Skip to main content

Regulation of the Motivation to Eat

  • Chapter
  • First Online:
Behavioral Neuroscience of Motivation

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 27))

Abstract

Although food intake is necessary to provide energy for all bodily activities, considering food intake as a motivated behavior is complex. Rather than being a simple unconditioned reflex to energy need, eating is mediated by diverse factors. These include homeostatic signals such as those related to body fat stores, to food available and being eaten, and to circulating energy-rich compounds like glucose and fatty acids. Eating is also greatly influenced by non-homeostatic signals that convey information related to learning and experience, hedonics, stress, the social situation, opportunity, and many other factors. Recent developments identifying the intricate nature of the relationships between homeostatic and non-homeostatic influences significantly add to the complexity underlying the neural basis of the motivation to eat. The future of research in the field of food intake would seem to lie in the identification of the neural circuitry and interactions between homeostatic and non-homeostatic influences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam TC, Epel ES (2007) Stress, eating and the reward system. Physiol Behav 91(4):449–458

    Article  CAS  PubMed  Google Scholar 

  • Armelagos GJ (2014) Brain evolution, the determinates of food choice, and the omnivore’s dilemma. Crit Rev Food Sci Nutr 54(10):1330–1341

    Article  PubMed  Google Scholar 

  • Aston-Jones G, Smith RJ, Moorman DE, Richardson KA (2009) Role of lateral hypothalamic orexin neurons in reward processing and addiction. Neuropharmacology 56(Suppl 1):112–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baik JH (2013) Dopamine signaling in reward-related behaviors. Front Neural Circ 7:152

    Google Scholar 

  • Begg DP, Woods SC (2012) The central insulin system and energy balance. Handb Exp Pharmacol 209:111–129

    Google Scholar 

  • Begg DP, Woods SC (2013) The endocrinology of food intake. Nat Rev Endocrinol 9(10):584–597

    Article  CAS  PubMed  Google Scholar 

  • Belgardt BF, Bruning JC (2010) CNS leptin and insulin action in the control of energy homeostasis. Ann N Y Acad Sci 1212:97–113

    Article  CAS  PubMed  Google Scholar 

  • Benoit S, Schwartz M, Baskin D, Woods SC, Seeley RJ (2000) CNS melanocortin system involvement in the regulation of food intake. Horm Behav 37(4):299–305

    Article  CAS  PubMed  Google Scholar 

  • Benoit SC, Air EL, Coolen LM, Strauss R, Jackman A, Clegg DJ, Woods SC (2002) The catabolic action of insulin in the brain is mediated by melanocortins. J Neurosci 22(20):9048–9052

    CAS  PubMed  Google Scholar 

  • Bernardis LL, Bellinger LL (1996) The lateral hypothalamic area revisited: ingestive behavior. Neurosci Biobehav Rev 20(2):189–287

    Article  CAS  PubMed  Google Scholar 

  • Berridge K (1996) Food reward: brain substrates of wanting and liking. Neurosci Biobehav Rev 20:1–25

    Article  CAS  PubMed  Google Scholar 

  • Berridge KC (2009) ‘Liking’ and ‘wanting’ food rewards: brain substrates and roles in eating disorders. Physiol Behav 97(5):537–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev 28(3):309–369

    Article  CAS  PubMed  Google Scholar 

  • Berthoud HR (2004) Mind versus metabolism in the control of food intake and energy balance. Physiol Behav 81(5):781–793

    Article  CAS  PubMed  Google Scholar 

  • Birch LL, Fisher JO (1998) Development of eating behaviors among children and adolescents. Pediatrics 101:539–549

    CAS  PubMed  Google Scholar 

  • Bjorklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: an update. Trends Neurosci 30(5):194–202

    Article  PubMed  CAS  Google Scholar 

  • Bolles RC (1967) Theory of motivation. Harper & Row, New York

    Google Scholar 

  • Borgland SL, Chang SJ, Bowers MS, Thompson JL, Vittoz N, Floresco SB, Bonci A (2009) Orexin A/hypocretin-1 selectively promotes motivation for positive reinforcers. J Neurosci 29(36):11215–11225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouton ME (2011) Learning and the persistence of appetite: extinction and the motivation to eat and overeat. Physiol Behav 103(1):51–58

    Article  CAS  PubMed  Google Scholar 

  • Bruning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, Kahn CR (2000) Role of brain insulin receptor in control of body weight and reproduction. Science 289(5487):2122–2125

    Article  CAS  PubMed  Google Scholar 

  • Cason AM, Smith RJ, Tahsili-Fahadan P, Moorman DE, Sartor GC, Aston-Jones G (2010) Role of orexin/hypocretin in reward-seeking and addiction: implications for obesity. Physiol Behav 100(5):419–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi DL, Davis JF, Magrisso IJ, Fitzgerald ME, Lipton JW, Benoit SC (2012) Orexin signaling in the paraventricular thalamic nucleus modulates mesolimbic dopamine and hedonic feeding in the rat. Neuroscience 210:243–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christiansen AM, Dekloet AD, Ulrich-Lai YM, Herman JP (2011) “Snacking” causes long term attenuation of HPA axis stress responses and enhancement of brain FosB/deltaFosB expression in rats. Physiol Behav 103(1):111–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collier G, Johnson DF (2004) The paradox of satiation. Physiol Behav 82(1):149–153

    Article  CAS  PubMed  Google Scholar 

  • Collier GH, Johnson DF, Hill WL, Kaufman LW (1986) The economics of the law of effect. J Exp Anal Behav 48:113–136

    Article  Google Scholar 

  • Collier GH, Johnson DF, Morgan C (1992) The magnitude-of-reinforcement function in closed and open economies. J Exp Anal Behav 57:81–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corp ES, Woods SC, Porte D Jr, Dorsa DM, Figlewicz DP, Baskin DG (1986) Localization of 125I-insulin binding sites in the rat hypothalamus by quantitative autoradiography. Neurosci Lett 70:17–22

    Article  CAS  PubMed  Google Scholar 

  • Dallman MF (2010) Stress-induced obesity and the emotional nervous system. Trends Endocrinol Metab 21(3):159–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis JF, Choi DL, Benoit SC (2010) Insulin, leptin and reward. Trends Endocrinol Metab 21(2):68–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis JF, Choi DL, Schurdak JD, Fitzgerald MF, Clegg DJ, Lipton JW, Benoit SC (2011) Leptin regulates energy balance and motivation through action at distinct neural circuits. Biol Psychiatry 69(7):668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DiNicolantonio JJ, O’Keefe JH, Lucan SC (2015) Added fructose: a principal driver of type 2 diabetes mellitus and its consequences. Mayo Clin Proc 90(3):372–381

    Article  CAS  PubMed  Google Scholar 

  • Drazen DL, Vahl TP, D’Alessio DA, Seeley RJ, Woods SC (2006) Effects of a fixed meal pattern on ghrelin secretion: evidence for a learned response independent of nutrient status. Endocrinology 147(1):23–30

    Article  CAS  PubMed  Google Scholar 

  • Duncan EA, Davita G, Woods SC (2005) Changes in the satiating effect of cholecystokinin over repeated trials. Physiol Behav 85:387–393

    Article  CAS  PubMed  Google Scholar 

  • Elmquist JK (2001) Hypothalamic pathways underlying the endocrine, autonomic, and behavioral effects of leptin. Physiol Behav 74(4–5):703–708

    Article  CAS  PubMed  Google Scholar 

  • Elmquist JK, Coppari R, Balthasar N, Ichinose M, Lowell BB (2005) Identifying hypothalamic pathways controlling food intake, body weight, and glucose homeostasis. J Comp Neurol 493(1):63–71

    Article  CAS  PubMed  Google Scholar 

  • Emond M, Ladenheim EE, Schwartz GJ, Moran TH (2001) Leptin amplifies the feeding inhibition and neural activation arising from a gastric nutrient preload. Physiol Behav 72(1–2):123–128

    Article  CAS  PubMed  Google Scholar 

  • Emond M, Schwartz GJ, Ladenheim EE, Moran TH (1999) Central leptin modulates behavioral and neural responsivity to CCK. Am J Physiol 276:R1545–R1549

    CAS  PubMed  Google Scholar 

  • Farooqi S, O’Rahilly S (2006) Genetics of obesity in humans. Endocr Rev 27(7):710–718

    Article  CAS  PubMed  Google Scholar 

  • Ferguson NB, Keesey RE (1975) Effect of a quinine-adulterated diet upon body weight maintenance in male rats with ventromedial hypothalamic lesions. J Comp Physiol Psychol 89(5):478–488

    Article  CAS  PubMed  Google Scholar 

  • Figlewicz DP, Benoit SC (2009) Insulin, leptin, and food reward: update 2008. Am J Physiol Regul Integ Comp Physiol 296(1):R9–R19

    Article  CAS  Google Scholar 

  • Figlewicz DP, Evans SB, Murphy J, Hoen M, Baskin DG (2003) Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. Brain Res 964(1):107–115

    Article  CAS  PubMed  Google Scholar 

  • Figlewicz DP, Sipols AJ (2010) Energy regulatory signals and food reward. Pharmacol Biochem Behav 97(1):15–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodison T, Siegel S (1995) Learning and tolerance to the intake suppressive effect of cholecystokinin in rats. Behav Neurosci 109:62–70

    Article  CAS  PubMed  Google Scholar 

  • Grossman SP (1986) The role of glucose, insulin and glucagon in the regulation of food intake and body weight. Neurosci Biobehav Rev 10:295–315

    Article  CAS  PubMed  Google Scholar 

  • Guyenet SJ, Schwartz MW (2012) Clinical review: Regulation of food intake, energy balance, and body fat mass: implications for the pathogenesis and treatment of obesity. J Clin Endocrinol Metab 97(3):745–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Friedman JM (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269(5223):543–546

    Article  CAS  PubMed  Google Scholar 

  • Harvey J, Solovyova N, Irving A (2006) Leptin and its role in hippocampal synaptic plasticity. Prog Lipid Res 45(5):369–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hegarty SV, Sullivan AM, O’Keeffe GW (2013) Midbrain dopaminergic neurons: a review of the molecular circuitry that regulates their development. Dev Biol 379(2):123–138

    Article  CAS  PubMed  Google Scholar 

  • Hess WR (1956) Hypothalamus und thalamus: experimental-dokumente. Thieme, Stuttgart, Germany

    Google Scholar 

  • Hetherington AW, Ranson SW (1940) Hypothalamic lesions and adiposity in the rat. Anat Rec 78(2):149–172

    Article  Google Scholar 

  • Hetherington AW, Ranson SW (1942) The spontaneous activity and food intake of rats with hypothalmic lesions. Am J Physiol 136:609–617

    CAS  Google Scholar 

  • Hull CL (1931) Goal attraction and directing ideas conceived as habit phenomena. Psychol Rev 38(6):487–506

    Article  Google Scholar 

  • Keesey RE, Boyle PC (1973) Effects of quinine adulteration upon body weight of LH-lesioned and intact male rats. J Comp Physiol Psychol 84(1):38–46

    Article  CAS  PubMed  Google Scholar 

  • Kelley AE (1999) Functional specificity of ventral striatal compartments in appetitive behaviors. Ann N Y Acad Sci 877:71–90

    Article  CAS  PubMed  Google Scholar 

  • Kelley AE (2004) Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci Biobehav Rev 27(8):765–776

    Article  PubMed  Google Scholar 

  • Kirouac GJ, Parsons MP, Li S (2005) Orexin (hypocretin) innervation of the paraventricular nucleus of the thalamus. Brain Res 1059(2):179–188

    Article  CAS  PubMed  Google Scholar 

  • Konner AC, Hess S, Tovar S, Mesaros A, Sanchez-Lasheras C, Evers N, Bruning JC (2011) Role for insulin signaling in catecholaminergic neurons in control of energy homeostasis. Cell Metab 13(6):720–728

    Article  PubMed  CAS  Google Scholar 

  • Langhans W (1996) Metabolic and glucostatic control of feeding. Proc Nutr Soc 55:497–515

    Article  CAS  PubMed  Google Scholar 

  • Langhans W, Scharrer E (1987) Role of fatty acid oxidation in control of meal pattern. Behav Neural Biol 47:7–16

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Li S, Wei C, Wang H, Sui N, Kirouac GJ (2010a) Changes in emotional behavior produced by orexin microinjections in the paraventricular nucleus of the thalamus. Pharmacol Biochem Behav 95(1):121–128

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Li S, Wei C, Wang H, Sui N, Kirouac GJ (2010b) Orexins in the paraventricular nucleus of the thalamus mediate anxiety-like responses in rats. Psychopharmacology 212(2):251–265

    Article  CAS  PubMed  Google Scholar 

  • Lotter EC, Woods SC (1977) Injections of insulin and changes of body weight. Physiol Behav 18(2):293–297

    Article  CAS  PubMed  Google Scholar 

  • MacKay EM, Calloway JW, Barnes RH (1940) Hyperalimentation in normal animals produced by protamine insulin. J Nutr 20:59–66

    CAS  Google Scholar 

  • Matson CA, Reid DF, Cannon TA, Ritter RC (2000) Cholecystokinin and leptin act synergistically to reduce body weight. Am J Physiol Regul Integr Comp Physiol 278(4):R882–890

    CAS  PubMed  Google Scholar 

  • Matson CA, Wiater MF, Kuijper JL, Weigle DS (1997) Synergy between leptin and cholecystokinin (CCK) to control daily caloric intake. Peptides 18:1275–1278

    Article  CAS  PubMed  Google Scholar 

  • Meredith GE, Baldo BA, Andrezjewski ME, Kelley AE (2008) The structural basis for mapping behavior onto the ventral striatum and its subdivisions. Brain Struct Funct 213(1–2):17–27

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller NE, Bailey CJ, Stevenson JA (1950) Decreased “hunger” but increased food intake resulting from hypothalamic lesions. Science 112(2905):256–259

    Article  CAS  PubMed  Google Scholar 

  • Moran TH (2004) Gut peptides in the control of food intake: 30 years of ideas. Physiol Behav 82(1):175–180

    Article  CAS  PubMed  Google Scholar 

  • Moran TH, Kinzig KP (2004) Gastrointestinal satiety signals II, Cholecystokinin. Am J Physiol 286:G183–G188

    CAS  Google Scholar 

  • Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW (2006) Central nervous system control of food intake and body weight. Nature 443(7109):289–295

    Article  CAS  PubMed  Google Scholar 

  • Morton GJ, Meek TH, Schwartz MW (2014) Neurobiology of food intake in health and disease. Nat Rev Neurosci 15(6):367–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morton GJ, Schwartz MW (2001) The NPY/AgRP neuron and energy homeostasis. Int J Obes Relat Metab Disord 25:S56–62

    Article  CAS  PubMed  Google Scholar 

  • Myers MG Jr, Olson DP (2012) Central nervous system control of metabolism. Nature 491(7424):357–363

    Article  CAS  PubMed  Google Scholar 

  • Naim M, Brand JG, Kare MR, Kaufmann NA, Kratz CM (1980) Effects of unpalatable diets and food restriction on feed efficiency in growing rats. Physiol Behav 25(5):609–614

    Article  CAS  PubMed  Google Scholar 

  • Nicolaidis S (1981) Lateral hypothalamic control of metabolic factors related to feeding. Diabetologia 20(Suppl):426–434

    Article  CAS  PubMed  Google Scholar 

  • Niswender KD, Schwartz MW (2003) Insulin and leptin revisited: adiposity signals with overlapping physiological and intracellular signaling capabilities. Front Neuroendocrinol 24:1–10

    Article  CAS  PubMed  Google Scholar 

  • Obici S, Feng Z, Karkanias G, Baskin DG, Rossetti L (2002) Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nat Neurosci 5(6):566–572

    Article  CAS  PubMed  Google Scholar 

  • Pardini AW, Nguyen HT, Figlewicz DP, Baskin DG, Williams DL, Kim F, Schwartz MW (2006) Distribution of insulin receptor substrate-2 in brain areas involved in energy homeostasis. Brain Res 1112(1):169–178

    Article  CAS  PubMed  Google Scholar 

  • Petrovich GD (2013) Forebrain networks and the control of feeding by environmental learned cues. Physiol Behav 121:10–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsay DS, Woods SC (2014) Clarifying the roles of homeostasis and allostasis in physiological regulation. Psychol Rev 121(2):225–247

    Article  PubMed  PubMed Central  Google Scholar 

  • Richard JM, Castro DC, Difeliceantonio AG, Robinson MJ, Berridge KC (2013) Mapping brain circuits of reward and motivation: in the footsteps of Ann Kelley. Neurosci Biobehav Rev 37(9 Pt A):1919–1931

    Google Scholar 

  • Riedy CA, Chavez M, Figlewicz DP, Woods SC (1995) Central insulin enhances sensitivity to cholecystokinin. Physiol Behav 58:755–760

    Article  CAS  PubMed  Google Scholar 

  • Rinaman L (2010) Ascending projections from the caudal visceral nucleus of the solitary tract to brain regions involved in food intake and energy expenditure. Brain Res 1350:18–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romanovsky AA (2007) Thermoregulation: some concepts have changed. Functional architecture of the thermoregulatory system. Am J Physiol Regul Integr Comp Physiol 292(1):R37–46

    Article  CAS  PubMed  Google Scholar 

  • Rozin P (1990) Acquisition of stable food preferences. Nutr Rev 48(2):106–113 (discussion 114–131)

    Google Scholar 

  • Sakurai T (2014) The role of orexin in motivated behaviours. Nat Rev Neurosci 15(11):719–731

    Article  CAS  PubMed  Google Scholar 

  • Schneider JE, Wise JD, Benton NA, Brozek JM, Keen-Rhinehart E (2013) When do we eat? Ingestive behavior, survival, and reproductive success. Horm Behav 64(4):702–728

    Article  CAS  PubMed  Google Scholar 

  • Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404(6778):661–671

    CAS  PubMed  Google Scholar 

  • Schwartz MW, Woods SC, Seeley RJ, Barsh GS, Baskin DG, Leibel RL (2003) Is the energy homeostasis system inherently biased toward weight gain? Diabetes 52:232–238

    Article  CAS  PubMed  Google Scholar 

  • Sclafani A (1997) Learned controls of ingestive behavior. APPETITE 29:153–158

    CAS  PubMed  Google Scholar 

  • Sclafani A, Lucas F, Ackroff K (1996) The importance of taste and palatability in carbohydrate-induced overeating in rats. Am J Physiol 270:R1197–R1202

    CAS  PubMed  Google Scholar 

  • Seeley RJ, Woods SC (2003) Monitoring of stored and available fuel by the CNS: implications for obesity. Nat Rev Neurosci 4(11):901–909

    Article  CAS  PubMed  Google Scholar 

  • Seeley RJ, Yagaloff KA, Fisher SL, Burn P, Thiele TE, van Dijk G, Schwartz MW (1997) Melanocortin receptors in leptin effects. NATURE 390(6658):349

    CAS  PubMed  Google Scholar 

  • Skinner BF (1930) On the conditions of elicitation of certain eating reflexes. Proc Natl Acad Sci U S A 16(6):433–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith GP, Epstein AN (1969) Increased feeding in response to decreased glucose utilization in rat and monkey. Am J Physiol 217:1083–1087

    CAS  PubMed  Google Scholar 

  • Smith GP, Gibbs J (1984) Gut peptides and postprandial satiety. Fed Proc 43(14):2889–2892

    CAS  PubMed  Google Scholar 

  • Smith GP, Gibbs J (1985) The satiety effect of cholecystokinin. Recent progress and current problems. Ann N Y Acad Sci 448:417–423

    Article  CAS  PubMed  Google Scholar 

  • Sohn JW, Elmquist JK, Williams KW (2013) Neuronal circuits that regulate feeding behavior and metabolism. Trends Neurosci 36(9):504–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stellar E (1954) The physiology of motivation. Psychol Rev 61:5–22

    Article  CAS  PubMed  Google Scholar 

  • Strubbe JH, Woods SC (2004) The timing of meals. Psychol Rev 111:128–141

    Article  PubMed  Google Scholar 

  • Swithers SE (2013) Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements. Trends Endocrinol Metab 24(9):431–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao YX (2010) The melanocortin-4 receptor: physiology, pharmacology, and pathophysiology. Endocr Rev 31(4):506–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teff K (2000) Nutritional implications of the cephalic-phase reflexes: endocrine responses. APPETITE 34(2):206–213

    Article  CAS  PubMed  Google Scholar 

  • Teff KL (2011) How neural mediation of anticipatory and compensatory insulin release helps us tolerate food. Physiol Behav 103(1):44–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teitelbaum P, Epstein AN (1962) The lateral hypothalamic syndrome: recovery of feeding and drinking after lateral hypothalamic lesions. Psychol Rev 69:74–90

    Article  CAS  PubMed  Google Scholar 

  • Ulrich-Lai YM, Christiansen AM, Ostrander MM, Jones AA, Jones KR, Choi DC, Herman JP (2010) Pleasurable behaviors reduce stress via brain reward pathways. Proc Natl Acad Sci 107(47):20529–20534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulrich-Lai YM, Ryan KK (2014) Neuroendocrine circuits governing energy balance and stress regulation: functional overlap and therapeutic implications. Cell Metab 19(6):910–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weingarten HP (1983) Conditioned cues elicit feeding in sated rats: a role for learning in meal initiation. Science 220:431–433

    Article  CAS  PubMed  Google Scholar 

  • Woods SC (1991) The eating paradox: how we tolerate food. Psychol Rev 98(4):488–505

    Article  CAS  PubMed  Google Scholar 

  • Woods SC (2002) The house economist and the eating paradox. APPETITE 38:161–165

    Article  PubMed  Google Scholar 

  • Woods SC (2009) The control of food intake: behavioral versus molecular perspectives. Cell Metab 9(6):489–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woods SC, D’Alessio DA (2008) Central control of body weight and appetite. J Clin Endocrinol Metab 93(11 Suppl 1):S37–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woods SC, Langhans W (2012) Inconsistencies in the assessment of food intake. Am J Physiol Endocrinol Metab 303(12):E1408–E1418

    Google Scholar 

  • Woods SC, Lotter EC, McKay LD, Porte D Jr (1979) Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature 282:503–505

    Article  CAS  PubMed  Google Scholar 

  • Woods SC, Ramsay DS (2011) Food intake, metabolism and homeostasis. Physiol Behav 104(1):4–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woods SC, Seeley RJ, Porte D Jr, Schwartz MW (1998) Signals that regulate food intake and energy homeostasis. Science 280(5368):1378–1383

    Article  CAS  PubMed  Google Scholar 

  • Zahniser NR, Goens MB, Hanaway PJ, Vinych JV (1984) Characterization and regulation of insulin receptors in rat brain. J Neurochem 42(5):1354–1362

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Berthoud HR (2007) Eating for pleasure or calories. Curr Opin Pharmacol 7(6):607–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. Woods .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Woods, S.C., Begg, D.P. (2015). Regulation of the Motivation to Eat. In: Simpson, E., Balsam, P. (eds) Behavioral Neuroscience of Motivation. Current Topics in Behavioral Neurosciences, vol 27. Springer, Cham. https://doi.org/10.1007/7854_2015_381

Download citation

Publish with us

Policies and ethics