Skip to main content

CRISPR Base Editing in Induced Pluripotent Stem Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2045))

Abstract

Induced pluripotent stem cells (iPSCs) have demonstrated tremendous potential in numerous disease modeling and regenerative medicine-based therapies. The development of innovative gene transduction and editing technologies has further augmented the potential of iPSCs. Cas9-cytidine deaminases, for example, have developed as an alternative strategy to integrate single-base mutations (C → T or G → A transitions) at specific genomic loci. In this chapter, we specifically describe CRISPR (clustered regularly interspaced short palindromic repeats) base editing in iPSCs for editing precise locations in the genome. This state-of-the-art approach enables highly efficient and accurate modifications in genes. Thus, this technique not only has the potential to have biotechnology and therapeutic applications but also the ability to reveal underlying mechanisms regarding pathologies caused by specific mutations.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Tong Y, Weber T, Lee SY (2018) CRISPR/Cas-based genome engineering in natural product discovery. Nat Prod Rep. https://doi.org/10.1039/c8np00089a

  2. Wang H, La Russa M, Qi LS (2016) CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem 85:227–264

    Article  CAS  PubMed  Google Scholar 

  3. Dy RL et al (2014) Remarkable mechanisms in microbes to resist phage infections. Annu Rev Virol 1(1):307–331

    Article  PubMed  Google Scholar 

  4. Chibani-Chennoufi S et al (2004) Phage-host interaction: an ecological perspective. J Bacteriol 186(12):3677–3686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jiang F, Doudna JA (2017) CRISPR-Cas9 structures and mechanisms. Annu Rev Biophys 46:505–529

    Article  CAS  PubMed  Google Scholar 

  6. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. de la Fuente-Nunez C, Lu TK (2017) CRISPR-Cas9 technology: applications in genome engineering, development of sequence-specific antimicrobials, and future prospects. Integr Biol (Camb) 9(2):109–122

    Article  Google Scholar 

  8. Rees HA, Liu DR (2018) Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 19(12):770–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rees HA, Liu DR (2018) Publisher correction: base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 19(12):801

    Article  CAS  PubMed  Google Scholar 

  10. Hess GT et al (2017) Methods and applications of CRISPR-mediated base editing in eukaryotic genomes. Mol Cell 68(1):26–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim D et al (2017) Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Nat Biotechnol 35(5):475–480

    Article  CAS  PubMed  Google Scholar 

  12. Eid A, Alshareef S, Mahfouz MM (2018) CRISPR base editors: genome editing without double-stranded breaks. Biochem J 475(11):1955–1964

    Article  CAS  PubMed  Google Scholar 

  13. Komor AC et al (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533(7603):420–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zuo E et al (2019) Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364(6437):289–292

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim YB et al (2017) Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotechnol 35(4):371–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nishida K et al (2016) Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353(6305)

    Article  PubMed  Google Scholar 

  17. Gaudelli NM et al (2017) Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551(7681):464–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Komor AC, Badran AH, Liu DR (2018) Editing the genome without double-stranded DNA breaks. ACS Chem Biol 13(2):383–388

    Article  CAS  PubMed  Google Scholar 

  19. Ebert AD, Liang P, Wu JC (2012) Induced pluripotent stem cells as a disease modeling and drug screening platform. J Cardiovasc Pharmacol 60(4):408–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Masip M et al (2010) Reprogramming with defined factors: from induced pluripotency to induced transdifferentiation. Mol Hum Reprod 16(11):856–868

    Article  CAS  PubMed  Google Scholar 

  21. Malik N, Rao MS (2013) A review of the methods for human iPSC derivation. Methods Mol Biol 997:23–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kelaini S, Cochrane A, Margariti A (2014) Direct reprogramming of adult cells: avoiding the pluripotent state. Stem Cells Cloning 7:19–29

    PubMed  PubMed Central  Google Scholar 

  23. Ghule PN et al (2011) Reprogramming the pluripotent cell cycle: restoration of an abbreviated G1 phase in human induced pluripotent stem (iPS) cells. J Cell Physiol 226(5):1149–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kwon DJ et al (2017) Effects of cell cycle regulators on the cell cycle synchronization of porcine induced pluripotent stem cells. Dev Reprod 21(1):47–54

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hwang GH et al (2018) Web-based design and analysis tools for CRISPR base editing. BMC Bioinformatics 19(1):542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The Jonas Children’s Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory are supported by the National Institutes of Health [P30EY019007, R01EY018213, §R01EY024698, R01EY026682, R21AG050437], National Cancer Institute Core [5P30CA013696], Foundation Fighting Blindness [TA-NMT-0116-0692-COLU], the Research to Prevent Blindness (RPB) Physician-Scientist Award, and unrestricted funds from RPB, New York, NY, USA. S.H.T. is a member of the RD-CURE Consortium and is supported by Kobi and Nancy Karp, the Crowley Family Fund, the Rosenbaum Family Foundation, the Tistou and Charlotte Kerstan Foundation, the Schneeweiss Stem Cell Fund, New York State [C029572], and the Gebroe Family Foundation. YJC and CLX contributed equally to this work. YJC and CLX wrote and edited the manuscript. XC and YTT were responsible for developing and finalizing the protocol. AGB, VBM, and SHT oversaw the writing process.

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media New York

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chang, YJ. et al. (2019). CRISPR Base Editing in Induced Pluripotent Stem Cells. In: Turksen, K. (eds) Stem Cells and Aging . Methods in Molecular Biology, vol 2045. Humana, New York, NY. https://doi.org/10.1007/7651_2019_243

Download citation

  • DOI: https://doi.org/10.1007/7651_2019_243

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9712-1

  • Online ISBN: 978-1-4939-9713-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics