed  Google Scholar 

  • Geugies H, Mocking RJT, Figueroa CA, Groot PFC, Marsman JC, Servaas MN, Steele JD, Schene AH, Ruhé HG (2019) Impaired reward-related learning signals in remitted unmedicated patients with recurrent depression. Brain 142:2510–2522

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghods-Sharifi S, Onge JRS, Floresco SB (2009) Fundamental contribution by the basolateral amygdala to different forms of decision making. J Neurosci 29:5251–5259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert DG, Stone BM (2022) Anhedonia in nicotine dependence. Curr Top Behav Neurosci. https://doi.org/10.1007/7854_2022_320

  • Gottfried JA, O’Doherty J, Dolan RJ (2003) Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science 301:1104–1107

    Article  CAS  PubMed  Google Scholar 

  • Gradin VB, Kumar P, Waiter G, Ahearn T, Stickle C, Milders M, Reid I, Hall J, Steele JD (2011) Expected value and prediction error abnormalities in depression and schizophrenia. Brain 134:1751–1764

    Article  PubMed  Google Scholar 

  • Grob S, Pizzagalli DA, Dutra SJ, Stern J, Mörgeli H, Milos G, Schnyder U, Hasler G (2012) Dopamine-related deficit in reward learning after catecholamine depletion in unmedicated, remitted subjects with bulimia nervosa. Neuropsychopharmacology 37:1945–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halahakoon DC, Kieslich K, O’Driscoll C, Nair A, Lewis G, Roiser JP (2020) Reward-processing behavior in depressed participants relative to healthy volunteers: a systematic review and meta-analysis. JAMA Psychiat 77:1286–1295

    Article  Google Scholar 

  • Hammen C (2005) Stress and depression. Annu Rev Clin Psychol 1:293–319

    Article  PubMed  Google Scholar 

  • Henriques JB, Glowacki JM, Davidson RJ (1994) Reward fails to alter response bias in depression. J Abnorm Psychol 103:460–466

    Article  CAS  PubMed  Google Scholar 

  • Hikosaka K, Watanabe M (2000) Delay activity of orbital and lateral prefrontal neurons of the monkey varying with different rewards. Cereb Cortex 10:263–271

    Article  CAS  PubMed  Google Scholar 

  • Huys QJ, Pizzagalli DA, Bogdan R, Dayan P (2013) Mapping anhedonia onto reinforcement learning: a behavioural meta-analysis. Biol Mood Anxiety Disord 3:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Hyman JM, Holroyd CB, Seamans JK (2017) A novel neural prediction error found in anterior cingulate cortex ensembles. Neuron 95:447–456

    Article  CAS  PubMed  Google Scholar 

  • Insel T, Cuthbert B, Garvey M, Heinssen R, Pine DS, Quinn K, Sanislow C, Wang P (2010) Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry 167:748–751

    Article  PubMed  Google Scholar 

  • Jaffe RJ, Novakovic V, Peselow ED (2013) Scopolamine as an antidepressant: a systematic review. Clin Neuropharmacol 36:24–26

    Article  CAS  PubMed  Google Scholar 

  • Kaiser RH, Treadway MT, Wooten DW, Kumar P, Goer F, Murray L, Beltzer M, Pechtel P, Whitton A, Cohen AL, Alpert NM, El Fakhri G, Normandin MD, Pizzagalli DA (2018) Frontostriatal and dopamine markers of individual differences in reinforcement learning: a multi-modal investigation. Cereb Cortex 28:4281–4290

    Article  PubMed  Google Scholar 

  • Kangas BD, Bergman J (2017) Touchscreen technology in the study of cognition-related behavior. Behav Pharmacol 28:623–629

    Article  PubMed  PubMed Central  Google Scholar 

  • Kangas BD, Wooldridge LM, Luc OT, Bergman J, Pizzagalli DA (2020) Empirical validation of a touchscreen probabilistic reward task in rats. Transl Psychiatry 10:285

    Article  PubMed  PubMed Central  Google Scholar 

  • Kangas BD, Short AK, Luc OT, Stern HS, Baram TZ, Pizzagalli DA (2022) A cross-species assay demonstrates that reward responsiveness is enduringly impacted by adverse, unpredictable early-life experiences. Neuropsychopharmacology 47:767–775

    Article  PubMed  Google Scholar 

  • Kennerley SW, Behrens TE, Wallis JD (2011) Double dissociation of value computations in orbitofrontal and anterior cingulate neurons. Nat Neurosci 14:1581–1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Farchione T, Potter A, Chen Q, Temple R (2019) Esketamine for treatment-resistant depression-first FDA-approved antidepressant in a new class. N Engl J Med 381:1–4

    Article  PubMed  Google Scholar 

  • Kirkpatrick B, Buchanan RW (1990) The neural basis of the deficit syndrome of schizophrenia. J Nerv Ment Dis 178:545–555

    Article  CAS  PubMed  Google Scholar 

  • Kolling N, Wittmann MK, Behrens TE, Boorman ED, Mars RB, Rushworth MF (2016) Value, search, persistence and model updating in anterior cingulate cortex. Nat Neurosci 19:1280–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koob GF (2022) Anhedonia, hyperkatifeia, and negative reinforcement in substance use disorders. Curr Top Behav Neurosci. https://doi.org/10.1007/7854_2022_288

  • Krystal AD, Pizzagalli DA, Smoski M, Mathew SJ, Nurnberger J Jr, Lisanby SH, Iosifescu D, Murrough JW, Yang H, Weiner RD, Calabrese JR, Sanacora G, Hermes G, Keefe RSE, Song A, Goodman W, Szabo ST, Whitton AE, Gao K, Potter WZ (2020) A randomized proof-of-mechanism trial applying the ‘fast-fail’ approach to evaluating κ-opioid antagonism as a treatment for anhedonia. Nat Med 26:760–768

    CAS  PubMed  Google Scholar 

  • Kumar P, Waiter G, Ahearn T, Milders M, Reid I, Steele JD (2008) Abnormal temporal difference reward-learning signals in major depression. Brain 131:2084–2093

    Article  CAS  PubMed  Google Scholar 

  • Lally N, Nugent AC, Luckenbaugh DA, Niciu MJ, Roiser JP, Zarate CA Jr (2015) Neural correlates of change in major depressive disorder anhedonia following open-label ketamine. J Psychopharmacol 29:596–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamontagne SJ, Melendez SI, Olmstead MC (2018) Investigating dopamine and glucocorticoid systems as underlying mechanisms of anhedonia. Psychopharmacology 235:3103–3113

    Article  CAS  PubMed  Google Scholar 

  • Lawson RP, Seymour B, Loh E, Lutti A, Dolan RJ, Dayan P, Weiskopf N, Roiser JP (2014) The habenula encodes negative motivational value associated with primary punishment in humans. Proc Natl Acad Sci U S A 111:11858–11863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawson RP, Nord CL, Seymour B, Thomas DL, Dayan P, Pilling S, Roiser JP (2017) Disrupted habenula function in major depression. Mol Psychiatry 22:202–208

    Article  CAS  PubMed  Google Scholar 

  • Lionello-DeNolf KM (2009) The search for symmetry: 25 years in review. Learn Behav 37:188–203

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu WH, Chan RC, Wang LZ, Huang J, Cheung EF, Gong QY, Gollan JK (2011) Deficits in sustaining reward responses in subsyndromal and syndromal major depression. Prog Neuro-Psychopharmacol Biol Psychiatry 35:1045–1052

    Article  Google Scholar 

  • Liu WH, Roiser JP, Wang LZ, Zhu YH, Huang J, Neumann DL, Shum DHK, Cheung EFC, Chan RCK (2016) Anhedonia is associated with blunted reward sensitivity in first-degree relatives of patients with major depression. J Affect Disord 190:640–648

    Article  PubMed  Google Scholar 

  • Luc OT, Pizzagalli DA, Kangas BD (2021) Toward a quantification of anhedonia: unified matching law and signal detection for clinical assessment and drug development. Perspect Behav Sci 44:517–540

    Article  PubMed  PubMed Central  Google Scholar 

  • McCarthy D, Davison M (1979) Signal probability, reinforcement, and signal detection. J Exp Anal Behav 32:373–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClure SM, Berns GS, Montague PR (2003) Temporal prediction errors in a passive learning task activate human striatum. Neuron 38:339–346

    Article  CAS  PubMed  Google Scholar 

  • McIntyre RS, Lee Y, Zhou AJ, Rosenblat JD, Peters EM, Lam RW, Kennedy SH, Rong C, Jerrell JM (2017) The efficacy of psychostimulants in major depressive episodes: a systematic review and meta-analysis. J Clin Psychopharmacol 37:412–418

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki K, Miyazaki KW, Sivori G, Yamanaka A, Tanaka KF, Doya K (2020) Serotonergic projections to the orbitofrontal and medial prefrontal cortices differentially modulate waiting for future rewards. Science. Advances 6:eabc7246

    Google Scholar 

  • Mobini S, Body S, Ho MY, Bradshaw CM, Szabadi E, Deakin JF, Anderson IM (2002) Effects of lesions of the orbitofrontal cortex on sensitivity to delayed and probabilistic reinforcement. Psychopharmacology 160:290–298

    Article  CAS  PubMed  Google Scholar 

  • Montague PR, Dayan P, Sejnowski TJ (1996) A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J Neurosci 16:1936–1947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran EK, Culbreth AJ, Barch DM (2022) Anhedonia in schizophrenia. Curr Top Behav Neurosci. https://doi.org/10.1007/7854_2022_321

  • Morris BH, Bylsma LM, Yaroslavsky I, Kovacs M, Rottenberg J (2015) Reward learning in pediatric depression and anxiety: preliminary findings in a high-risk sample. Depress Anxiety 32:373–381

    Article  PubMed  PubMed Central  Google Scholar 

  • Murray SM, Brown CS, Kaye WH, Wierenga CE (2022) Anhedonia in eating disorders. Curr Top Behav Neurosci. https://doi.org/10.1007/7854_2021_287

  • National Institute of Mental Health (2016) Behavioral assessment methods for RDoC constructs (revised August 2016). https://www.nimh.nih.gov/about/advisory-boards-and-groups/namhc/reports/behavioral-assessment-methods-for-rdoc-constructs.shtml

  • O’Doherty J, Dayan P, Schultz J, Deichmann R, Friston K, Dolan RJ (2004) Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 304:452–454

    Article  PubMed  CAS  Google Scholar 

  • Packard MG, Knowlton BJ (2002) Learning and memory functions of the Basal Ganglia. Annu Rev Neurosci 25:563–593

    Article  CAS  PubMed  Google Scholar 

  • Pavlov IP (1927) Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex. Oxford University Press

    Google Scholar 

  • Pechtel P, Pizzagalli DA (2013) Disrupted reinforcement learning and maladaptive behavior in women with a history of childhood sexual abuse: a high-density event-related potential study. JAMA Psychiat 70:499–507

    Article  Google Scholar 

  • Pechtel P, Dutra SJ, Goetz EL, Pizzagalli DA (2013) Blunted reward responsiveness in remitted depression. J Psychiatr Res 47:1864–1869

    Article  PubMed  PubMed Central  Google Scholar 

  • Pizzagalli DA, Roberts AC (2022) Prefrontal cortex and depression. Neuropsychopharmacology 47:225–246

    Article  PubMed  Google Scholar 

  • Pizzagalli DA, Jahn AL, O’Shea JP (2005) Toward an objective characterization of an anhedonic phenotype: a signal-detection approach. Biol Psychiatry 57:319–327

    Article  PubMed  PubMed Central  Google Scholar 

  • Pizzagalli DA, Evins AE, Schetter EC, Frank MJ, Pajtas PE, Santesso DL, Culhane M (2008a) Single dose of a dopamine agonist impairs reinforcement learning in humans: Behavioral evidence from a laboratory-based measure of reward responsiveness. Psychopharmacology 196:221–232

    Article  CAS  PubMed  Google Scholar 

  • Pizzagalli DA, Goetz E, Ostacher M, Iosifescu DV, Perlis RH (2008b) Euthymic patients with bipolar disorder show decreased reward learning in a probabilistic reward task. Biol Psychiatry 64:162–168

    Article  PubMed  PubMed Central  Google Scholar 

  • Pizzagalli DA, Iosifescu D, Hallett LA, Ratner KG, Fava M (2008c) Reduced hedonic capacity in major depressive disorder: evidence from a probabilistic reward task. J Psychiatr Res 43:76–87

    Article  PubMed  PubMed Central  Google Scholar 

  • Pizzagalli DA, Smoski M, Ang YS, Whitton AE, Sanacora G, Mathew SJ, Nurnberger J Jr, Lisanby SH, Iosifescu DV, Murrough JW, Yang H, Weiner RD, Calabrese JR, Goodman W, Potter WZ, Krystal AD (2020) Selective kappa-opioid antagonism ameliorates anhedonic behavior: evidence from the fast-fail trial in mood and anxiety spectrum disorders (FAST-MAS). Neuropsychopharmacology 45:1656–1663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reilly EE, Whitton AE, Pizzagalli DA, Rutherford AV, Stein MB, Paulus MP, Taylor CT (2020) Diagnostic and dimensional evaluation of implicit reward learning in social anxiety disorder and major depression. Depress Anxiety 37:1221–1230

    Article  PubMed  Google Scholar 

  • Rogers RD, Everitt BJ, Baldacchino A, Blackshaw AJ, Swainson R, Wynne K, Baker NB, Hunter J, Carthy T, Booker E, London M, Deakin JF, Sahakian BJ, Robbins TW (1999a) Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: evidence for monoaminergic mechanisms. Neuropsychopharmacology 20:322–339

    Article  CAS  PubMed  Google Scholar 

  • Rogers RD, Owen AM, Middleton HC, Williams EJ, Pickard JD, Sahakian BJ, Robbins TW (1999b) Choosing between small, likely rewards and large, unlikely rewards activates inferior and orbital prefrontal cortex. J Neurosci 19:9029–9038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolls ET (2019) The orbitofrontal cortex and emotion in health and disease, including depression. Neuropsychologia 128:14–43

    Article  PubMed  Google Scholar 

  • Rupprechter S, Stankevicius A, Huys QJM, Series P, Steele JD (2021) Abnormal reward valuation and event-related connectivity in unmedicated major depressive disorder. Psychol Med 51:795–803

    Article  CAS  PubMed  Google Scholar 

  • Rutledge RB, Moutoussis M, Smittenaar P, Zeidman P, Taylor T, Hrynkiewicz L, Lam J, Skandali N, Siegel JZ, Ousdal OT, Prabhu G, Dayan P, Fonagy P, Dolan RJ (2017) Association of neural and emotional impacts of reward prediction errors with major depression. JAMA Psychiat 74:790–797

    Article  Google Scholar 

  • Sadacca BF, Wikenheiser AM, Schoenbaum G (2017) Toward a theoretical role for tonic norepinephrine in the orbitofrontal cortex in facilitating flexible learning. Neuroscience 345:124–129

    Article  CAS  PubMed  Google Scholar 

  • Saez RA, Saez A, Paton JJ, Lau B, Salzman CD (2017) Distinct roles for the amygdala and orbitofrontal cortex in representing the relative amount of expected reward. Neuron 95:70–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandman CF, Craske MG (2022) Psychological treatments for anhedonia. Curr Top Behav Neurosci. https://doi.org/10.1007/7854_2021_291

  • Santesso DL, Evins AE, Frank MJ, Schetter EC, Bogdan R, Pizzagalli DA (2009) Single dose of a dopamine agonist impairs reinforcement learning in humans: evidence from event-related potentials and computational modeling of striatal-cortical function. Hum Brain Mapp 30:1963–1976

    Article  PubMed  Google Scholar 

  • Schoenbaum G, Roesch M (2005) Orbitofrontal cortex, associative learning, and expectancies. Neuron 47:633–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schultz W (2002) Getting formal with dopamine and reward. Neuron 36:241–263

    Article  CAS  PubMed  Google Scholar 

  • Schultz W, Dickinson A (2000) Neuronal coding of prediction errors. Annu Rev Neurosci 23:473–500

    Article  CAS  PubMed  Google Scholar 

  • Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275:1593–1599

    Article  CAS  PubMed  Google Scholar 

  • Siddiqi SH, Haddad N, Fox MD (2022) Circuit-targeted neuromodulation for anhedonia. Curr Top Behav Neurosci

    Google Scholar 

  • Silverman JL, Nithianantharajah J, Der-Avakian A, Young JW, Sukoff Rizzo SJ (2020) Lost in translation: at the crossroads of face validity and translational utility of behavioral assays in animal models for the development of therapeutics. Neurosci Biobehav Rev 116:452–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soltani A, Izquierdo A (2019) Adaptive learning under expected and unexpected uncertainty. Nat Rev Neurosci 20:635–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • St Onge JR, Floresco SB (2010) Prefrontal cortical contribution to risk-based decision making. Cereb Cortex 20:1816–1828

    Article  PubMed  Google Scholar 

  • St Onge JR, Stopper CM, Zahm DS, Floresco SB (2012) Separate prefrontal-subcortical circuits mediate different components of risk-based decision making. J Neurosci 32:2886–2899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stalnaker T, Cooch N, Schoenbaum G (2015) What the orbitofrontal cortex does not do. Nat Neurosci 18:620–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stolyarova A, Izquierdo A (2017) Complementary contributions of basolateral amygdala and orbitofrontal cortex to value learning under uncertainty. elife 6:e27483

    Article  PubMed  PubMed Central  Google Scholar 

  • Stopper CM, Green EB, Floresco SB (2014) Selective involvement by the medial orbitofrontal cortex in biasing risky, but not impulsive, choice. Cereb Cortex 24:154–162

    Article  PubMed  Google Scholar 

  • Strauss GP, Waltz JA, Gold JM (2014) A review of reward processing and motivational impairment in schizophrenia. Schizophr Bull 40:S107–S116

    Article  PubMed  Google Scholar 

  • Taylor MJ, Freemantle N, Geddes JR, Bhagwagar Z (2006) Early onset of selective serotonin reuptake inhibitor antidepressant action: systematic review and meta-analysis. Arch Gen Psychiatry 63:1217–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor CT, Hoffman SN, Khan AJ (2022) Anhedonia in anxiety disorders. Curr Top Behav Neurosci. https://doi.org/10.1007/7854_2022_319

  • Tobler PN, O’Doherty JP, Dolan RJ, Schultz W (2006) Human neural learning depends on reward prediction errors in the blocking paradigm. J Neurophysiol 95:301–310

    Article  PubMed  Google Scholar 

  • Tripp G, Alsop B (1999) Sensitivity to reward frequency in boys with attention deficit hyperactivity disorder. J Clin Child Psychol 28:366–375

    Article  CAS  PubMed  Google Scholar 

  • Turner V, Husain M (2022) Anhedonia in neurodegenerative diseases. Curr Top Behav Neurosci

    Google Scholar 

  • Vinograd M, Stout D, Risbrough VB (2022) Anhedonia in posttraumatic stress disorder: prevalence, phenotypes, and neural circuitry. Curr Top Behav Neurosci. https://doi.org/10.1007/7854_2021_292

  • Vrieze E, Pizzagalli DA, Demyttenaere K, Hompes T, Sienaert P, de Boer P, Schmidt M, Claes S (2013) Reduced reward learning predicts outcome in major depressive disorder. Biol Psychiatry 73:639–645

    Article  PubMed  Google Scholar 

  • Waltz JA, Frank MJ, Robinson BM, Gold JM (2007) Selective reinforcement learning deficits in schizophrenia support predictions from computational models of striatal-cortical dysfunction. Biol Psychiatry 62:756–764

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang S, Leri F, Rizvi SJ (2022) Clinical and preclinical assessments of anhedonia in psychiatric disorders. Curr Top Behav Neurosci. https://doi.org/10.1007/7854_2022_318

  • Wassum KM, Izquierdo A (2015) The basolateral amygdala in reward learning and addiction. Neurosci Biobehav Rev 57:271–283

    Article  PubMed  PubMed Central  Google Scholar 

  • Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44:660–669

    Article  CAS  PubMed  Google Scholar 

  • Weinberger DR, Berman KF (1988) Speculation on the meaning of cerebral metabolic hypofrontality in schizophrenia. Schizophr Bull 14:157–168

    Article  CAS  PubMed  Google Scholar 

  • Whitton AE, Pizzagalli DA (2022) Anhedonia in depression and bipolar disorder. Curr Top Behav Neurosci. https://doi.org/10.1007/7854_2022_323

  • Winstanley CA, Floresco SB (2016) Deciphering decision making: variation in animal models of effort-and uncertainty-based choice reveals distinct neural circuitries underlying core cognitive processes. J Neurosci 36:12069–12079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wooldridge LM, Bergman J, Pizzagalli DA, Kangas BD (2021) Translational assessments of reward responsiveness in the marmoset. Int J Neuropsychopharmacol 24:409–418

    Article  CAS  PubMed  Google Scholar 

  • Zentall TR, Wasserman EA, Urcuioli PJ (2014) Associative concept learning in animals. J Exp Anal Behav 101:130–151

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

BDK was partially supported by grant R01 DA047575 from the National Institute on Drug Abuse. AD was partially supported by grants R01 MH121352 and UH3 MH109334 from the National Institute of Mental Health and R01 AA026560 from the National Institute on Alcohol Abuse and Alcoholism. DAP was partially supported by grants R01 MH095809, P50 MH119467, R01 MH108602, R37 MH068376, and UH3 MH109334 from the National Institute of Mental Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian D. Kangas .

Editor information

Editors and Affiliations

Ethics declarations

Over the past 3 years, Dr. Pizzagalli has received consulting fees from Albright Stonebridge Group, Boehringer Ingelheim, Compass Pathways, Concert Pharmaceuticals, Engrail Therapeutics, Neumora Therapeutics (former BlackThorn Therapeutics), Neurocrine Biosciences, Neuroscience Software, Otsuka Pharmaceuticals, and Takeda Pharmaceuticals; honoraria from the Psychonomic Society (for editorial work), one honorarium from Alkermes, and research funding from National Institute of Mental Health, Dana Foundation, Brain and Behavior Research Foundation, Millennium Pharmaceuticals. In addition, he has received stock options from BlackThorn Therapeutics, Compass Pathways and Neuroscience Software. Dr. Pizzagalli has a financial interest in Neumora Therapeutics (former BlackThorn Therapeutics), which has licensed the copyright to the Probabilistic Reward Task through Harvard University. Dr. Pizzagalli’s interests were reviewed and are managed by McLean Hospital and Massachusetts General Brigham in accordance with their conflict-of-interest policies. Dr. Der-Avakian holds equity ownership in PAASP US. No funding from these entities was used to support the current work, and all views expressed are solely those of the authors. Dr. Kangas reports no financial relationships with commercial interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kangas, B.D., Der-Avakian, A., Pizzagalli, D.A. (2022). Probabilistic Reinforcement Learning and Anhedonia. In: Pizzagalli, D.A. (eds) Anhedonia: Preclinical, Translational, and Clinical Integration. Current Topics in Behavioral Neurosciences, vol 58. Springer, Cham. https://doi.org/10.1007/7854_2022_349

Download citation

Publish with us

Policies and ethics