Skip to main content

Brain Structures Implicated in Inflammation-Associated Depression

  • Chapter
  • First Online:

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 31))

Abstract

Systemic inflammation rapidly impairs mood, motivation, and cognition inducing a stereotyped cluster of symptoms collectively known as “sickness behaviors.” When inflammation is severe or chronic, these behavioral changes can appear indistinguishable from major depressive disorder (MDD). Human and rodent neuroimaging combined with experimental inflammatory challenges has clarified the neural circuitry associated with many of the key features of inflammation-induced-sickness behavior, and in so doing revealed often-remarkable commonalities with circuit abnormalities observed in MDD. This review aims to provide the first synthesis of this work illustrating areas of convergence and divergence with the MDD literature as well as highlighting areas for future study.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9:46–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hart BL (1987) Behavior of sick animals. Vet Clin North Am Food Anim Pract 3:383–391

    Article  CAS  PubMed  Google Scholar 

  3. Kelley KW, Bluthe RM, Dantzer R, Zhou JH, Shen WH, Johnson RW, Broussard SR (2003) Cytokine-induced sickness behavior. Brain Behav Immun 17(Suppl 1):S112–S118

    Article  CAS  PubMed  Google Scholar 

  4. Yirmiya R, Goshen I (2011) Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun 25:181–213

    Article  CAS  PubMed  Google Scholar 

  5. Merali Z, Brennan K, Brau P, Anisman H (2003) Dissociating anorexia and anhedonia elicited by interleukin-1beta: antidepressant and gender effects on responding for “free chow” and “earned” sucrose intake. Psychopharmacology (Berl) 165:413–418

    Article  CAS  Google Scholar 

  6. Stone EA, Lehmann ML, Lin Y, Quartermain D (2006) Depressive behavior in mice due to immune stimulation is accompanied by reduced neural activity in brain regions involved in positively motivated behavior. Biol Psychiatry 60:803–811

    Article  CAS  PubMed  Google Scholar 

  7. Vichaya EG, Hunt SC, Dantzer R (2014) Lipopolysaccharide reduces incentive motivation while boosting preference for high reward in mice. Neuropsychopharmacology 39:2884–2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Eisenberger NI, Inagaki TK, Mashal NM, Irwin MR (2010) Inflammation and social experience: an inflammatory challenge induces feelings of social disconnection in addition to depressed mood. Brain Behav Immun 24:558–563

    Article  PubMed  PubMed Central  Google Scholar 

  9. Reichenberg A, Yirmiya R, Schuld A, Kraus T, Haack M, Morag A, Pollmacher T (2001) Cytokine-associated emotional and cognitive disturbances in humans. Arch Gen Psychiatry 58:445–452

    Article  CAS  PubMed  Google Scholar 

  10. Brydon L, Harrison NA, Walker C, Steptoe A, Critchley HD (2008) Peripheral inflammation is associated with altered substantia nigra activity and psychomotor slowing in humans. Biol Psychiatry 63:1022–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Harrison NA, Brydon L, Walker C, Gray MA, Steptoe A, Critchley HD (2009) Inflammation causes mood changes through alterations in subgenual cingulate activity and mesolimbic connectivity. Biol Psychiatry 66:407–414

    Article  PubMed  PubMed Central  Google Scholar 

  12. Harrison NA, Brydon L, Walker C, Gray MA, Steptoe A, Dolan RJ, Critchley HD (2009) Neural origins of human sickness in interoceptive responses to inflammation. Biol Psychiatry 66:415–422

    Article  PubMed  PubMed Central  Google Scholar 

  13. Musselman DL, Lawson DH, Gumnick JF, Manatunga AK, Penna S, Goodkin RS, Miller AH (2001) Paroxetine for the prevention of depression induced by high-dose interferon alfa. N Engl J Med 344:961–966

    Article  CAS  PubMed  Google Scholar 

  14. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, Lanctot KL (2010) A meta-analysis of cytokines in major depression. Biol Psychiatry 67:446–457

    Article  CAS  PubMed  Google Scholar 

  15. Valkanova V, Ebmeier KP, Allan CL (2013) CRP, IL-6 and depression: a systematic review and meta-analysis of longitudinal studies. J Affect Disord 150:736–744

    Article  CAS  PubMed  Google Scholar 

  16. Dowell NG, Cooper EA, Tibble J, Voon V, Critchley HD, Cercignani M, Harrison NA (2016) Acute changes in striatal microstructure predict the development of interferon-alpha induced fatigue. Biol Psychiatry 79:320–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Harrison NA, Cercignani M, Voon V, Critchley HD (2015) Effects of inflammation on hippocampus and substantia nigra responses to novelty in healthy human participants. Neuropsychopharmacology 40:831–838

    Article  PubMed  Google Scholar 

  18. Harrison NA, Doeller CF, Voon V, Burgess N, Critchley HD (2014) Peripheral inflammation acutely impairs human spatial memory via actions on medial temporal lobe glucose metabolism. Biol Psychiatry 76:585–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Eisenberger NI, Berkman ET, Inagaki TK, Rameson LT, Mashal NM, Irwin MR (2010) Inflammation-induced anhedonia: endotoxin reduces ventral striatum responses to reward. Biol Psychiatry 68:748–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Harrison NA, Cooper E, Voon V, Miles K, Critchley HD (2013) Central autonomic network mediates cardiovascular responses to acute inflammation: relevance to increased cardiovascular risk in depression? Brain Behav Immun 31:189–196

    Article  PubMed  PubMed Central  Google Scholar 

  21. Capuron L, Gumnick JF, Musselman DL, Lawson DH, Reemsnyder A, Nemeroff CB, Miller AH (2002) Neurobehavioral effects of interferon-alpha in cancer patients: phenomenology and paroxetine responsiveness of symptom dimensions. Neuropsychopharmacology 26:643–652

    Article  CAS  PubMed  Google Scholar 

  22. Capuron L, Pagnoni G, Drake DF, Woolwine BJ, Spivey JR, Crowe RJ, Miller AH (2012) Dopaminergic mechanisms of reduced basal ganglia responses to hedonic reward during interferon alfa administration. Arch Gen Psychiatry 69:1044–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Harrison NA, Cooper E, Dowell NG, Keramida G, Voon V, Critchley HD, Cercignani M (2015) Quantitative magnetization transfer imaging as a biomarker for effects of systemic inflammation on the brain. Biol Psychiatry 78:49–57

    Article  PubMed  PubMed Central  Google Scholar 

  24. Critchley HD, Harrison NA (2013) Visceral influences on brain and behavior. Neuron 77:624–638

    Article  CAS  PubMed  Google Scholar 

  25. McEwen BS, Gianaros PJ (2010) Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease. Ann N Y Acad Sci 1186:190–222

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wan W, Wetmore L, Sorensen CM, Greenberg AH, Nance DM (1994) Neural and biochemical mediators of endotoxin and stress-induced c-fos expression in the rat brain. Brain Res Bull 34:7–14

    Article  CAS  PubMed  Google Scholar 

  27. Goehler LE, Relton JK, Dripps D, Kiechle R, Tartaglia N, Maier SF, Watkins LR (1997) Vagal paraganglia bind biotinylated interleukin-1 receptor antagonist: a possible mechanism for immune-to-brain communication. Brain Res Bull 43:357–364

    Article  CAS  PubMed  Google Scholar 

  28. Ek M, Kurosawa M, Lundeberg T, Ericsson A (1998) Activation of vagal afferents after intravenous injection of interleukin-1beta: role of endogenous prostaglandins. J Neurosci 18:9471–9479

    CAS  PubMed  Google Scholar 

  29. Goehler LE, Gaykema RP, Hansen MK, Anderson K, Maier SF, Watkins LR (2000) Vagal immune-to-brain communication: a visceral chemosensory pathway. Auton Neurosci 85:49–59

    Article  CAS  PubMed  Google Scholar 

  30. Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3:655–666

    Article  CAS  PubMed  Google Scholar 

  31. Craig AD, Krout K, Andrew D (2001) Quantitative response characteristics of thermoreceptive and nociceptive lamina I spinothalamic neurons in the cat. J Neurophysiol 86:1459–1480

    CAS  PubMed  Google Scholar 

  32. Craig AD, Chen K, Bandy D, Reiman EM (2000) Thermosensory activation of insular cortex. Nat Neurosci 3:184–190

    Article  CAS  PubMed  Google Scholar 

  33. Andrew D, Craig AD (2001) Spinothalamic lamina I neurons selectively sensitive to histamine: a central neural pathway for itch. Nat Neurosci 4:72–77

    Article  CAS  PubMed  Google Scholar 

  34. Olausson H, Lamarre Y, Backlund H, Morin C, Wallin BG, Starck G, Bushnell MC (2002) Unmyelinated tactile afferents signal touch and project to insular cortex. Nat Neurosci 5:900–904

    Article  CAS  PubMed  Google Scholar 

  35. Craig AD, Blomqvist A (2002) Is there a specific lamina I spinothalamocortical pathway for pain and temperature sensations in primates? J Pain 3:95–101, discussion 113–104

    Article  CAS  PubMed  Google Scholar 

  36. Critchley HD, Wiens S, Rotshtein P, Ohman A, Dolan RJ (2004) Neural systems supporting interoceptive awareness. Nat Neurosci 7:189–195

    Article  CAS  PubMed  Google Scholar 

  37. Rosenkranz MA, Busse WW, Johnstone T, Swenson CA, Crisafi GM, Jackson MM, Davidson RJ (2005) Neural circuitry underlying the interaction between emotion and asthma symptom exacerbation. Proc Natl Acad Sci U S A 102:13319–13324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Drzezga A, Darsow U, Treede RD, Siebner H, Frisch M, Munz F, Bartenstein P (2001) Central activation by histamine-induced itch: analogies to pain processing: a correlational analysis of O-15 H2O positron emission tomography studies. Pain 92:295–305

    Article  CAS  PubMed  Google Scholar 

  39. Williamson JW, McColl R, Mathews D, Ginsburg M, Mitchell JH (1999) Activation of the insular cortex is affected by the intensity of exercise. J Appl Physiol (1985) 87:1213–1219

    CAS  Google Scholar 

  40. van den Heuvel MP, Pol HEH (2010) Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharm 20:519–534

    Article  CAS  Google Scholar 

  41. Hannestad J, Subramanyam K, Dellagioia N, Planeta-Wilson B, Weinzimmer D, Pittman B, Carson RE (2012) Glucose metabolism in the insula and cingulate is affected by systemic inflammation in humans. J Nucl Med 53:601–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lekander M, Karshikoff B, Johansson E, Soop A, Fransson P, Lundstrom JN, Nilsonne G (2015) Intrinsic functional connectivity of insular cortex and symptoms of sickness during acute experimental inflammation. Brain Behav Immun. doi:10.1016/j.bbi.2015.12.018

    Google Scholar 

  43. Manes F, Paradiso S, Robinson RG (1999) Neuropsychiatric effects of insular stroke. J Nerv Ment Dis 187:707–712

    Article  CAS  PubMed  Google Scholar 

  44. Mayberg HS, Liotti M, Brannan SK, McGinnis S, Mahurin RK, Jerabek PA, Fox PT (1999) Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry 156:675–682

    CAS  PubMed  Google Scholar 

  45. Paulus MP, Stein MB (2010) Interoception in anxiety and depression. Brain Struct Funct 214:451–463

    Article  PubMed  PubMed Central  Google Scholar 

  46. Veer IM, Beckmann CF, van Tol MJ, Ferrarini L, Milles J, Veltman DJ, Rombouts SA (2010) Whole brain resting-state analysis reveals decreased functional connectivity in major depression. Front Syst Neurosci 4

    Google Scholar 

  47. Yao Z, Wang L, Lu Q, Liu H, Teng G (2009) Regional homogeneity in depression and its relationship with separate depressive symptom clusters: a resting-state fMRI study. J Affect Disord 115:430–438

    Article  PubMed  Google Scholar 

  48. Sandiego CM, Gallezot JD, Pittman B, Nabulsi N, Lim K, Lin SF, Cosgrove KP (2015) Imaging robust microglial activation after lipopolysaccharide administration in humans with PET. Proc Natl Acad Sci U S A 112:12468–12473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Capuron L, Pagnoni G, Demetrashvili MF, Lawson DH, Fornwalt FB, Woolwine B, Miller AH (2007) Basal ganglia hypermetabolism and symptoms of fatigue during interferon-alpha therapy. Neuropsychopharmacology 32:2384–2392

    Article  CAS  PubMed  Google Scholar 

  50. Felger JC, Alagbe O, Hu F, Mook D, Freeman AA, Sanchez MM, Miller AH (2007) Effects of interferon-alpha on rhesus monkeys: a nonhuman primate model of cytokine-induced depression. Biol Psychiatry 62:1324–1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang J, Campbell IL, Zhang H (2008) Systemic interferon-alpha regulates interferon-stimulated genes in the central nervous system. Mol Psychiatry 13:293–301

    Article  CAS  PubMed  Google Scholar 

  52. Huys QJ, Pizzagalli DA, Bogdan R, Dayan P (2013) Mapping anhedonia onto reinforcement learning: a behavioural meta-analysis. Biol Mood Anxiety Disord 3:12

    Article  PubMed  PubMed Central  Google Scholar 

  53. Schultz W, Apicella P, Scarnati E, Ljungberg T (1992) Neuronal activity in monkey ventral striatum related to the expectation of reward. J Neurosci 12:4595–4610

    CAS  PubMed  Google Scholar 

  54. Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1–27

    CAS  PubMed  Google Scholar 

  55. Dayan P, Abbott L (2001) Theoretical neuroscience: computational and mathematical modelling of neural systems. The MIT Press, Cambridge

    Google Scholar 

  56. Montague PR, Dayan P, Sejnowski TJ (1996) A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J Neurosci 16:1936–1947

    CAS  PubMed  Google Scholar 

  57. Pessiglione M, Seymour B, Flandin G, Dolan RJ, Frith CD (2006) Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature 442:1042–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev 28:309–369

    Article  CAS  PubMed  Google Scholar 

  59. Gradin VB, Kumar P, Waiter G, Ahearn T, Stickle C, Milders M, Steele JD (2011) Expected value and prediction error abnormalities in depression and schizophrenia. Brain 134:1751–1764

    Article  PubMed  Google Scholar 

  60. Pizzagalli DA, Holmes AJ, Dillon DG, Goetz EL, Birk JL, Bogdan R, Fava M (2009) Reduced caudate and nucleus accumbens response to rewards in unmedicated individuals with major depressive disorder. Am J Psychiatry 166:702–710

    Article  PubMed  PubMed Central  Google Scholar 

  61. Harrison NA, Voon V, Cercignani M, Cooper EA, Pessiglione M, Critchley HD (2015) A neurocomputational account of how inflammation enhances sensitivity to punishments versus rewards. Biol Psychiatry. doi:10.1016/j.bbi.2015.12.018

    PubMed Central  Google Scholar 

  62. Borowski T, Kokkinidis L, Merali Z, Anisman H (1998) Lipopolysaccharide, central in vivo biogenic amine variations, and anhedonia. Neuroreport 9:3797–3802

    Article  CAS  PubMed  Google Scholar 

  63. Kitagami T, Yamada K, Miura H, Hashimoto R, Nabeshima T, Ohta T (2003) Mechanism of systemically injected interferon-alpha impeding monoamine biosynthesis in rats: role of nitric oxide as a signal crossing the blood-brain barrier. Brain Res 978:104–114

    Article  CAS  PubMed  Google Scholar 

  64. Felger JC, Miller AH (2012) Cytokine effects on the basal ganglia and dopamine function: the subcortical source of inflammatory malaise. Front Neuroendocrinol 33:315–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kamata M, Higuchi H, Yoshimoto M, Yoshida K, Shimizu T (2000) Effect of single intracerebroventricular injection of alpha-interferon on monoamine concentrations in the rat brain. Eur Neuropsychopharmacol 10:129–132

    Article  CAS  PubMed  Google Scholar 

  66. Shuto H, Kataoka Y, Horikawa T, Fujihara N, Oishi R (1997) Repeated interferon-alpha administration inhibits dopaminergic neural activity in the mouse brain. Brain Res 747:348–351

    Article  CAS  PubMed  Google Scholar 

  67. Paulus MP, Rogalsky C, Simmons A, Feinstein JS, Stein MB (2003) Increased activation in the right insula during risk-taking decision making is related to harm avoidance and neuroticism. Neuroimage 19:1439–1448

    Article  PubMed  Google Scholar 

  68. Palminteri S, Justo D, Jauffret C, Pavlicek B, Dauta A, Delmaire C, Pessiglione M (2012) Critical roles for anterior insula and dorsal striatum in punishment-based avoidance learning. Neuron 76:998–1009

    Article  CAS  PubMed  Google Scholar 

  69. Seligman ME (1972) Learned helplessness. Annu Rev Med 23:407–412

    Article  CAS  PubMed  Google Scholar 

  70. Felger JC, Li Z, Haroon E, Woolwine BJ, Jung MY, Hu X, Miller AH (2015) Inflammation is associated with decreased functional connectivity within corticostriatal reward circuitry in depression. Mol Psychiatry. doi:10.1016/j.bbi.2015.12.018

    PubMed  PubMed Central  Google Scholar 

  71. Zung WW, Richards CB, Short MJ (1965) Self-rating depression scale in an outpatient clinic. Further validation of the SDS. Arch Gen Psychiatry 13:508–515

    Article  CAS  PubMed  Google Scholar 

  72. Capuron L, Miller AH (2004) Cytokines and psychopathology: lessons from interferon-alpha. Biol Psychiatry 56:819–824

    Article  CAS  PubMed  Google Scholar 

  73. Dantzer R, Bluthe R, Castanon N, Kelly K, Konsman J, Laye S (2007) Cytokines, sickness behavior, and depression. In: Ader R (ed) Psychoneuroimmunology, 4th edn. Elsevier, San Diego

    Google Scholar 

  74. Lenczowski MJ, Bluthe RM, Roth J, Rees GS, Rushforth DA, van Dam AM, Luheshi GN (1999) Central administration of rat IL-6 induces HPA activation and fever but not sickness behavior in rats. Am J Physiol 276:R652–R658

    CAS  PubMed  Google Scholar 

  75. Harden LM, du Plessis I, Poole S, Laburn HP (2006) Interleukin-6 and leptin mediate lipopolysaccharide-induced fever and sickness behavior. Physiol Behav 89:146–155

    Article  CAS  PubMed  Google Scholar 

  76. Pang Y, Fan LW, Zheng B, Cai Z, Rhodes PG (2006) Role of interleukin-6 in lipopolysaccharide-induced brain injury and behavioral dysfunction in neonatal rats. Neuroscience 141:745–755

    Article  CAS  PubMed  Google Scholar 

  77. Bluthe RM, Michaud B, Poli V, Dantzer R (2000) Role of IL-6 in cytokine-induced sickness behavior: a study with IL-6 deficient mice. Physiol Behav 70:367–373

    Article  CAS  PubMed  Google Scholar 

  78. Capuron L, Ravaud A, Dantzer R (2001) Timing and specificity of the cognitive changes induced by interleukin-2 and interferon-alpha treatments in cancer patients. Psychosom Med 63:376–386

    Article  CAS  PubMed  Google Scholar 

  79. Smith AP, Tyrrell DA, Al-Nakib W, Coyle KB, Donovan CB, Higgins PG, Willman JS (1987) Effects of experimentally induced respiratory virus infections and illness on psychomotor performance. Neuropsychobiology 18:144–148

    Article  CAS  PubMed  Google Scholar 

  80. Graybiel AM, Aosaki T, Flaherty AW, Kimura M (1994) The basal ganglia and adaptive motor control. Science 265:1826–1831

    Article  CAS  PubMed  Google Scholar 

  81. Bunzeck N, Duzel E (2006) Absolute coding of stimulus novelty in the human substantia nigra/VTA. Neuron 51:369–379

    Article  CAS  PubMed  Google Scholar 

  82. Baunez C, Robbins TW (1999) Effects of dopamine depletion of the dorsal striatum and further interaction with subthalamic nucleus lesions in an attentional task in the rat. Neuroscience 92:1343–1356

    Article  CAS  PubMed  Google Scholar 

  83. Weed MR, Gold LH (1998) The effects of dopaminergic agents on reaction time in rhesus monkeys. Psychopharmacology (Berl) 137:33–42

    Article  CAS  Google Scholar 

  84. van den Biggelaar AH, Gussekloo J, de Craen AJ, Frolich M, Stek ML, van der Mast RC, Westendorp RG (2007) Inflammation and interleukin-1 signaling network contribute to depressive symptoms but not cognitive decline in old age. Exp Gerontol 42:693–701

    Article  PubMed  CAS  Google Scholar 

  85. Maes M, Bosmans E, De Jongh R, Kenis G, Vandoolaeghe E, Neels H (1997) Increased serum IL-6 and IL-1 receptor antagonist concentrations in major depression and treatment resistant depression. Cytokine 9:853–858

    Article  CAS  PubMed  Google Scholar 

  86. Martinot M, Bragulat V, Artiges E, Dolle F, Hinnen F, Jouvent R, Martinot J (2001) Decreased presynaptic dopamine function in the left caudate of depressed patients with affective flattening and psychomotor retardation. Am J Psychiatry 158:314–316

    Article  CAS  PubMed  Google Scholar 

  87. Haroon E, Felger JC, Woolwine BJ, Chen X, Parekh S, Spivey JR, Miller AH (2015) Age-related increases in basal ganglia glutamate are associated with TNF, reduced motivation and decreased psychomotor speed during IFN-alpha treatment: preliminary findings. Brain Behav Immun 46:17–22

    Article  CAS  PubMed  Google Scholar 

  88. Starkstein SE, Robinson RG, Berthier ML, Parikh RM, Price TR (1988) Differential mood changes following basal ganglia vs thalamic lesions. Arch Neurol 45:725–730

    Article  CAS  PubMed  Google Scholar 

  89. Haroon E, Fleischer CC, Felger JC, Chen X, Woolwine BJ, Patel T, Miller AH (2016) Conceptual convergence: increased inflammation is associated with increased basal ganglia glutamate in patients with major depression. Mol Psychiatry. doi:10.1038/mp.2015.206

    PubMed Central  Google Scholar 

  90. Pariante CM, Lightman SL (2008) The HPA axis in major depression: classical theories and new developments. Trends Neurosci 31:464–468

    Article  CAS  PubMed  Google Scholar 

  91. Kemp AH, Quintana DS, Gray MA, Felmingham KL, Brown K, Gatt JM (2010) Impact of depression and antidepressant treatment on heart rate variability: a review and meta-analysis. Biol Psychiatry 67:1067–1074

    Article  CAS  PubMed  Google Scholar 

  92. Pearson TA, Bazzarre TL, Daniels SR, Fair JM, Fortmann SP, Franklin BA, Prevention S (2003) American Heart Association guide for improving cardiovascular health at the community level: a statement for public health practitioners, healthcare providers, and health policy makers from the American Heart Association Expert Panel on Population and Prevention Science. Circulation 107:645–651

    Article  PubMed  Google Scholar 

  93. Hingorani AD, Cross J, Kharbanda RK, Mullen MJ, Bhagat K, Taylor M, Vallance P (2000) Acute systemic inflammation impairs endothelium-dependent dilatation in humans. Circulation 102:994–999

    Article  CAS  PubMed  Google Scholar 

  94. Dekker JM, Crow RS, Folsom AR, Hannan PJ, Liao D, Swenne CA, Schouten EG (2000) Low heart rate variability in a 2-minute rhythm strip predicts risk of coronary heart disease and mortality from several causes: the ARIC Study. Atherosclerosis Risk In Communities. Circulation 102:1239–1244

    Article  CAS  PubMed  Google Scholar 

  95. Smith AP, Tyrrell DA, Al-Nakib W, Coyle KB, Donovan CB, Higgins PG, Willman JS (1988) The effects of experimentally induced respiratory virus infections on performance. Psychol Med 18:65–71

    Article  CAS  PubMed  Google Scholar 

  96. Smith A, Tyrrell D, Coyle K, Higgins P (1988) Effects of interferon alpha on performance in man: a preliminary report. Psychopharmacology (Berl) 96:414–416

    Article  CAS  Google Scholar 

  97. Pavol MA, Meyers CA, Rexer JL, Valentine AD, Mattis PJ, Talpaz M (1995) Pattern of neurobehavioral deficits associated with interferon alfa therapy for leukemia. Neurology 45:947–950

    Article  CAS  PubMed  Google Scholar 

  98. Adams F, Quesada JR, Gutterman JU (1984) Neuropsychiatric manifestations of human leukocyte interferon therapy in patients with cancer. JAMA 252:938–941

    Article  CAS  PubMed  Google Scholar 

  99. Paelecke-Habermann Y, Pohl J, Leplow B (2005) Attention and executive functions in remitted major depression patients. J Affect Disord 89:125–135

    Article  PubMed  Google Scholar 

  100. Snyder HR (2013) Major depressive disorder is associated with broad impairments on neuropsychological measures of executive function: a meta-analysis and review. Psychol Bull 139:81–132

    Article  PubMed  Google Scholar 

  101. Holmes AJ, Pizzagalli DA (2007) Task feedback effects on conflict monitoring and executive control: relationship to subclinical measures of depression. Emotion 7:68–76

    Article  PubMed  PubMed Central  Google Scholar 

  102. Wagner G, Sinsel E, Sobanski T, Kohler S, Marinou V, Mentzel HJ, Schlosser RG (2006) Cortical inefficiency in patients with unipolar depression: an event-related FMRI study with the Stroop task. Biol Psychiatry 59:958–965

    Article  PubMed  Google Scholar 

  103. Capuron L, Pagnoni G, Demetrashvili M, Woolwine BJ, Nemeroff CB, Berns GS, Miller AH (2005) Anterior cingulate activation and error processing during interferon-alpha treatment. Biol Psychiatry 58:190–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Duncan J, Owen AM (2000) Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci 23:475–483

    Article  CAS  PubMed  Google Scholar 

  105. Weissman DH, Warner LM, Woldorff MG (2004) The neural mechanisms for minimizing cross-modal distraction. J Neurosci 24:10941–10949

    Article  CAS  PubMed  Google Scholar 

  106. MacDonald AW 3rd, Cohen JD, Stenger VA, Carter CS (2000) Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288:1835–1838

    Article  CAS  PubMed  Google Scholar 

  107. Critchley HD, Tang J, Glaser D, Butterworth B, Dolan RJ (2005) Anterior cingulate activity during error and autonomic response. Neuroimage 27:885–895

    Article  PubMed  Google Scholar 

  108. Meier TB, Drevets WC, Wurfel BE, Ford BN, Morris HM, Victor TA, Savitz J (2016) Relationship between neurotoxic kynurenine metabolites and reductions in right medial prefrontal cortical thickness in major depressive disorder. Brain Behav Immun 53:39–48

    Article  CAS  PubMed  Google Scholar 

  109. Katsuki H, Nakai S, Hirai Y, Akaji K, Kiso Y, Satoh M (1990) Interleukin-1 beta inhibits long-term potentiation in the CA3 region of mouse hippocampal slices. Eur J Pharmacol 181:323–326

    Article  CAS  PubMed  Google Scholar 

  110. Schneider H, Pitossi F, Balschun D, Wagner A, del Rey A, Besedovsky HO (1998) A neuromodulatory role of interleukin-1beta in the hippocampus. Proc Natl Acad Sci U S A 95:7778–7783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Stevens B (2012) Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:691–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O (2003) Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci U S A 100:13632–13637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tynan RJ, Naicker S, Hinwood M, Nalivaiko E, Buller KM, Pow DV, Walker FR (2010) Chronic stress alters the density and morphology of microglia in a subset of stress-responsive brain regions. Brain Behav Immun 24:1058–1068

    Article  CAS  PubMed  Google Scholar 

  114. Iwashyna TJ, Ely EW, Smith DM, Langa KM (2010) Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA 304:1787–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Weaver JD, Huang MH, Albert M, Harris T, Rowe JW, Seeman TE (2002) Interleukin-6 and risk of cognitive decline: MacArthur studies of successful aging. Neurology 59:371–378

    Article  CAS  PubMed  Google Scholar 

  116. Ericsson A, Liu C, Hart RP, Sawchenko PE (1995) Type 1 interleukin-1 receptor in the rat brain: distribution, regulation, and relationship to sites of IL-1-induced cellular activation. J Comp Neurol 361:681–698

    Article  CAS  PubMed  Google Scholar 

  117. Hawrylycz MJ, Lein ES, Guillozet-Bongaarts AL, Shen EH, Ng L, Miller JA, Jones AR (2012) An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489:391–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Suzuki WA, Amaral DG (1994) Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J Comp Neurol 350:497–533

    Article  CAS  PubMed  Google Scholar 

  119. Barrientos RM, Higgins EA, Sprunger DB, Watkins LR, Rudy JW, Maier SF (2002) Memory for context is impaired by a post context exposure injection of interleukin-1 beta into dorsal hippocampus. Behav Brain Res 134:291–298

    Article  CAS  PubMed  Google Scholar 

  120. Oitzl MS, van Oers H, Schobitz B, de Kloet ER (1993) Interleukin-1 beta, but not interleukin-6, impairs spatial navigation learning. Brain Res 613:160–163

    Article  CAS  PubMed  Google Scholar 

  121. Bellinger FP, Madamba S, Siggins GR (1993) Interleukin 1 beta inhibits synaptic strength and long-term potentiation in the rat CA1 hippocampus. Brain Res 628:227–234

    Article  CAS  PubMed  Google Scholar 

  122. Cunningham AJ, Murray CA, O’Neill LA, Lynch MA, O’Connor JJ (1996) Interleukin-1 beta (IL-1 beta) and tumour necrosis factor (TNF) inhibit long-term potentiation in the rat dentate gyrus in vitro. Neurosci Lett 203:17–20

    Article  CAS  PubMed  Google Scholar 

  123. Ban E, Haour F, Lenstra R (1992) Brain interleukin 1 gene expression induced by peripheral lipopolysaccharide administration. Cytokine 4:48–54

    Article  CAS  PubMed  Google Scholar 

  124. Gibertini M (1996) IL1 beta impairs relational but not procedural rodent learning in a water maze task. Adv Exp Med Biol 402:207–217

    Article  CAS  PubMed  Google Scholar 

  125. Pugh CR, Kumagawa K, Fleshner M, Watkins LR, Maier SF, Rudy JW (1998) Selective effects of peripheral lipopolysaccharide administration on contextual and auditory-cue fear conditioning. Brain Behav Immun 12:212–229

    Article  CAS  PubMed  Google Scholar 

  126. Capuron L, Lamarque D, Dantzer R, Goodall G (1999) Attentional and mnemonic deficits associated with infectious disease in humans. Psychol Med 29:291–297

    Article  CAS  PubMed  Google Scholar 

  127. Doeller CF, King JA, Burgess N (2008) Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. Proc Natl Acad Sci U S A 105:5915–5920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bohbot VD, Corkin S (2007) Posterior parahippocampal place learning in H.M. Hippocampus 17:863–872

    Article  PubMed  Google Scholar 

  129. Ploner CJ, Gaymard BM, Rivaud-Pechoux S, Baulac M, Clemenceau S, Samson S, Pierrot-Deseilligny C (2000) Lesions affecting the parahippocampal cortex yield spatial memory deficits in humans. Cereb Cortex 10:1211–1216

    Article  CAS  PubMed  Google Scholar 

  130. Sommer T, Rose M, Glascher J, Wolbers T, Buchel C (2005) Dissociable contributions within the medial temporal lobe to encoding of object-location associations. Learn Mem 12:343–351

    Article  PubMed  PubMed Central  Google Scholar 

  131. Malkova L, Mishkin M (2003) One-trial memory for object-place associations after separate lesions of hippocampus and posterior parahippocampal region in the monkey. J Neurosci 23:1956–1965

    CAS  PubMed  Google Scholar 

  132. Airaksinen E, Larsson M, Lundberg I, Forsell Y (2004) Cognitive functions in depressive disorders: evidence from a population-based study. Psychol Med 34:83–91

    Article  CAS  PubMed  Google Scholar 

  133. Sweeney JA, Kmiec JA, Kupfer DJ (2000) Neuropsychologic impairments in bipolar and unipolar mood disorders on the CANTAB neurocognitive battery. Biol Psychiatry 48:674–684

    Article  CAS  PubMed  Google Scholar 

  134. Campbell S, Marriott M, Nahmias C, MacQueen GM (2004) Lower hippocampal volume in patients suffering from depression: a meta-analysis. Am J Psychiatry 161:598–607

    Article  PubMed  Google Scholar 

  135. Videbech P, Ravnkilde B (2004) Hippocampal volume and depression: a meta-analysis of MRI studies. Am J Psychiatry 161:1957–1966

    Article  PubMed  Google Scholar 

  136. Gorwood P, Corruble E, Falissard B, Goodwin GM (2008) Toxic effects of depression on brain function: impairment of delayed recall and the cumulative length of depressive disorder in a large sample of depressed outpatients. Am J Psychiatry 165:731–739

    Article  PubMed  Google Scholar 

  137. Gould NF, Holmes MK, Fantie BD, Luckenbaugh DA, Pine DS, Gould TD, Zarate CA Jr (2007) Performance on a virtual reality spatial memory navigation task in depressed patients. Am J Psychiatry 164:516–519

    Article  PubMed  Google Scholar 

  138. Montag C, Weber B, Fliessbach K, Elger C, Reuter M (2009) The BDNF Val66Met polymorphism impacts parahippocampal and amygdala volume in healthy humans: incremental support for a genetic risk factor for depression. Psychol Med 39:1831–1839

    Article  CAS  PubMed  Google Scholar 

  139. Hart BL (1988) Biological basis of the behavior of sick animals. Neurosci Biobehav Rev 12:123–137

    Article  CAS  PubMed  Google Scholar 

  140. Heinrich LM, Gullone E (2006) The clinical significance of loneliness: a literature review. Clin Psychol Rev 26(6):695–718

    Article  PubMed  Google Scholar 

  141. Yirmiya R (1996) Endotoxin produces a depressive-like episode in rats. Brain Res 7:163–174

    Article  Google Scholar 

  142. Moieni M, Irwin MR, Jevtic I, Breen EC, Eisenberger NI (2015) Inflammation impairs social cognitive processing: a randomized controlled trial of endotoxin. Brain Behav Immun 48:132–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Baron-Cohen S, Wheelwright S, Hill J, Raste Y, Plumb I (2001) The “Reading the Mind in the Eyes” Test revised version: a study with normal adults, and adults with Asperger syndrome or high-functioning autism. J Child Psychol Psychiatry 42:241–251

    Article  CAS  PubMed  Google Scholar 

  144. Cyranowski JM, Frank E, Young E, Shear MK (2000) Adolescent onset of the gender difference in lifetime rates of major depression: a theoretical model. Arch Gen Psychiatry 57:21–27

    Article  CAS  PubMed  Google Scholar 

  145. Moieni M, Irwin MR, Jevtic I, Olmstead R, Breen EC, Eisenberger NI (2015) Sex differences in depressive and socioemotional responses to an inflammatory challenge: implications for sex differences in depression. Neuropsychopharmacology 40:1709–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Eisenberger NI, Inagaki TK, Rameson LT, Mashal NM, Irwin MR (2009) An fMRI study of cytokine-induced depressed mood and social pain: the role of sex differences. Neuroimage 47:881–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Frith CD, Frith U (2012) Mechanisms of social cognition. Annu Rev Psychol 63:287–313

    Article  PubMed  Google Scholar 

  148. Johansen-Berg H (2013) Human connectomics – what will the future demand? Neuroimage 80:541–544

    Article  PubMed  PubMed Central  Google Scholar 

  149. Seminowicz DA, Mayberg HS, McIntosh AR, Goldapple K, Kennedy S, Segal Z, Rafi-Tari S (2004) Limbic-frontal circuitry in major depression: a path modeling metaanalysis. Neuroimage 22:409–418

    Article  CAS  PubMed  Google Scholar 

  150. Mayberg HS, Brannan SK, Tekell JL, Silva JA, Mahurin RK, McGinnis S, Jerabek PA (2000) Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response. Biol Psychiatry 48:830–843

    Article  CAS  PubMed  Google Scholar 

  151. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Kennedy SH (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45:651–660

    Article  CAS  PubMed  Google Scholar 

  152. Labrenz F, Wrede K, Forsting M, Engler H, Schedlowski M, Elsenbruch S, Benson S (2016) Alterations in functional connectivity of resting state networks during experimental endotoxemia – an exploratory study in healthy men. Brain Behav Immun 54:17–26

    Article  PubMed  Google Scholar 

  153. Benson S, Rebernik L, Wegner A, Kleine-Borgmann J, Engler H, Schlamann M, Elsenbruch S (2015) Neural circuitry mediating inflammation-induced central pain amplification in human experimental endotoxemia. Brain Behav Immun 48:222–231

    Article  CAS  PubMed  Google Scholar 

  154. Dipasquale O, Cooper EA, Tibble J, Voon V, Baglio F, Baselli G, Harrison NA (2015) Interferon-alpha acutely impairs whole-brain functional connectivity network architecture – a preliminary study. Brain Behav Immun. doi:10.1016/j.bbi.2015.12.018

    PubMed  Google Scholar 

  155. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26(1):63–72

    Article  CAS  PubMed  Google Scholar 

  156. Felger JC, Hernandez CR, Miller AH (2015) Levodopa reverses cytokine-induced reductions in striatal dopamine release. Int J Neuropsychopharmacol 18

    Google Scholar 

  157. Felger JC, Mun J, Kimmel HL, Nye JA, Drake DF, Hernandez CR, Miller AH (2013) Chronic interferon-alpha decreases dopamine 2 receptor binding and striatal dopamine release in association with anhedonia-like behavior in nonhuman primates. Neuropsychopharmacology 38:2179–2187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Lui S, Wu Q, Qiu L, Yang X, Kuang W, Chan RC, Gong Q (2011) Resting-state functional connectivity in treatment-resistant depression. Am J Psychiatry 168:642–648

    Article  PubMed  Google Scholar 

  159. Zhang J, Wang J, Wu Q, Kuang W, Huang X, He Y, Gong Q (2011) Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder. Biol Psychiatry 70:334–342

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil A. Harrison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Harrison, N.A. (2016). Brain Structures Implicated in Inflammation-Associated Depression. In: Dantzer, R., Capuron, L. (eds) Inflammation-Associated Depression: Evidence, Mechanisms and Implications. Current Topics in Behavioral Neurosciences, vol 31. Springer, Cham. https://doi.org/10.1007/7854_2016_30

Download citation

Publish with us

Policies and ethics