Skip to main content

Induction of Human Extraembryonic Mesoderm Cells from Naive Pluripotent Stem Cells

  • Protocol
  • First Online:
Embryo Models In Vitro

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2767))

Abstract

The human extraembryonic mesoderm (EXM) is an important tissue in the postimplantation embryo which is specified before gastrulation in primates but not in rodents. EXM is mesenchymal and plays an important role in embryogenesis, including early erythropoiesis, and provides mechanical support to the developing embryo. Recently, it has been shown that self-renewing extraembryonic mesoderm cells (EXMCs) can be modeled in vitro by using human naive pluripotent stem cells. Here, we present a detailed step-by-step protocol to induce EXMCs from naive pluripotent stem cells in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnold SJ, Robertson EJ (2009) Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat Rev Mol Cell Biol 10:91–103. https://doi.org/10.1038/nrm2618

    Article  CAS  PubMed  Google Scholar 

  2. Saykali B, Mathiah N, Nahaboo W et al (2019) Distinct mesoderm migration phenotypes in extra-embryonic and embryonic regions of the early mouse embryo. elife 8:10.7554/eLife.42434

    Article  Google Scholar 

  3. Tam PP, Beddington RS (1987) The formation of mesodermal tissues in the mouse embryo during gastrulation and early organogenesis. Development 99:109–126

    Article  CAS  PubMed  Google Scholar 

  4. Luckett WP (1978) Origin and differentiation of the yolk sac and extraembryonic mesoderm in presomite human and rhesus monkey embryos. Am J Anat 152:59–97. https://doi.org/10.1002/aja.1001520106

    Article  CAS  PubMed  Google Scholar 

  5. Ross C, Boroviak TE (2020) Origin and function of the yolk sac in primate embryogenesis. Nat Commun 11:3760. https://doi.org/10.1038/s41467-020-17575-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cui G, Feng S, Yan Y et al (2022) Spatial molecular anatomy of germ layers in the gastrulating cynomolgus monkey embryo. Cell Rep 40:111285. https://doi.org/10.1016/j.celrep.2022.111285

    Article  CAS  PubMed  Google Scholar 

  7. Enders AC, King BF (1988) Formation and differentiation of extraembryonic mesoderm in the rhesus monkey. Am J Anat 181:327–340. https://doi.org/10.1002/aja.1001810402

    Article  CAS  PubMed  Google Scholar 

  8. Gasser RF (1975) Atlas of human embryos. HarperCollins Publishers

    Google Scholar 

  9. Kinder SJ, Tsang TE, Quinlan GA et al (1999) The orderly allocation of mesodermal cells to the extraembryonic structures and the anteroposterior axis during gastrulation of the mouse embryo. Development 126:4691–4701

    Article  CAS  PubMed  Google Scholar 

  10. Spencer Chapman M, Ranzoni AM, Myers B et al (2021) Lineage tracing of human development through somatic mutations. Nature 595:85–90. https://doi.org/10.1038/s41586-021-03548-6

    Article  CAS  PubMed  Google Scholar 

  11. Shepard TH (1989) Developmental stages in human embryos. R O’Rahilly, F Müller (eds), Carnegie Institution of Washington, Washington, DC, 1987, 306 pp., $52. Teratology 40:85–85

    Article  Google Scholar 

  12. Sadler TW (1988) Langman’s Medical Embryology. Plast Reconstr Surg 81:131

    Article  Google Scholar 

  13. Zhou F, Wang R, Yuan P et al (2019) Reconstituting the transcriptome and DNA methylome landscapes of human implantation. Nature 572:660–664. https://doi.org/10.1038/s41586-019-1500-0

    Article  CAS  PubMed  Google Scholar 

  14. Xiang L, Yin Y, Zheng Y et al (2020) A developmental landscape of 3D-cultured human pre-gastrulation embryos. Nature 577:537–542. https://doi.org/10.1038/s41586-019-1875-y

    Article  CAS  PubMed  Google Scholar 

  15. Deglincerti A, Croft GF, Pietila LN et al (2016) Self-organization of the in vitro attached human embryo. Nature 533:251–254. https://doi.org/10.1038/nature17948

    Article  CAS  PubMed  Google Scholar 

  16. Shahbazi MN, Zernicka-Goetz M (2018) Deconstructing and reconstructing the mouse and human early embryo. Nat Cell Biol 20:878–887. https://doi.org/10.1038/s41556-018-0144-x

    Article  CAS  PubMed  Google Scholar 

  17. Shahbazi MN, Jedrusik A, Vuoristo S et al (2016) Self-organization of the human embryo in the absence of maternal tissues. Nat Cell Biol 18:700–708. https://doi.org/10.1038/ncb3347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lovell-Badge R, Anthony E, Barker RA et al (2021) ISSCR guidelines for stem cell research and clinical translation: the 2021 update. Stem Cell Reports 16:1398–1408. https://doi.org/10.1016/j.stemcr.2021.05.012

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dong C, Beltcheva M, Gontarz P et al (2020) Derivation of trophoblast stem cells from naïve human pluripotent stem cells. elife 9:10.7554/eLife.52504

    Article  Google Scholar 

  20. Io S, Kabata M, Iemura Y et al (2021) Capturing human trophoblast development with naive pluripotent stem cells in vitro. Cell Stem Cell 28:1023–1039.e13. https://doi.org/10.1016/j.stem.2021.03.013

    Article  CAS  PubMed  Google Scholar 

  21. Guo G, Stirparo GG, Strawbridge SE et al (2021) Human naive epiblast cells possess unrestricted lineage potential. Cell Stem Cell 28:1040–1056.e6. https://doi.org/10.1016/j.stem.2021.02.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Castel G, Meistermann D, Bretin B et al (2020) Induction of human trophoblast stem cells from somatic cells and pluripotent stem cells. Cell Rep 33:108419. https://doi.org/10.1016/j.celrep.2020.108419

    Article  CAS  PubMed  Google Scholar 

  23. Cinkornpumin JK, Kwon SY, Guo Y et al (2020) Naive human embryonic stem cells can give rise to cells with a trophoblast-like transcriptome and methylome. Stem Cell Reports 15:198–213. https://doi.org/10.1016/j.stemcr.2020.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Linneberg-Agerholm M, Wong YF, Romero Herrera JA et al (2019) Naïve human pluripotent stem cells respond to Wnt, Nodal and LIF signalling to produce expandable naïve extra-embryonic endoderm. Development 146:10.1242/dev.180620

    Google Scholar 

  25. Rostovskaya M, Andrews S, Reik W, Rugg-Gunn PJ (2022) Amniogenesis occurs in two independent waves in primates. Cell Stem Cell 29:744–759.e6. https://doi.org/10.1016/j.stem.2022.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Karvas RM, Khan SA, Verma S et al (2022) Stem-cell-derived trophoblast organoids model human placental development and susceptibility to emerging pathogens. Cell Stem Cell 29:810–825.e8. https://doi.org/10.1016/j.stem.2022.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yu L, Wei Y, Duan J et al (2021) Author correction: blastocyst-like structures generated from human pluripotent stem cells. Nature 596:E5. https://doi.org/10.1038/s41586-021-03635-8

    Article  CAS  PubMed  Google Scholar 

  28. Yanagida A, Spindlow D, Nichols J et al (2021) Naive stem cell blastocyst model captures human embryo lineage segregation. Cell Stem Cell 28:1016–1022.e4. https://doi.org/10.1016/j.stem.2021.04.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kagawa H, Javali A, Khoei HH et al (2022) Human blastoids model blastocyst development and implantation. Nature 601:600–605. https://doi.org/10.1038/s41586-021-04267-8

    Article  CAS  PubMed  Google Scholar 

  30. Liu X, Tan JP, Schröder J et al (2021) Modelling human blastocysts by reprogramming fibroblasts into iBlastoids. Nature 591:627–632. https://doi.org/10.1038/s41586-021-03372-y

    Article  CAS  PubMed  Google Scholar 

  31. Pham TXA, Panda A, Kagawa H et al (2022) Modeling human extraembryonic mesoderm cells using naive pluripotent stem cells. Cell Stem Cell 29:1346–1365.e10. https://doi.org/10.1016/j.stem.2022.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Research in the Pasque laboratory was supported by the Research Foundation-Fladers (FWO; FWO; Odysseus Return Grant G0F7716N to V.P.; FWO grants G0C9320N and G0B4420N to V.P.), the KU Leuven Research Fund (C1 GRANT C14/21/19 to V.P.), and FWO PhD fellowships to T.X.A.P. (11N3122N). We are also grateful to Susan Schlenner and the KU Leuven FACS core team for running the facility and especially Reena Chinaraj who helped us during flow cytometry experiments.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Panda, A., Pham, T.X.A., Khodeer, S., Pasque, V. (2023). Induction of Human Extraembryonic Mesoderm Cells from Naive Pluripotent Stem Cells. In: Zernicka-Goetz, M., Turksen, K. (eds) Embryo Models In Vitro. Methods in Molecular Biology, vol 2767. Humana, New York, NY. https://doi.org/10.1007/7651_2023_483

Download citation

  • DOI: https://doi.org/10.1007/7651_2023_483

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3685-5

  • Online ISBN: 978-1-0716-3686-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics