Skip to main content

Sensitive Periods for Recovery from Early Brain Injury

  • Chapter
  • First Online:
Sensitive Periods of Brain Development and Preventive Interventions

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 53))

Abstract

The developing brain is remarkably plastic as it changes in response to a wide range of experiences including sensory and motor experience, psychoactive drugs, peer relationships, parent–infant interactions, gonadal hormones, intestinal flora, diet, and injury. There are sensitive periods for many of these experiences, including cerebral injury. Comparisons across mammalian species (humans, monkeys, cats, rats, mice) show a sensitive period for good outcomes from cerebral injury around the time of intense synaptogenesis. This period is postnatal in humans, cats, and rats, but prenatal in monkeys, reflecting the differences in neuronal development at birth across species. In addition, there appears to be a sensitive period prenatally during the time of maximum cortical neurogenesis and possibly during adolescence as well, although these periods are not as well studied as the period related to synaptogenesis and to date only examined in rats. Here we review the evidence for sensitive periods related to brain injury across species and propose mechanisms that may underlie the plasticity during these periods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altman J (1962) Are new neurons formed in the brains of adult mammals? Science 135:1127–1128

    Article  CAS  PubMed  Google Scholar 

  • Altman J (2011) Memoir: the discovery of adult mammalian neurogenesis. In Seki T (ed) Neurogenesis in the adult brain I: neurobiology. Springer, New York, p 1. https://doi.org/10.1007/978-4-431-53933-9_1

  • Andersen SL (2003) Trajectories of brain development: point of vulnerability or window of opportunity? Neurosci Biobehav Rev 27:3–18

    Article  PubMed  Google Scholar 

  • Andersen SL (2016) Commentary on the special issue on the adolescent brain: adolescence, trajectories, and the importance of prevention. Neurosci Biobehav Rev 70:329–333

    Article  PubMed  PubMed Central  Google Scholar 

  • Andersen SL (2018) Stress, sensitive periods, and substance abuse. Neurobiol Stress 10:100140. https://doi.org/10.1016/j.ynstr.2018.100140

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson V, Spencer-Smith M, Leventer R, Coleman L, Anderson P, Williams J, Greenham M, Jacobs R (2009) Childhood brain insult: can age at insult help us predict outcome? Brain 132:45–56

    Article  PubMed  Google Scholar 

  • Aram DM, Eisele JA (1994) Intellectual stability in children with unilateral brain lesions. Neuropsychologia 32:85–95

    Article  CAS  PubMed  Google Scholar 

  • Bachevalier J, Mishkin M (1994) Effects of selective neonatal temporal lobe lesions on visual recognition memory in rhesus monkeys. J Neurosci 14:2128–2139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bajic D, Craig MM, Mongerson CRL, Borsook D, Becerra L (2017) Identifying rodent resting-state brain component networks with independent component analysis. Front Neurosci. https://doi.org/10.3389/fnins.2017.00685

  • Bandeira F, Lent R, Herculano-Houzel S (2009) Changing numbers of neuronal and non-neuronal cells underlie postnatal brain growth in the rat. Proc Natl Acad Sci 106:14108–14113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banich MT, Cohen-Levine S, Kim H, Huttenlocher P (1990) The effects of developmental factors on IQ in hemiplegic children. Neuropsychologia 28:35–47

    Article  CAS  PubMed  Google Scholar 

  • Berry MJ (1974) Development of the cerebral neocortex of the rat. In: Gottlieb G (ed) Aspects of neurogenesis. Academic Press, New York, pp 7–67

    Chapter  Google Scholar 

  • Boire D, Theoret H, Ptito M (2001) Visual pathways following cerebral hemispherectomy. Prog Brain Res 134:379–397

    Article  CAS  PubMed  Google Scholar 

  • Burgess JW, Villablanca JR (1986) Recovery of function after neonatal or adult hemispherectomy in cats. I. Motor deficits, limb bias and development, paw usage, locomotion and rehabilitative effects of motor training. Behav Brain Res 20:1–18

    Article  CAS  PubMed  Google Scholar 

  • Burgess JW, Villablanca JR, Levine MS (1986) Recovery of function after neonatal or adult hemispherectomy in cats. II. Complex functions: open field exploration, social interactions, maze and holeboard performance. Behav Brain Res 20:177–230

    Google Scholar 

  • Burke MW, Zangenehpour S, Ptito M (2010) Partial recovery of hemiparesis following hemispherectomy in infant monkeys. Neurosci Lett 469:243–247.wqasdfx

    Article  CAS  Google Scholar 

  • Burke MW, Kupers R, Ptito M (2012) Adaptive neuroplastic responses in early and late hemispherectomied monkeys. Neural Plast. https://doi.org/10.1155/2012/852423

  • Calder S, Hastings E, Kindt R, Gibb R, Kolb B (2001) The pattern of functional recovery and morphological change after neonatal prefrontal or posterior parietal cortex lesions is similar in mice and rats. Soc Neurosci Abstr 27(476):5

    Google Scholar 

  • Comeau W, Hastings E, Kolb B (2007) Differential effect of pre and postnatal FGF-2 following medial prefrontal cortical injury. Behav Brain Res 180:18–27

    Article  CAS  PubMed  Google Scholar 

  • Comeau W, Gibb R, Hastings E, Cioe J, Kolb B (2008) Therapeutic effects of complex rearing or bFGF after perinatal frontal lesions. Dev Psychobiol 50:134–146

    Article  PubMed  Google Scholar 

  • Cornwell P, Overman W, Ross C (1978) Extent of recovery from neonatal damage to the cortical visual system of cats. J Comp Physiol Psychol 92:255–270

    Article  CAS  PubMed  Google Scholar 

  • de Brabander J, Kolb B (1997) Development of pyramidal cells in medial frontal cortex following neonatal lesions of anterior midline cortex. Restor Neurol Neurosci 11:91–97

    PubMed  Google Scholar 

  • Dityatev A, Wehrle-Hadller B, Pitkanen A (2014) Preface. Brain extracellular matrix in health and disease. Prog Brain Res 214:xiii-xvii

    PubMed  Google Scholar 

  • Driscoll I, Monfils M-H, Flynn C, Teskey GC, Kolb B (2007) Neurophysiological properties of cells filling the neonatal medial prefrontal cortex lesion cavity. Brain Res 1178:1209–1218

    Article  CAS  Google Scholar 

  • Drzewieki CM, Willing J, Juraska JM (2020) Influences of age and pubertal status on number and intensity of perineuronal nets in the rat medial prefrontal cortex. Brain Struct Funct 225:2495–2507

    Article  Google Scholar 

  • Gibb R (2004) Perinatal experience and recovery from brain injury. Unpublished PhD thesis. University of Lethbridge

    Google Scholar 

  • Goldman PS (1974) An alternative to developmental plasticity: heterology of CNS structures in infants and adults. In: Stein DG, Rosen JJ, Butters N (eds) Plasticity and recovery of function in the central nervous system. Academic, New York, pp 149–174

    Google Scholar 

  • Goldman PS, Galkin TW (1978) Prenatal removal of frontal association cortex in the fetal rhesus monkey: anatomical and functional consequences in postnatal life. Brain Res 152:451–485

    Article  CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS, Isseroff AM, Schwartz ML, Bugbee NM (1983) The neurobiology of cognitive decelopment. In: Mussen PH (ed) Handbook of child psychology: biology and infancy development. Wiley, New York, pp 311–344

    Google Scholar 

  • Goldsbury RP, Pearce SM, Gibb R, Kolb B (2006) Unilateral neonatal bulbectomy alters motor behaviour and overall cortical organization in a sexually dimorphic manner. Soc Neurosci Abstr 620:1

    Google Scholar 

  • Gonzalez CLR, Gibb R, Kolb B (2002) Functional recovery and dendritic hypertrophy after posterior and complete cingulate lesions on postnatal day 10. Dev Psychobiol 40:138–146

    Article  PubMed  Google Scholar 

  • Greenham M, Ryan NP, Anderson V (2018) Injury. In: Gibb R, Kolb B (eds) The neurobiology of brain and behavioral development. Elsevier, New York, pp 413–438

    Chapter  Google Scholar 

  • Guo ZY, Zhang L, Wu Z, Chen UY, Wang F, Chen G (2014) In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model. Cell Stem Cell 14:188–202

    Article  CAS  PubMed  Google Scholar 

  • Harlow HF, Akert K, Schlitz KA (1964) The effects of bilateral lesions of prefrontal cortex on the learned behavior of neonatal, infant, and preadolescent monkeys. In: Warren JM, Akert K (eds) The frontal granular cortex and behavior. McGraw-Hill, New York, pp 126–148

    Google Scholar 

  • Hebb DO (1949) The organization of behavior. McGraw-Hill, New York

    Google Scholar 

  • Hehar H, Ma I, Mychasiuk R (2017) Intergenerational transmission of paternal epigenetic marks: mechanisms influencing susceptibility to post-concussion symptomology in a rodent model. Sci Rep 7:7171. https://doi.org/10.1038/s41598-017-07784-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hensch TK (2018) Critical periods in brain development. In: Gibb R, Kolb B (eds) The neurobiology of brain and behavioral development. Elsevier, New York, pp 133–152

    Chapter  Google Scholar 

  • Hicks SP (1954) Mechanisms of radiation anencephaly, anopthalamia, and pituitary anomalies. Repair in the mammalian embryo. Arch Pathol 54:363–378

    Google Scholar 

  • Hicks S, D’Amato C (1968) Cell migrations to the isocortex of the rat. Anat Rec 160:619–634

    Article  CAS  PubMed  Google Scholar 

  • Hicks S, D’Amato C (1970) Motor-sensory and visual behavior after hemispherectomy in newborn and mature rats. Exp Neurol 29:416–438

    Article  CAS  PubMed  Google Scholar 

  • Hicks S, D’Amato C (1975) Motor-sensory cortex corticospinal system and developing locomotion and placing in rats. Am J Anat 143:1–42

    Article  CAS  PubMed  Google Scholar 

  • Hicks S, D’Amato C, Glover RA (1984) Recovery or malformation after fetal radiation and other injuries. In: Finger S, Almli CR (eds) Early brain damage, vol 1. Academic, New York, pp 127–147

    Chapter  Google Scholar 

  • Hovda DA, Villablanca JR, Chugani HT, Phelps ME (1990) Cerebral metabolism following adult or neonatal hemineodecortication in cats: I. Effects on glucose metabolism using [14C]2-deoxy-d-glucose autoradiography. J Cereb Blood Flow Metab 16:134–146

    Article  Google Scholar 

  • Ignacio MP, Kimm EJ, Kageyama GH, Yu J, Robertson RT (1995) Postnatal migration of neurons and formation of laminae in rat cerebral cortex. Anat Embryol 191(2):89–100

    Article  CAS  Google Scholar 

  • Johnson DA, Rose FD, Brooks BM, Eyers S (2003) Age and recovery from brain injury: legal opinions, clinical beliefs and experimental evidence. Pediatr Rehabil 6:103–109

    Article  PubMed  Google Scholar 

  • Jordan CJ, Andersen SL (2017) Sensitive periods of substance abuse: early risk for the transition to dependence. Dev Cogn Neurosci 25:29–44

    Article  PubMed  Google Scholar 

  • Kennard M (1938) Reorganization of motor function in the cerebral cortex of monkeys deprived of motor and premotor areas in infancy. J Neurophysiol 1:477–496

    Article  Google Scholar 

  • Kennard M (1940) Relation of age to motor impairment in man and in subhuman primates. Arch Neurol Psychiatry 44:377–397

    Article  Google Scholar 

  • Kolb B (1987) Recovery from early cortical damage in rats. I. Differential behavioral and anatomical effects of frontal lesions at different ages of neural maturation. Behav Brain Res 25:205–220

    Article  CAS  PubMed  Google Scholar 

  • Kolb B (1995) Brain plasticity and behavior. Lawrence Erlbaum Associates, Mahwah

    Google Scholar 

  • Kolb B, Gibb R (1993) Possible anatomical basis of recovery of spatial learning after neonatal prefrontal lesions in rats. Behav Neurosci 107:799–811

    Article  CAS  PubMed  Google Scholar 

  • Kolb B, Gibb R (2010) Tactile stimulation facilitates functional recovery and dendritic change after neonatal medial frontal or posterior parietal lesions in rats. Behav Brain Res 214:115–120

    Article  PubMed  Google Scholar 

  • Kolb B, Nonneman AJ (1976) Functional development of prefrontal cortex in rats continues into adolescence. Science 193(4250):335–336

    Article  CAS  PubMed  Google Scholar 

  • Kolb B, Nonneman AJ (1978) Sparing of function in rats with early prefrontal cortex lesions. Brain Res 151:135–148

    Article  CAS  PubMed  Google Scholar 

  • Kolb B, Stewart J (1995) Changes in neonatal gonadal hormonal environment prevent behavioral sparing and alter cortical morphogenesis after early frontal cortex lesions in male and female rats. Behav Neurosci 109:285–294

    Article  CAS  PubMed  Google Scholar 

  • Kolb B, Tomie J (1988) Recovery from early cortical damage in rats. IV. Effects of hemidecortication at 1, 5, or 10 days of age. Behav Brain Res 28:259–274

    Article  CAS  PubMed  Google Scholar 

  • Kolb B, Whishaw IQ (1981) Neonatal frontal lesions in the rat: sparing of learned but not species-typical behavior in the presence of reduced brain weight and cortical thickness. J Comp Physiol Psychol 95:863–879

    Article  CAS  PubMed  Google Scholar 

  • Kolb B, Whishaw IQ (1985a) Neonatal frontal lesions in hamsters impair species-typical behaviors and reduce brain weight and cortical thickness. Behav Neurosci 99:691–704

    Article  CAS  PubMed  Google Scholar 

  • Kolb B, Whishaw IQ (1985b) Earlier is not always better: behavioural dysfunction and abnormal cerebral morphogenesis following neonatal cortical lesions in the rat. Behav Brain Res 17:25–43

    Article  CAS  PubMed  Google Scholar 

  • Kolb B, Gibb R, van der Kooy D (1992) Neonatal hemidecortication alters cortical and striatal structure and connectivity. J Comp Neurol 322:311–324

    Article  CAS  PubMed  Google Scholar 

  • Kolb B, Gibb R, van der Kooy D (1994) Neonatal frontal cortical lesions in rats alter cortical structure and connectivity. Brain Res 645:85–97

    Article  CAS  PubMed  Google Scholar 

  • Kolb B, Petrie B, Cioe J (1996) Recovery from early cortical damage in rats. VII. Comparison of the behavioural and anatomical effects of medial prefrontal lesions at different ages of neural maturation. Behav Brain Res 79:1–13

    Article  CAS  PubMed  Google Scholar 

  • Kolb B, Cioe J, Muirhead D (1998a) Cerebral morphology and functional sparing after prenatal frontal cortex lesions in rats. Behav Brain Res 91:143–155

    Article  CAS  PubMed  Google Scholar 

  • Kolb B, Gibb R, Gorny G, Whishaw IQ (1998b) Possible brain regrowth after cortical lesions in rats. Behav Brain Res 91:127–141

    Article  CAS  PubMed  Google Scholar 

  • Kolb B, Pedersen B, Ballerman M, Gibb R, Whishaw IQ (1999) Embryonic exposure to BrdU produces chronic changes in brain and behavior in rats. J Neurosci 19:2337–2346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolb B, Cioe J, Whishaw IQ (2000) Is there an optimal age for recovery from motor cortex lesions? I. Behavioural and anatomical sequelae of bilateral motor cortex lesions in rats on postnatal days 1, 10, and in adulthood. Brain Res 882:62–74

    Article  CAS  PubMed  Google Scholar 

  • Kolb B, Morshead C, Gonzalez C, Kim N, Shingo T, Weiss S (2007) Growth factor-stimulated generation of new cortical tissue and functional recovery after stroke damage to the motor cortex of rats. J Cereb Blood Flow Metab 27:983–997

    Article  CAS  PubMed  Google Scholar 

  • Kolb B, Gibb R, Pearce S, Tanguay R (2008) Prenatal exposure to prescription medications alters recovery following early brain injury in rats. Soc Neurosci Abstr 349:5

    Google Scholar 

  • Kolb B, Mychasiuk R, Muhammad A, Gibb R (2013) Brain plasticity in the developing brain. Prog Brain Res 207:35–64

    Article  PubMed  Google Scholar 

  • Lennenberg E (1967) Biological foundations of language. Wiley, New York

    Google Scholar 

  • Li CX, Li Z, Hu X, Zhang X, Bachevalier J (2021) Altered hippocampal-prefrontal functional network integrity in adult macaque monkeys with neonatal hippocampal lesions. Neuroimage 227:117645

    Article  PubMed  Google Scholar 

  • Liegeois F, Cross JH, Polkey C, Harkness W, Vargha-Khadem F (2008) Language after hemispherectomy in childhood: contributions from memory and intelligence. Neuropsychologia 46:3101–3107

    Article  PubMed  Google Scholar 

  • Malkova L, Mishkin M, Suomi SJ, Bachevalier J (1997) Socioemotional behavior in adult rhesus monkeys after early versus late lesions of the medial temporal lobe. Ann N Y Acad Sci 807:538–540

    Article  CAS  PubMed  Google Scholar 

  • Malkova L, Mishkin M, Suomi SJ, Bachevalier J (2010) Long-term effects of neonatal medial temporal ablations on socioemotional behavior in monkeys (Macaca mulatta). Behav Neurosci 124:742–760

    Article  PubMed  PubMed Central  Google Scholar 

  • Monfils MH, Driscoll I, Vandenberg PM, Thomas NJ, Danka D, Kleim JA, Kolb B (2005) Basic fibroblast growth factor stimulates functional recovery after neonatal lesions of motor cortex in rats. Neuroscience 134:1–8

    Article  CAS  PubMed  Google Scholar 

  • Monfils M-H, Driscoll I, Vavrek R, Kolb B, Fouad K (2008) FGF-2 induced functional improvement from neonatal motor cortex injury via corticospinal projections. Exp Brain Res 185:453–460

    Article  CAS  PubMed  Google Scholar 

  • Mortera P, Herculano-Houzel S (2012) Age-related neuronal loss in the rat brain starts at the end of adolescence. Front Neuroanat. https://doi.org/10.3389/fnana.2012.00045

  • Nemati F, Kolb B (2010) Motor cortex injury has different behavioral and anatomical effects in juvenile and adolescent rats. Behav Neurosci 24:612–622

    Article  Google Scholar 

  • Nemati F, Kolb B (2011) FGF-2 induces behavioral recovery after early adolescent injury to the motor cortex of rats. Behav Brain Res 225:184–191

    Article  CAS  PubMed  Google Scholar 

  • Nemati F, Kolb B (2012) Recovery from medial prefrontal cortex injury during adolescence: implications for age-dependent plasticity. Behav Brain Res 229:168–175

    Article  PubMed  Google Scholar 

  • Niu W, Zang T, Zou Y, Fang S, Smith DK, Bachoo R, Zhang C-L (2013) In vivo reprogramming of astrocytes to neuroblasts in the adult brain. Nat Cell Biol 15:1164–1175

    Article  CAS  PubMed  Google Scholar 

  • Nonneman AJ, Corwin JV, Sahley CL, Vicedomini JP (1984) Functional development of the prefrontal system. In: Finger S, Almli CR (eds) Early brain damage, vol 2. Academic, New York, pp 139–153

    Chapter  Google Scholar 

  • Oberman L, Pascual-Leone A (2013) Changes in plasticity across the lifespan: cause of disease and target for intervention. Prog Brain Res 207:91–120

    Article  PubMed  PubMed Central  Google Scholar 

  • Olmstead CE, Villablanca JR (1979) Effects of caudate nuclei or frontal cortical ablations in kittens: maze learning performance. Exp Neurol 63:244–256

    Article  CAS  PubMed  Google Scholar 

  • Pan W-J, Billings J, Nezafati M, Abbas A, Keilholz S (2018) Resting state fMRI in rodents. Curr Protoc Neurosci https://doi.org/10.1002.cpns.45

  • Passingham RE, Perry VH, Wilkinson F (1983) The long-term effects of removal of sensorimotor cortex in infant and adult rhesus monkeys. Brain 106:675–705

    Article  PubMed  Google Scholar 

  • Payne BR, Cornwell P (1994) System-wide repercussions of damage to the immature visual cortex. Trends Neurosci 17:126–130

    Article  CAS  PubMed  Google Scholar 

  • Payne BR, Lomber SG (2003) Quantitative analyses of principal and secondary compound parieto-occipital feedback pathways in cat. Exp Brain Res 152:420–433

    PubMed  Google Scholar 

  • Piekarski DJ, Johnson C, Boivin JR, Thomas AW, Lin WC, Delevich K, Galarce E, Wilbrecht L (2017) Does puberty mark a transition in sensitive periods for plasticity in the association cortex? Brain Res 1654(Pt B):123–144

    Article  CAS  PubMed  Google Scholar 

  • Rao VLR, Dhodda VK, Song G, Bowen KK, Dempsey RJ (2002) Traumatic brain injury-induced acute gene expression changes in rat cerebral cortex identified by gene chip analysis. J Neurosci Res. https://doi.org/10.1002/jnr.10486

  • Rasmussen T (1983) Hemispherectomy for seizures revisited. Can J Neurol Sci 10(2):71–78

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen T, Milner B (1977) Clinical and surgical studies of speech areas in man. In: Zulch KJ, Creutzfeldt O, Galbraith GC (eds) Cerebral localization. Springer, Berlin, pp 238–257

    Google Scholar 

  • Reh RK, Dias BG, Nelson CA, Kaufer D, Werker JF, Kolb B, Levine JD, Hensch TK (2020) Critical period regulation across multiple timescales. Proc Natl Acad Sci 117:23242–23251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reichelt AC, Hare DJ, Bussey TJ, Saksida LM (2019) Perineuronal nets: plasticity, protection, and therapeutic potential. Trends Neurosci 42:458–470

    Article  CAS  PubMed  Google Scholar 

  • Riva D, Cazzangia L (1986) Late effects of unilateral brain lesions sustained before and after age one. Neuropsychologia 24:423–428

    Article  CAS  PubMed  Google Scholar 

  • Schneider GE (1973) Early lesions of superior colliculus: factors affecting the formation of abnormal retinal projections. Brain Behav Evol 8:73–90

    Article  CAS  PubMed  Google Scholar 

  • Takesian AE, Hensch TK (2013) Balancing plasticity/stability across brain development. Prog Brain Res 207:3–34

    Article  PubMed  Google Scholar 

  • Tavares TP, Kerr EN, Smith ML (2020) Memory outcomes following hemispherectomy in children. Epilepsy Behav 112:107360

    Article  PubMed  Google Scholar 

  • Teuber H-L (1975) Recovery of function after brain damage in man. In: CFS (ed) Outcome of severe damage to the nervous system. Elsevier, Amsterdam

    Google Scholar 

  • Tottenham N (2020) Early adversity and the neonotenous human brain. Biol Psychiatry 87:350–358

    Article  PubMed  Google Scholar 

  • Vargha-Khadem F, Watters G, O’Gorman AM (1985) Development of speech and language following bilateral frontal lesions. Brain Lang 37:167–183

    Article  Google Scholar 

  • Vicedomini JP, Corwin JV, Nonneman AJ (1982) Role of residual anterior neocortex in recovery from neonatal prefrontal lesions in the rat. Physiol Behav 28:797–806

    Article  CAS  PubMed  Google Scholar 

  • Villablanca JR, Hovda DA (2000) Developmental neuroplasticity in a model of cerebral hemispherectomy and stroke. Neuroscience 95:625–637

    Article  CAS  PubMed  Google Scholar 

  • Villablanca JR, Olmstead CE, Levine MS, Marcus RJ (1978) Effects of caudate nuclei or frontal cortical ablations in kittens: neurology and gross behavior. Exp Neurol 61:615–634

    Article  CAS  PubMed  Google Scholar 

  • Villablanca JR, Burgess JW, Sonnier BJ (1984) Neonatal cerebral hemispherectomy: a model for postlesion reorganization of the brain. In: Finger S, Almli CR (eds) Early brain damage, vol 2. Academic, New York, pp 179–210

    Chapter  Google Scholar 

  • Villablanca JR, Hovda DA, Jackson GF, Gayek R (1993a) Neurological and behavioral effects of a unilateral frontal cortical lesion in fetal kittens. I. Brain morphology, movements, posture and sensorimotor tests. Behav Brain Res 57:63–77

    Article  CAS  PubMed  Google Scholar 

  • Villablanca JR, Hovda DA, Jackson GF, Infante C (1993b) Neurological and behavioral effects of a unilateral frontal cortical lesion in fetal kittens. II. Visual system tests, and proposing an “optimal developmental period” for lesion effects. Behav Brain Res 57:79–92

    Article  CAS  PubMed  Google Scholar 

  • Weikum WM, Oberlander TF, Hensch TK, Werker JF (2012) Prenatal exposure to antidepressants and depressed maternal mood alter trajectory of infant speech perception. Proc Natl Acad Sci 109(Suppl 2):17221–17227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werker JF, Hensch TK (2015) Critical periods in speech perception: new directions. Annu Rev Psychol 66:173–196

    Article  PubMed  Google Scholar 

  • Whishaw IQ, Kolb B (1988) Sparing of skilled forelimb reaching and corticospinal projections after neonatal motor cortex removal or hemidecortication in the rat: support for the Kennard Doctrine. Brain Res 451:97–114

    Article  CAS  PubMed  Google Scholar 

  • Whitesell JD, Liska A, Coletta L, Hirokawa KE, Bohn P, Williford A et al (2021) Regional, layer, and cell-type connectivity of the mouse default mode network. Neuron 109:1–15

    Article  CAS  Google Scholar 

  • Wu Z, Parry M, Hou XY, Liu M-H, Wang H, Cain R, Pei Z-F, Chen Y-C, Guo Z-Y, Abhijeet S, Chen G (2020) Gene therapy conversion of striatal astrocytes into GABAergic neurons in mouse models of Huntington’s disease. Nat Commun 11. https://doi.org/10.1038/s41467-020-14855-3

  • Zamani A, Powell KL, May A, Semple BD (2020) Validation of reference genes for gene epression alaysis following experimental traumatic brain injury in a pediatric mouse model. Brain Res Bull. https://doi.org/10.1016/j.brainresbull.2020.09.021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryan Kolb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kolb, B. (2022). Sensitive Periods for Recovery from Early Brain Injury. In: Andersen, S.L. (eds) Sensitive Periods of Brain Development and Preventive Interventions. Current Topics in Behavioral Neurosciences, vol 53. Springer, Cham. https://doi.org/10.1007/7854_2021_296

Download citation

Publish with us

Policies and ethics