Skip to main content

Understanding Staphylococcal Nomenclature

  • Protocol
  • First Online:
The Genetic Manipulation of Staphylococci

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1373))

Abstract

Bacteria are often grouped by a variety of properties, including biochemical activity, appearance, and more recently, nucleic acid sequence differences. In the case of human pathogens, significant work goes into “typing” strains to understand relatedness. This is especially true when trying to understand the epidemiology of these organisms. In attempts to group Staphylococci, a variety of methods and nomenclatures have been employed, which can often serve as a point of confusion to those entering the field. Therefore, the intent of this chapter is to give a brief overview of some common methods and associated nomenclature used to type Staphylococci, with S. aureus as an example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ogston A (1882) Micrococcus poisoning. J Anat Physiol 17:24–58

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Rosenbach FJ (1884) In: Bergman J (ed) Mikro-qrganismen bei den wund-infections-krankheiten des menschen. Wiesbaden, Germany

    Google Scholar 

  3. Malachowa N, DeLeo FR (2010) Mobile genetic elements of Staphylococcus aureus. Cell Mol Life Sci 67:3057–3071

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Mathema B, Mediavilla JR, Chen L et al (2009) Evolution and taxonomy of Staphylococci. In: Crossley KB, Jefferson KK, Archer GL, Fowler VG Jr (eds) Staphylococci in human disease, 2nd edn. Blackwell Publishing, Hoboken, NJ, pp 31–64

    Chapter  Google Scholar 

  5. Panizzi P, Friedrich R, Fuentes-Prior P et al (2006) Fibrinogen substrate recognition by staphylocoagulase. (pro)thrombin complexes. J Biol Chem 281:1179–1187

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Pelz A, Wieland KP, Putzbach K et al (2005) Structure and biosynthesis of staphyloxanthin from Staphylococcus aureus. J Biol Chem 280:32493–32498

    Article  CAS  PubMed  Google Scholar 

  7. Jevons MP (1961) “Celbenin” - resistant Staphylococci. Br Med J 1:124–125

    Article  PubMed Central  Google Scholar 

  8. Hiramatsu K, Hanaki H, Ino T et al (1997) Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J Antimicrob Chemother 40:135–136

    Article  CAS  PubMed  Google Scholar 

  9. Hafer C, Lin Y, Kornblum J et al (2012) Contribution of selected gene mutations to resistance in clinical isolates of vancomycin-intermediate Staphylococcus aureus. Antimicrob Agents Chemother 56:5845–5851

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Kato Y, Suzuki T, Ida T et al (2010) Genetic changes associated with glycopeptide resistance in Staphylococcus aureus: predominance of amino acid substitutions in YvqF/VraSR. J Antimicrob Chemother 65:37–45

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Watanabe Y, Cui L, Katayama Y et al (2011) Impact of rpoB mutations on reduced vancomycin susceptibility in Staphylococcus aureus. J Clin Microbiol 49:2680–2684

    Article  PubMed Central  PubMed  Google Scholar 

  12. Weigel LM, Clewell DB, Gill SR et al (2003) Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 302:1569–1571

    Article  CAS  PubMed  Google Scholar 

  13. Tenover FC, Moellering RC Jr (2007) The rationale for revising the Clinical and Laboratory Standards Institute vancomycin minimal inhibitory concentration interpretive criteria for Staphylococcus aureus. Clin Infect Dis 44:1208–1215

    Article  CAS  PubMed  Google Scholar 

  14. Aiello AE, Lowy FD, Wright LN et al (2006) Meticillin-resistant Staphylococcus aureus among US prisoners and military personnel: review and recommendations for future studies. Lancet Infect Dis 6:335–341

    Article  PubMed  Google Scholar 

  15. Kazakova SV, Hageman JC, Matava M et al (2005) A clone of methicillin-resistant Staphylococcus aureus among professional football players. N Engl J Med 352:468–475

    Article  CAS  PubMed  Google Scholar 

  16. Malcolm B (2011) The rise of methicillin-resistant Staphylococcus aureus in U.S. correctional populations. J Correct Health Care 17:254–265

    Article  PubMed Central  PubMed  Google Scholar 

  17. Mishaan AM, Mason EO Jr, Martinez-Aguilar G et al (2005) Emergence of a predominant clone of community-acquired Staphylococcus aureus among children in Houston, Texas. Pediatr Infect Dis J 24:201–206

    Article  PubMed  Google Scholar 

  18. Seybold U, Kourbatova EV, Johnson JG et al (2006) Emergence of community-associated methicillin-resistant Staphylococcus aureus USA300 genotype as a major cause of health care-associated blood stream infections. Clin Infect Dis 42:647–656

    Article  CAS  PubMed  Google Scholar 

  19. Cuny C, Kock R, Witte W (2013) Livestock associated MRSA (LA-MRSA) and its relevance for humans in Germany. Int J Med Microbiol 303:331–337

    Article  PubMed  Google Scholar 

  20. de Boer E, Zwartkruis-Nahuis JT, Wit B et al (2009) Prevalence of methicillin-resistant Staphylococcus aureus in meat. Int J Food Microbiol 134:52–56

    Article  PubMed  Google Scholar 

  21. Kreausukon K, Fetsch A, Kraushaar B et al (2012) Prevalence, antimicrobial resistance, and molecular characterization of methicillin-resistant Staphylococcus aureus from bulk tank milk of dairy herds. J Dairy Sci 95:4382–4388

    Article  CAS  PubMed  Google Scholar 

  22. Frenay HM, Bunschoten AE, Schouls LM et al (1996) Molecular typing of methicillin-resistant Staphylococcus aureus on the basis of protein A gene polymorphism. Eur J Clin Microbiol Infect Dis 15:60–64

    Article  CAS  PubMed  Google Scholar 

  23. Friedrich AW, Witte W, Harmsen D et al (2006) SeqNet.org: a European laboratory network for sequence-based typing of microbial pathogens. Euro Surveill 11(E060112):060114

    Google Scholar 

  24. Enright MC, Day NP, Davies CE et al (2000) Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol 38:1008–1015

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Feil EJ, Li BC, Aanensen DM et al (2004) eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol 186:1518–1530

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Thomas JC, Vargas MR, Miragaia M et al (2007) Improved multilocus sequence typing scheme for Staphylococcus epidermidis. J Clin Microbiol 45:616–619

    Article  PubMed Central  PubMed  Google Scholar 

  27. Francois P, Huyghe A, Charbonnier Y et al (2005) Use of an automated multiple-locus, variable-number tandem repeat-based method for rapid and high-throughput genotyping of Staphylococcus aureus isolates. J Clin Microbiol 43:3346–3355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Sabat A, Krzyszton-Russjan J, Strzalka W et al (2003) New method for typing Staphylococcus aureus strains: multiple-locus variable-number tandem repeat analysis of polymorphism and genetic relationships of clinical isolates. J Clin Microbiol 41:1801–1804

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Francois P, Hochmann A, Huyghe A et al (2008) Rapid and high-throughput genotyping of Staphylococcus epidermidis isolates by automated multilocus variable-number of tandem repeats: a tool for real-time epidemiology. J Microbiol Methods 72:296–305

    Article  CAS  PubMed  Google Scholar 

  30. Johansson A, Koskiniemi S, Gottfridsson P et al (2006) Multiple-locus variable-number tandem repeat analysis for typing of Staphylococcus epidermidis. J Clin Microbiol 44:260–265

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. SenGupta DJ, Cummings LA, Hoogestraat DR et al (2014) Whole-genome sequencing for high-resolution investigation of methicillin-resistant Staphylococcus aureus epidemiology and genome plasticity. J Clin Microbiol 52:2787–2796

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey L. Bose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Krute, C.N., Bose, J.L. (2015). Understanding Staphylococcal Nomenclature. In: Bose, J. (eds) The Genetic Manipulation of Staphylococci. Methods in Molecular Biology, vol 1373. Humana Press, New York, NY. https://doi.org/10.1007/7651_2015_283

Download citation

  • DOI: https://doi.org/10.1007/7651_2015_283

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3157-6

  • Online ISBN: 978-1-4939-3158-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics