Skip to main content

Investigation of Yeast Mitophagy with Fluorescence Microscopy and Western Blotting

  • Protocol
  • First Online:
Mitophagy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1759))

Abstract

Selective clearance of superfluous or dysfunctional mitochondria is a fundamental process that depends on the autophagic membrane trafficking pathways found in many cell types. This catabolic event, called mitophagy, is conserved from yeast to humans and serves to control mitochondrial quality and quantity. In budding yeast, degradation of mitochondria occurs under various physiological conditions, such as respiration at stationary phase, or starvation in a prolonged period. During these events, the transmembrane protein Atg32 localizes to the mitochondrial surface and plays a specific and essential role in yeast mitophagy. In this chapter, we describe methods to observe transport of mitochondria to the vacuole, a lytic compartment in yeast, using fluorescence microscopy, and semi-quantify the progression of Atg32-mediated mitophagy by Western blotting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Mishra P, Chan DC (2016) Metabolic regulation of mitochondrial dynamics. J Cell Biol 212:379–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Okamoto K, Kondo-Okamoto N (2012) Mitochondria and autophagy: critical interplay between the two homeostats. Biochim Biophys Acta 1820:595–600

    Article  CAS  Google Scholar 

  3. Labbe K, Murley A, Nunnari J (2014) Determinants and functions of mitochondrial behavior. Annu Rev Cell Dev Biol 30:357–391

    Article  CAS  PubMed  Google Scholar 

  4. Scheibye-Knudsen M, Fang EF, Croteau DL, Wilson DM 3rd, Bohr VA (2015) Protecting the mitochondrial powerhouse. Trends Cell Biol 25:158–170

    Article  CAS  PubMed  Google Scholar 

  5. Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337:1062–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mishra P, Chan DC (2014) Mitochondrial dynamics and inheritance during cell division, development and disease. Nat Rev Mol Cell Biol 15:634–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Okamoto K (2014) Organellophagy: eliminating cellular building blocks via selective autophagy. J Cell Biol 205:435–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yamano K, Matsuda N, Tanaka K (2016) The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation. EMBO Rep 17:300–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nguyen TN, Padman BS, Lazarou M (2016) Deciphering the molecular signals of PINK1/Parkin mitophagy. Trends Cell Biol 26:733–744

    Article  CAS  PubMed  Google Scholar 

  10. Liu L, Sakakibara K, Chen Q, Okamoto K (2014) Receptor-mediated mitophagy in yeast and mammalian systems. Cell Res 24:787–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wei H, Liu L, Chen Q (2015) Selective removal of mitochondria via mitophagy: distinct pathways for different mitochondrial stresses. Biochim Biophys Acta 1853:2784–2790

    Article  CAS  PubMed  Google Scholar 

  12. Murakawa T et al (2015) Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat Commun 6:7527

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kanki T, Wang K, Cao Y, Baba M, Klionsky DJ (2009) Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev Cell 17:98–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Okamoto K, Kondo-Okamoto N, Ohsumi Y (2009) Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev Cell 17:87–97

    Article  PubMed  Google Scholar 

  15. Eiyama A, Kondo-Okamoto N, Okamoto K (2013) Mitochondrial degradation during starvation is selective and temporally distinct from bulk autophagy in yeast. FEBS Lett 587:1787–1792

    Article  CAS  PubMed  Google Scholar 

  16. Sakakibara K et al (2015) Phospholipid methylation controls Atg32-mediated mitophagy and Atg8 recycling. EMBO J 34:2703–2719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Akinori Eiyama for valuable comments on this manuscript, and Noriko Kondo-Okamoto for constructing yeast strains and establishing the original methods. This work was supported by JSPS KAKENHI Grant Number 16H04784 and MEXT KAKENHI Grant Number 16H01203.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Okamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Nagumo, S., Okamoto, K. (2017). Investigation of Yeast Mitophagy with Fluorescence Microscopy and Western Blotting. In: Hattori, N., Saiki, S. (eds) Mitophagy. Methods in Molecular Biology, vol 1759. Humana Press, New York, NY. https://doi.org/10.1007/7651_2017_11

Download citation

  • DOI: https://doi.org/10.1007/7651_2017_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7749-9

  • Online ISBN: 978-1-4939-7750-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics