Skip to main content

Gene Editing in Human Induced Pluripotent Stem Cells Using Doxycycline-Inducible CRISPR-Cas9 System

  • Protocol
  • First Online:
Induced Pluripotent Stem (iPS) Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2454))

Abstract

Induced pluripotent stem cells (iPSCs) generated from patients are a valuable tool for disease modelling, drug screening, and studying the functions of cell/tissue-specific genes. However, for this research, isogenic iPSC lines are important for comparison of phenotypes in the wild type and mutant differentiated cells generated from the iPSCs. The advent of gene editing technologies to correct or generate mutations helps in the generation of isogenic iPSC lines with the same genetic background. Due to the ease of programming, CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas9-based gene editing tools have gained pace in gene manipulation studies, including investigating complex diseases like cancer. An iPSC line with drug inducible Cas9 expression from the Adeno-Associated Virus Integration Site 1 (AAVS1) safe harbor locus offers a controllable expression of Cas9 with robust gene editing. Here, we describe a stepwise protocol for the generation and characterization of such an iPSC line (AAVS1-PDi-Cas9 iPSC) with a doxycycline (dox)-inducible Cas9 expression cassette from the AAVS1 safe harbor site and efficient editing of target genes with lentiviral vectors expressing gRNAs. This approach with a tunable Cas9 expression that allows investigating gene functions in iPSCs or in the differentiated cells can serve as a versatile tool in disease modelling studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Georgomanoli M, Papapetrou EP (2019) Modeling blood diseases with human induced pluripotent stem cells. Dis Model Mech 12:dmm039321

    Article  CAS  Google Scholar 

  2. Kim HS, Bernitz JM, Lee D-F et al (2014) Genomic editing tools to model human diseases with isogenic pluripotent stem cells. Stem Cells Dev 23:2673–2686

    Article  CAS  Google Scholar 

  3. Bassett AR (2017) Editing the genome of hiPSC with CRISPR/Cas9: disease models. Mamm Genome 28:348–364

    Article  CAS  Google Scholar 

  4. González F, Zhu Z, Shi Z-D et al (2014) An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell 15:215–226

    Article  Google Scholar 

  5. Zhu Z, González F, Huangfu D (2014) The iCRISPR platform for rapid genome editing in human pluripotent stem cells. Methods Enzymol 546:215–250

    Article  CAS  Google Scholar 

  6. Dow LE, Fisher J, O’Rourke KP et al (2015) Inducible in vivo genome editing with CRISPR-Cas9. Nat Biotechnol 33:390–394

    Article  CAS  Google Scholar 

  7. Mandegar MA, Huebsch N, Frolov EB et al (2016) CRISPR interference efficiently induces specific and reversible gene silencing in human iPSCs. Cell Stem Cell 18:541–553

    Article  CAS  Google Scholar 

  8. Ihry RJ, Worringer KA, Salick MR et al (2018) p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells. Nat Med 24:939–946

    Article  CAS  Google Scholar 

  9. Enache OM, Rendo V, Abdusamad M et al (2020) Cas9 activates the p53 pathway and selects for p53-inactivating mutations. Nat Genet 52:662–668

    Article  CAS  Google Scholar 

  10. Ran FA, Hsu PD, Wright J et al (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308

    Article  CAS  Google Scholar 

  11. Steyer B, Carlson-Stevermer J, Angenent-Mari N et al (2016) High content analysis platform for optimization of lipid mediated CRISPR-Cas9 delivery strategies in human cells. Acta Biomater 34:143–158

    Article  CAS  Google Scholar 

  12. Ringer KP, Roth MG, Garey MS et al (2018) Comparative analysis of lipid-mediated CRISPR-Cas9 genome editing techniques: simplified Cas9-mediated genome editing. Cell Biol Int 42:849–858

    Article  CAS  Google Scholar 

  13. Sanjana NE, Shalem O, Zhang F (2014) Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 11:783–784

    Article  CAS  Google Scholar 

  14. Cao J, Wu L, Zhang S-M et al (2016) An easy and efficient inducible CRISPR/Cas9 platform with improved specificity for multiple gene targeting. Nucleic Acids Res 44:e149

    PubMed  PubMed Central  Google Scholar 

  15. Xia X, Zhang Y, Zieth CR et al (2007) Transgenes delivered by lentiviral vector are suppressed in human embryonic stem cells in a promoter-dependent manner. Stem Cells Dev 16:167–176

    Article  CAS  Google Scholar 

  16. Suzuki Y, Suzuki Y (2011) Gene regulatable lentiviral vector system. In: Xu K (ed) Viral gene therapy. InTech, Rijeka, pp 285–309

    Google Scholar 

  17. Smith JR, Maguire S, Davis LA et al (2008) Robust, persistent transgene expression in human embryonic stem cells is achieved with AAVS1-targeted integration. Stem Cells 26:496–504

    Article  CAS  Google Scholar 

  18. Luo Y, Liu C, Cerbini T et al (2014) Stable enhanced green fluorescent protein expression after differentiation and transplantation of reporter human induced pluripotent stem cells generated by AAVS1 transcription activator-like effector nucleases. Stem Cells Transl Med 3:821–835

    Article  CAS  Google Scholar 

  19. Heckl D, Kowalczyk MS, Yudovich D et al (2014) Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing. Nat Biotechnol 32:941–946

    Article  CAS  Google Scholar 

  20. Manian KV, Bharathan SP, Maddali M et al (2018) Generation of an integration-free iPSC line (CSCRi005-A) from erythroid progenitor cells of a healthy Indian male individual. Stem Cell Res 29:148–151

    Article  Google Scholar 

Download references

Acknowledgments

This research work is funded by Department of Biotechnology, Government of India (grant number BT/PR17316/MED/31/326/2015) and DBT/Wellcome Trust India Alliance Fellowship [grant number IA/S/17/1/503118] awarded to SRV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaji R. Velayudhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Thamodaran, V., Rani, S., Velayudhan, S.R. (2021). Gene Editing in Human Induced Pluripotent Stem Cells Using Doxycycline-Inducible CRISPR-Cas9 System. In: Nagy, A., Turksen, K. (eds) Induced Pluripotent Stem (iPS) Cells. Methods in Molecular Biology, vol 2454. Humana, New York, NY. https://doi.org/10.1007/7651_2021_348

Download citation

  • DOI: https://doi.org/10.1007/7651_2021_348

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2118-9

  • Online ISBN: 978-1-0716-2119-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics