Skip to main content

CRISPR/Cas9-Mediated Introduction of Specific Heterozygous Mutations in Human Induced Pluripotent Stem Cells

  • Protocol
  • First Online:
Induced Pluripotent Stem (iPS) Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2454))

Abstract

Advances in genome editing and our ability to derive and differentiate human induced pluripotent stem cells (hiPSCs) into a wide variety of cell types present in the body is revolutionizing how we model human diseases in vitro. Central to this has been the development of the CRISPR/Cas9 system as an inexpensive and highly efficient tool for introducing or correcting disease-associated mutations. However, the ease with which CRISPR/Cas9 enables genetic modification is a double-edged sword, with the challenge now being to introduce changes precisely to just one allele without disrupting the other.

In this chapter, we describe strategies to introduce specific mutations into hiPSCs without enrichment steps. Monoallelic modification is contingent on the target activity of the guide RNA, delivery method of the CRISPR/Cas9 components and design of the oligonucleotide(s) transfected. As well as addressing these aspects, we detail high throughput culturing, freezing and screening methods to identify clonal hiPSCs with the desired nucleotide change. This set of protocols offers an efficient and ultimately time- and labor-saving approach for generating isogenic pairs of hiPSCs to detect subtle phenotypic differences caused by the disease variant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823. https://doi.org/10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676. https://doi.org/10.1016/j.cell.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  4. van den Brink L, Grandela C, Mummery CL, Davis RP (2020) Concise review: inherited cardiac diseases, pluripotent stem cells, and genome editing combined-the past, present, and future. Stem Cells 38:174–186. https://doi.org/10.1002/stem.3110

    Article  CAS  PubMed  Google Scholar 

  5. Rowe RG, Daley GQ (2019) Induced pluripotent stem cells in disease modelling and drug discovery. Nat Rev Genet 20:377–388. https://doi.org/10.1038/s41576-019-0100-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Scully R, Panday A, Elango R, Willis NA (2019) DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol 20:698–714. https://doi.org/10.1038/s41580-019-0152-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Aarts M, te Riele H (2010) Subtle gene modification in mouse ES cells: evidence for incorporation of unmodified oligonucleotides without induction of DNA damage. Nucleic Acids Res 38:6956–6967. https://doi.org/10.1093/nar/gkq589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Paquet D, Kwart D, Chen A, Sproul A, Jacob S, Teo S, Olsen KM, Gregg A, Noggle S, Tessier-Lavigne M (2016) Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533:125–129. https://doi.org/10.1038/nature17664

    Article  CAS  PubMed  Google Scholar 

  9. Brandão KO et al (2020) Isogenic sets of hiPSC-CMs harboring distinct KCNH2 mutations differ functionally and in susceptibility to drug-induced arrhythmias. Stem Cell Rep 15:1127–1139. https://doi.org/10.1016/j.stemcr.2020.10.005

  10. Brinkman EK, Chen T, Amendola M, van Steensel B (2014) Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res 42:e168. https://doi.org/10.1093/nar/gku936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Concordet J-P, Haeussler M (2018) CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res 46:W242–W245. https://doi.org/10.1093/nar/gky354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Petrov A, Tsa A, Puglisi JD (2013) Analysis of RNA by analytical polyacrylamide gel electrophoresis. Methods Enzymol 530:301–313. https://doi.org/10.1016/B978-0-12-420037-1.00016-6

    Article  CAS  PubMed  Google Scholar 

  13. Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (2011) A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474:337–342. https://doi.org/10.1038/nature10163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Truett GE, Heeger P, Mynatt RL, Truett AA, Walker JA, Warman ML (2000) Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and Tris (HotSHOT). BioTechniques 29:52–54. https://doi.org/10.2144/00291bm09

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mervyn Mol for technical assistance. This work was supported by a Starting Grant (STEMCARDIORISK) from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation programme [H2020 European Research Council; grant agreement #638030], and a VIDI fellowship from the Netherlands Organisation for Scientific Research [Nederlandse Organisatie voor Wetenschappelijk Onderzoek NWO; ILLUMINATE; #91715303]. Schematic and workflow figures were created with BioRender.com.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard P. Davis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Brandão, K.O., Grandela, C., Yiangou, L., Mummery, C.L., Davis, R.P. (2021). CRISPR/Cas9-Mediated Introduction of Specific Heterozygous Mutations in Human Induced Pluripotent Stem Cells. In: Nagy, A., Turksen, K. (eds) Induced Pluripotent Stem (iPS) Cells. Methods in Molecular Biology, vol 2454. Humana, New York, NY. https://doi.org/10.1007/7651_2021_368

Download citation

  • DOI: https://doi.org/10.1007/7651_2021_368

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2118-9

  • Online ISBN: 978-1-0716-2119-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics