Skip to main content

Online Resource and Tools for the Development of Drugs Against Novel Coronavirus

  • Protocol
  • First Online:

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

The novel Coronavirus Disease, COVID-19, was declared a pandemic by the World Health Organization on 11 March 2020. COVID-19, a disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), continues to spread worldwide. SARS-CoV-2 is of the Orthocoronavirinae sub-family, which shares genome sequence similarity with two other highly pathogenic members of the group, Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). All three members are thought to have emerged from zoonotic events that have triggered global outbreaks over the last two decades. There is currently no cure, vaccine, or standard treatment protocol for COVID-19. The global pandemic of COVID-19 has had serious consequences with such an alarming rate of morbidity and mortality. Computer-aided drug design (CADD) could help quickly repurpose drugs that have been approved by the FDA and also to identify new antiviral compounds. The CADD can significantly reduce costs and enhance the drug development process by narrowing down potential drug compounds. This chapter comprehends resources and tools available for drug development against the novel coronavirus.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lee PI, Hsueh PR (2020) Emerging threats from zoonotic coronaviruses-from SARS and MERS to 2019-nCoV. Elsevier, Amsterdam. https://www.sciencedirect.com/science/article/pii/S1684118220300116/pdf?md5=682eac74614c6814574721240cbafeea&pid=1-s2.0-S1684118220300116-main.pdf. Accessed 12 Sep 2020

    Book  Google Scholar 

  2. Lai C, Shih T, Ko W, Tang H, Hsueh PR (2020) Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and corona virus disease-2019 (COVID-19): the epidemic and the challenges. Elsevier, Amsterdam. https://www.sciencedirect.com/science/article/pii/S0924857920300674. Accessed 13 Sep 2020

    Google Scholar 

  3. Mungroo M, Khan N, Siddiqui R (2020) Novel coronavirus: current understanding of clinical features, diagnosis, pathogenesis, and treatment options. Pathogens 9:297. https://www.mdpi.com/2076-0817/9/4/297/htm. Accessed 13 Sep 2020

    Article  CAS  PubMed Central  Google Scholar 

  4. Kumar S (2020) COVID-19: a drug repurposing and biomarker identification by using comprehensive gene-disease associations through protein-protein interaction network analysis. Preprints. https://doi.org/10.20944/preprints202003.0440.v1

  5. Zhang YZ, Holmes EC (2020) A genomic perspective on the origin and emergence of SARS-CoV-2. Cell 181(2):223–227. https://doi.org/10.1016/j.cell.2020.03.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sci S, Teng X, Huasheng X (2009) Perspectives of DNA microarray and next-generation DNA sequencing technologies. China Ser C-Life Sci 52(1):7–16. https://doi.org/10.1007/s11427-009-0012-9

    Article  CAS  Google Scholar 

  7. Bernasconi A, Cankoglu A, Pinoli P, Ceri S (2020) Empowering virus sequences research through conceptual modeling. BioRxiv. https://doi.org/10.1101/2020.04.29.067637

  8. Drie JH (2007) Computer-aided drug design: the next 20 years. J Comput Aided Mol Des 21:591. https://doi.org/10.1007/s10822-007-9142-y

    Article  CAS  PubMed  Google Scholar 

  9. Huang HJ et al (2010) Current developments of computer-aided drug design. J Taiwan Inst Chem Eng 41:623. https://doi.org/10.1016/j.jtice.2010.03.017

    Article  CAS  Google Scholar 

  10. Veselovsky V, Ivanov AS (2003) Strategy of computer-aided drug design. Curr Drug Targets Infect Disord 3:33. https://doi.org/10.2174/1568005033342145

    Article  CAS  PubMed  Google Scholar 

  11. Kapetanovic M (2008) Computer-aided drug discovery and development (CADDD): in silico-chemico-biological approach. Chem Biol Interact 171:165. https://doi.org/10.1016/j.cbi.2006.12.006

    Article  CAS  PubMed  Google Scholar 

  12. Swinney DC, Anthony J (2011) How were new medicines discovered? Nat Rev Drug Discov 10(7):507–519. https://doi.org/10.1038/nrd3480

    Article  CAS  PubMed  Google Scholar 

  13. Hassan Baig M et al (2016) Computer aided drug design: success and limitations. Curr Pharm Des 22:572. Accessed 13 Sep 2020

    Article  Google Scholar 

  14. Zumla JF, Chan W, Azhar EI, Hui DSC, Yuen KY (2016) Coronaviruses-drug discovery and therapeutic options. Nat Rev Drug Discov 15(5):327–347. https://doi.org/10.1038/nrd.2015.37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li G, de Clercq E (2020) Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov 19(3):149–150. https://doi.org/10.1038/d41573-020-00016-0

    Article  CAS  PubMed  Google Scholar 

  16. Lurie N, Saville M, Hatchett R, Halton J (2020) Developing covid-19 vaccines at pandemic speed. N Engl J Med 382(21):1969–1973. https://doi.org/10.1056/NEJMp2005630

    Article  CAS  PubMed  Google Scholar 

  17. Morse S, Lalonde T, Xu S, Liu WR (2020) Learning from the past: possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019-nCoV. ChemBioChem 21(5):730–738. https://doi.org/10.1002/cbic.202000047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Köser C, Ellington M et al (2012) Routine use of microbial whole genome sequencing in diagnostic and public health microbiology. PLoS Pathog 8(8):e1002824. https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1002824. Accessed 13 Sep 2020

    Article  PubMed  PubMed Central  Google Scholar 

  19. Polonsky A et al (2019) Outbreak analytics: a developing data science for informing the response to emerging pathogens. Philos Trans Roy Soc B Biol Sci 374(1776):20180276. https://doi.org/10.1098/rstb.2018.0276

    Article  Google Scholar 

  20. Köser CU et al (2012) Routine use of microbial whole genome sequencing in diagnostic and public health microbiology. PLoS Pathog 8(8):e1002824. https://doi.org/10.1371/journal.ppat.1002824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gardy J, Loman N (2018) Towards a genomics-informed, real-time, global pathogen surveillance system. Nat Rev Genet 19:9. https://www.nature.com/articles/nrg.2017.88.pdf?origin=ppub. Accessed 13 Sep 2020

    Article  CAS  PubMed  Google Scholar 

  22. Shu Y, McCauley J (2017) GISAID: global initiative on sharing all influenza data – from vision to reality. Eurosurveillance 22(13):30494. https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pruitt K, Tatusova T, Maglott DR (2005) NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 33:D501. https://academic.oup.com/nar/article-abstract/33/suppl_1/D501/2505241. Accessed 13 Sep 2020

    Article  CAS  PubMed  Google Scholar 

  24. Madeira F, Madhusoodanan N, Lee J, Tivey ARN, Lopez R (2019) Using EMBL-EBI Services via web interface and programmatically via web services. Curr Protoc Bioinformatics 66(1):e74. https://doi.org/10.1002/cpbi.74

    Article  PubMed  Google Scholar 

  25. COVID-19 Genomics UK (COG-UK) (2020) An integrated national scale SARS-CoV-2 genomic surveillance network. Lancet Microbe 1:e99. https://doi.org/10.1016/s2666-5247(20)30054-9

    Article  CAS  Google Scholar 

  26. Zhao W, Song S, Chen M, Zou D et al (2020) The 2019 novel coronavirus resource. Yi Chuan 42:212. https://europepmc.org/article/med/32102777. Accessed 13 Sep 2020

    PubMed  Google Scholar 

  27. Burley SK, Berman HM, Kleywegt GJ, Markley JL, Nakamura H, Velankar S (2017) Protein Data Bank (PDB): the single global macromolecular structure archive. Methods Mol Biol 1607:627–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bolton E, Wang Y, Thiessen P, Bryant S (2008) PubChem: integrated platform of small molecules and biological activities. Annu Rep Comput Chem 4:217. https://www.sciencedirect.com/science/article/pii/S1574140008000121. Accessed 13 Sep 2020

    Article  CAS  Google Scholar 

  29. Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012) ZINC: a free tool to discover chemistry for biology. ACS Publ 52(7):1757–1768. https://doi.org/10.1021/ci3001277

    Article  CAS  Google Scholar 

  30. Wishart DS (2008) DrugBank and its relevance to pharmacogenomics. Pharmacogenomics 9(8):1155–1162. https://doi.org/10.2217/14622416.9.8.1155

    Article  CAS  PubMed  Google Scholar 

  31. Gaulton A, Hersey A et al (2017) The ChEMBL database in 2017. Nucleic Acids Res 45:D945. https://academic.oup.com/nar/article-abstract/45/D1/D945/2605707. Accessed 13 Sep 2020

    Article  CAS  PubMed  Google Scholar 

  32. Xu X et al (2020) Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci 63(3):457–460. https://doi.org/10.1007/s11427-020-1637-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ceraolo C, Giorgi FM (2020) Genomic variance of the 2019-nCoV coronavirus. J Med Virol 92(5):522–528. https://doi.org/10.1002/jmv.25700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Korber B, Fischer W, Gnanakaran S, Yoon H et al (2020) Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 182:812. https://www.sciencedirect.com/science/article/pii/S0092867420308205. Accessed 13 Sep 2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Okubo K, Sugawara H et al (2006) DDBJ in preparation for overview of research activities behind data submissions. Nucleic Acids Res 34:D6. https://academic.oup.com/nar/article-abstract/34/suppl_1/D6/1133559. Accessed 13 Sep 2020

    Article  CAS  PubMed  Google Scholar 

  36. Geer LY, Marchler-Bauer A et al (2010) The NCBI biosystems database. Nucleic Acids Res 38:D492. https://academic.oup.com/nar/article-abstract/38/suppl_1/D492/3112224. Accessed 13 Sep 2020

    Article  CAS  PubMed  Google Scholar 

  37. McWilliam H, Li W, Uludag M et al (2013) Analysis tool web services from the EMBL-EBI. Nucleic Acids Res 41:W597. https://academic.oup.com/nar/article-abstract/41/W1/W597/1095852. Accessed 13 Sep 2020

    Article  PubMed  PubMed Central  Google Scholar 

  38. Goujon M, McWilliam H et al (2010) A new bioinformatics analysis tools framework at EMBL–EBI. Nucleic Acids Res 38:W695. https://academic.oup.com/nar/article-abstract/38/suppl_2/W695/1097251. Accessed 13 Sep 2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pybus O, Rambaut A, et al (2020) Preliminary analysis of SARS-CoV-2 importation & establishment of UK transmission lineages. Accessed 13 Sep 2020

    Google Scholar 

  40. Vénien-Bryan C, Li Z, Vuillard L, Boutin JA (2017) Cryo-electron microscopy and X-ray crystallography: complementary approaches to structural biology and drug discovery 1. Med Sci 73:758–767. https://doi.org/10.1107/S2053230X17003740

    Article  Google Scholar 

  41. Wang HW, Wang JW (2017) How cryo-electron microscopy and X-ray crystallography complement each other. Protein Sci 26(1):32–39. https://doi.org/10.1002/pro.3022

    Article  CAS  PubMed  Google Scholar 

  42. Kim S et al (2016) PubChem substance and compound databases. Nucleic Acids Res 44:D1202. https://doi.org/10.1093/nar/gkv951

    Article  CAS  PubMed  Google Scholar 

  43. Li Q, Cheng T, Wang Y, Bryant S (2010) PubChem as a public resource for drug discovery. Drug Discov Today 15:1052. https://www.sciencedirect.com/science/article/pii/S1359644610007737. Accessed 13 Sep 2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cheng T, Li Q, Zhou Z, Wang Y, Bryant SH (2012) Structure-based virtual screening for drug discovery: a problem-centric review. AAPS J 14(1):133–141. https://doi.org/10.1208/s12248-012-9322-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McInnes C (2007) Virtual screening strategies in drug discovery. Curr Opin Chem Biol 11(5):494. https://www.sciencedirect.com/science/article/pii/S1367593107001172. Accessed 13 Sep 2020

    Article  CAS  PubMed  Google Scholar 

  46. Ferreira L, dos Santos R, Oliva G, Andricopulo A (2015) Molecular docking and structure-based drug design strategies. Molecules 20:13384. https://www.mdpi.com/1420-3049/20/7/13384/htm. Accessed 13 Sep 2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mandal S, Moudgil S et al (2009) Rational drug design. Eur J Pharmacol 625:90. https://www.sciencedirect.com/science/article/pii/S0014299909008784. Accessed 13 Sep 2020

    Article  CAS  PubMed  Google Scholar 

  48. Henrich S, Salo-Ahen OMH, Huang B, Rippmann F, Cruciani G, Wade RC (2010) Computational approaches to identifying and characterizing protein binding sites for ligand design. J Mol Recognit 23(2):209–219. https://doi.org/10.1002/jmr.984

    Article  CAS  PubMed  Google Scholar 

  49. Berg JM, Tymoczko JL, Stryer L (2002) Three-dimensional protein structure can be determined by NMR spectroscopy and X-ray crystallography. In: Biochemistry. W H Freeman, New York, NY. https://www.ncbi.nlm.nih.gov/books/NBK22393/. Accessed 13 Sep 2020

    Google Scholar 

  50. Mahajan R, Gupta K (2010) Adaptive design clinical trials: methodology, challenges and prospect. Indian J Pharm 42(4):201–207. https://doi.org/10.4103/0253-7613.68417

    Article  Google Scholar 

  51. Zhang Z (2003) An overview of protein structure prediction: from homology to ab initio. Accessed 13 Sep 2020

    Google Scholar 

  52. Vyas VK, Ukawala RD, Ghate M, Chintha C (2012) Homology modeling a fast tool for drug discovery: current perspectives. Indian J Pharm Sci 74(1):1–17. https://doi.org/10.4103/0250-474X.102537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kihara D, Chen H, Yang Y (2009) Quality assessment of protein structure models. Curr Protein Pept Sci 10(3):216–228. https://doi.org/10.2174/138920309788452173

    Article  CAS  PubMed  Google Scholar 

  54. David Andersson C, Chen BY, Linusson A (2010) Mapping of ligand-binding cavities in proteins. Proteins 78(6):1408–1422. https://doi.org/10.1002/prot.22655

    Article  CAS  PubMed  Google Scholar 

  55. Ezzat A, Kwoh CK (2012) Comparison of structure-based tools for the prediction of ligand binding site residues in apo-structures. Proc Comput Sci 11:115–126. https://doi.org/10.1016/j.procs.2012.09.013

    Article  Google Scholar 

  56. Kontoyianni M (2017) Docking and virtual screening in drug discovery. Methods Mol Biol 1647:255–266

    Article  PubMed  Google Scholar 

  57. Pollard TD (2010) MBOC technical perspective: a guide to simple and informative binding assays. Mol Biol Cell 21(23):4061–4067. https://doi.org/10.1091/mbc.E10-08-0683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bhattacharya D, Cao R, Cheng J (2016) UniCon3D: de novo protein structure prediction using united-residue conformational search via stepwise, probabilistic sampling. Bioinformatics 32(18):2791–2799. https://doi.org/10.1093/bioinformatics/btw316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Acharya C, Coop A, Polli JE, MacKerell AD (2010) Recent advances in ligand-based drug design: relevance and utility of the conformationally sampled pharmacophore approach. Curr Comput Aid Drug Des 7(1):10–22. https://doi.org/10.2174/157340911793743547

    Article  Google Scholar 

  60. Chevillard F et al (2018) Binding-site compatible fragment growing applied to the design of β2-adrenergic receptor ligands. J Med Chem 61(3):1118–1129. https://doi.org/10.1021/acs.jmedchem.7b01558

    Article  CAS  PubMed  Google Scholar 

  61. Atkovska K, Samsonov SA, Paszkowski-Rogacz M, Pisabarro MT (2014) Multipose binding in molecular docking. Int J Mol Sci 15(2):2622–2645. https://doi.org/10.3390/ijms15022622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pantsar T, Poso A (2018) Binding affinity via docking: fact and fiction. Molecules 23(8):1. https://doi.org/10.3390/molecules23081899

    Article  CAS  Google Scholar 

  63. Lexa KW, Carlson HA (2012) Protein flexibility in docking and surface mapping. Q Rev Biophys 45(3):301–343. https://doi.org/10.1017/S0033583512000066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Unger R, Moult J (1993) Genetic algorithms for protein folding simulations. J Mol Biol 231(1):75–81. https://doi.org/10.1006/jmbi.1993.1258

    Article  CAS  PubMed  Google Scholar 

  65. Mackay DHJ, Cross AJ, Hagler AT (1989) The role of energy minimization in simulation strategies of biomolecular systems. In: Prediction of protein structure and the principles of protein conformation. Springer, Boston, MA, pp 317–358

    Chapter  Google Scholar 

  66. Qing X et al (2014) Pharmacophore modeling: advances, limitations, and current utility in drug discovery. J Recept Lig Chann Res 7:81. https://doi.org/10.2147/JRLCR.S46843

    Article  Google Scholar 

  67. Chandrasekaran B, Agrawal N, Kaushik S (2018) Pharmacophore development. In: Encyclopedia of bioinformatics and computational biology: ABC of bioinformatics, vol 1–3. Elsevier, Amsterdam, pp 677–687

    Google Scholar 

  68. Chen B-S, Li C-W (2017) Big drug design mechanisms via systems biology and big database mining. In: Big mechanisms in systems biology. Elsevier, Amsterdam, pp 737–845

    Chapter  Google Scholar 

  69. Hao GF et al (2016) ACFIS: a web server for fragment-based drug discovery. Nucleic Acids Res 44(W1):W550–W556. https://doi.org/10.1093/nar/gkw393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Stourac J et al (2019) Caver Web 1.0: identification of tunnels and channels in proteins and analysis of ligand transport. Nucleic Acids Res 47(W1):W414–W422. https://doi.org/10.1093/nar/gkz378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Irwin JJ et al (2009) Automated docking screens: a feasibility study. J Med Chem 52(18):5712–5720. https://doi.org/10.1021/jm9006966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. London N et al (2014) Covalent docking of large libraries for the discovery of chemical probes. Nat Chem Biol 10(12):1066–1072. https://doi.org/10.1038/nchembio.1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Santos KB, Guedes IA, Karl ALM, Dardenne LE (2020) Highly flexible ligand docking: benchmarking of the DockThor program on the LEADS-PEP protein-peptide data set. J Chem Inf Model 60(2):667–683. https://doi.org/10.1021/acs.jcim.9b00905

    Article  CAS  PubMed  Google Scholar 

  74. Pires DEV et al (2020) EasyVS: a user-friendly web-based tool for molecule library selection and structure-based virtual screening. Bioinformatics 36(14):4200–4202. https://doi.org/10.1093/bioinformatics/btaa480

    Article  CAS  PubMed  Google Scholar 

  75. Douguet D (2010) e-LEA3D: a computational-aided drug design web server. Nucleic Acids Res 38(Suppl 2):W615. https://doi.org/10.1093/nar/gkq322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tao Y, Huang Y, Shinohara M, Caylor L, Pashikanti S, Xu D (2019) EzCADD: a rapid 2D/3D visualization-enabled web modeling environment for democratizing computer-aided drug design. J Chem Inf Model 59(1):18–24. https://doi.org/10.1021/acs.jcim.8b00633

    Article  CAS  PubMed  Google Scholar 

  77. Tsai Y, Chang KW, Chen CYC (2011) IScreen: world’s first cloud-computing web server for virtual screening and de novo drug design based on TCM database@Taiwan. J Comput Aided Mol Des 25(6):525–531. https://doi.org/10.1007/s10822-011-9438-9

    Article  CAS  PubMed  Google Scholar 

  78. Labbé M et al (2015) MTiOpenScreen: a web server for structure-based virtual screening. Nucleic Acids Res 43(W1):W448–W454. https://doi.org/10.1093/nar/gkv306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sunseri J, Koes DR (2016) Pharmit: interactive exploration of chemical space. Nucleic Acids Res 44(W1):W442–W448. https://doi.org/10.1093/nar/gkw287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gheyouche E et al (2019) Docknmine, a web portal to assemble and analyse virtual and experimental interaction data. Int J Mol Sci 20(20):5062. https://doi.org/10.3390/ijms20205062

    Article  CAS  PubMed Central  Google Scholar 

  81. Wang J, Dokholyan NV (2019) MedusaDock 2.0: efficient and accurate protein-ligand docking with constraints. J Chem Inf Model 59(6):2509–2515. https://doi.org/10.1021/acs.jcim.8b00905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Grosdidier A, Zoete V, Michielin O (2011) SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res 39(Suppl 2):W270. https://doi.org/10.1093/nar/gkr366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Neves J, Braga RC, Melo-Filho CC, Moreira-Filho JT, Muratov EN, Andrade CH (2018) QSAR-based virtual screening: advances and applications in drug discovery. Front Pharmacol 9:1275. https://doi.org/10.3389/fphar.2018.01275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhu H (2013) From QSAR to QSIIR: searching for enhanced computational toxicology models. Methods Mol Biol 930:53–65. https://doi.org/10.1007/978-1-62703-059-5_3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hong H, Fang H, Xie Q, Perkins R, Sheehan DM, Tong W (2003) Comparative molecular field analysis (CoMFA) model using a large diverse set of natural, synthetic and environmental chemicals for binding to the androgen receptor. SAR QSAR Environ Res 14(5–6):373–388. https://doi.org/10.1080/10629360310001623962

    Article  CAS  PubMed  Google Scholar 

  86. Maggiora G, Vogt M, Stumpfe D, Bajorath J (2014) Molecular similarity in medicinal chemistry. J Med Chem 57(8):3186–3204. https://doi.org/10.1021/jm401411z

    Article  CAS  PubMed  Google Scholar 

  87. Yang Y (2010) Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov Today 15(11–12):444–450. https://doi.org/10.1016/j.drudis.2010.03.013

    Article  CAS  PubMed  Google Scholar 

  88. Gurrath M, Müller G, Höltje H-D (2005) Pseudoreceptor modelling in drug design: applications of Yak and PrGen. In: 3D QSAR in drug design. Kluwer Academic Publishers, New York, NY, pp 135–157

    Google Scholar 

  89. Tanrikulu Y, Schneider G (2008) Pseudoreceptor models in drug design: bridging ligand- and receptor-based virtual screening. Nat Rev Drug Discov 7(8):667–677. https://doi.org/10.1038/nrd2615

    Article  CAS  PubMed  Google Scholar 

  90. Bajorath J (2017) Computational scaffold hopping: cornerstone for the future of drug design? Future Med Chem 9(7):629–631. https://doi.org/10.4155/fmc-2017-0043

    Article  CAS  PubMed  Google Scholar 

  91. Sun H, Tawa G, Wallqvist A (2012) Classification of scaffold-hopping approaches. Drug Discov Today 17(7–8):310–324. https://doi.org/10.1016/j.drudis.2011.10.024

    Article  CAS  PubMed  Google Scholar 

  92. Colledge M, Wallace BA (2017) AnglerFish: a webserver for defining the geometry of α-helices in membrane proteins. Bioinformatics 33(8):1233–1234. https://doi.org/10.1093/bioinformatics/btw781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kringelum J, Kjaerulff SK, Brunak S, Lund O, Oprea TI, Taboureau O (2016) ChemProt-3.0: a global chemical biology diseases mapping. Database 2016:bav123. https://doi.org/10.1093/database/bav123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hamad S, Adornetto G, Naveja JJ, Chavan Ravindranath A, Raffler J, Campillos M (2019) HitPickV2: a web server to predict targets of chemical compounds. Bioinformatics 35(7):1239–1240. https://doi.org/10.1093/bioinformatics/bty759

    Article  CAS  PubMed  Google Scholar 

  95. Peón A et al (2019) MolTarPred: a web tool for comprehensive target prediction with reliability estimation. Chem Biol Drug Des 94(1):1390–1401. https://doi.org/10.1111/cbdd.13516

    Article  CAS  PubMed  Google Scholar 

  96. Alberga D, Trisciuzzi D, Montaruli M, Leonetti F, Mangiatordi GF, Nicolotti O (2019) A new approach for drug target and bioactivity prediction: the multifingerprint similarity search algorithm (MuSSeL). J Chem Inf Model 59(1):586–596. https://doi.org/10.1021/acs.jcim.8b00698

    Article  CAS  PubMed  Google Scholar 

  97. Awale M, Reymond JL (2019) Polypharmacology browser PPB2: target prediction combining nearest neighbors with machine learning. J Chem Inf Model 59(1):10–17. https://doi.org/10.1021/acs.jcim.8b00524

    Article  CAS  PubMed  Google Scholar 

  98. Lee K, Lee M, Kim D (2017) Utilizing random Forest QSAR models with optimized parameters for target identification and its application to target-fishing server. BMC Bioinformatics 18:567. https://doi.org/10.1186/s12859-017-1960-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK (2007) Relating protein pharmacology by ligand chemistry. Nat Biotechnol 25(2):197–206. https://doi.org/10.1038/nbt1284

    Article  CAS  PubMed  Google Scholar 

  100. Nickel J et al (2014) SuperPred: update on drug classification and target prediction. Nucleic Acids Res 42(W1):W26. https://doi.org/10.1093/nar/gku477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gfeller D, Grosdidier A, Wirth M, Daina A, Michielin O, Zoete V (2014) SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res 42(W1):W32. https://doi.org/10.1093/nar/gku293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yao ZJ et al (2016) TargetNet: a web service for predicting potential drug–target interaction profiling via multi-target SAR models. J Comput Aided Mol Des 30(5):413–424. https://doi.org/10.1007/s10822-016-9915-2

    Article  CAS  PubMed  Google Scholar 

  103. Gonzalez-Paz L et al (2020) Theoretical molecular docking study of the structural disruption of the viral 3CL-protease of COVID19 induced by binding of capsaicin, piperine and curcumin Part 1: a comparative study with chloroquine and hydrochloroquine two antimalaric drugs. Res Sq. https://doi.org/10.21203/rs.3.rs-21206/v1

  104. Baruah C, Devi P, Sharma DK (2020) Sequence analysis and structure prediction of SARS-CoV-2 accessory proteins 9b and ORF14: evolutionary analysis indicates close relatedness to bat coronavirus. ChemRxiv. https://doi.org/10.26434/CHEMRXIV.12424958.V1

  105. Mouroug Anand N et al (2020) A comprehensive SARS-CoV-2 genomic analysis identifies potential targets for drug repurposing. ChemRxiv. https://doi.org/10.26434/CHEMRXIV.12430919.V1

  106. Roomi MS, Daanial Khan Y (2020) Potential compounds for the inhibition of TMPRSS2. ChemRxiv. https://doi.org/10.26434/CHEMRXIV.12727787.V1

  107. Mohamed K, Yazdanpanah N, Saghazadeh A, Rezaei N (2020) Computational drug discovery and repurposing for the treatment of COVID-19: a systematic review. SSRN Electron J. https://doi.org/10.2139/ssrn.3583748

  108. Kumar S (2020) Drug and vaccine design against novel coronavirus (2019-nCoV) spike protein through computational approach. Preprints. https://www.preprints.org/manuscript/202002.0071/v1. Accessed 13 Sep 2020

  109. Gentile D, Patamia V, Scala A, Sciortino MT, Piperno A, Rescifina A (2020) Putative inhibitors of SARS-CoV-2 main protease from a library of marine natural products: a virtual screening and molecular modeling study. Mar Drugs 18(4):225. https://doi.org/10.3390/md18040225

    Article  CAS  PubMed Central  Google Scholar 

  110. Sayed M et al (2020) Microbial natural products as potential inhibitors of SARS-CoV-2 main protease (Mpro). Microorganisms 8(7):1–17. https://doi.org/10.3390/microorganisms8070970

    Article  CAS  Google Scholar 

  111. Das S, Sarmah S, Lyndem S, Singha Roy A (2020) An investigation into the identification of potential inhibitors of SARS-CoV-2 main protease using molecular docking study. J Biomol Struct Dyn:1–11. https://doi.org/10.1080/07391102.2020.1763201

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kumar, S. (2021). Online Resource and Tools for the Development of Drugs Against Novel Coronavirus. In: Roy, K. (eds) In Silico Modeling of Drugs Against Coronaviruses. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/7653_2020_53

Download citation

  • DOI: https://doi.org/10.1007/7653_2020_53

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1365-8

  • Online ISBN: 978-1-0716-1366-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics