Skip to main content

Heat Shock Proteins, a Key Modulator of Neuroinflammation in Alzheimer’s Disease

  • Chapter
  • First Online:
Heat Shock Proteins in Inflammatory Diseases

Part of the book series: Heat Shock Proteins ((HESP,volume 22))

Abstract

Introduction

Heat shock proteins (Hsp) are a key player to maintain protein homeostasis and folding in neurodegenerative diseases (NDDs) such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), etc. Hsp are associated with NDs via induction of proper folding of toxic misfolded protein. AD is the second most common neurodegenerative disease worldwide and is characterized by accumulation of Aβ42 plaques and hyperphosphorylated tau that results in cognitive decline, neuronal death and affects brain structure. From the last past decade, several researchers proved that AD is not restricted to the brain, but it also manipulates the immune response and activation of inflammatory cells. AD is the amalgam of neurobiology and Immunology. One of the core pathologies of AD is neuroinflammation which activates the innate immune response followed by activation of microglia (macrophages), a resident immune cell of CNS and astroglia cells. Amyloid plaques and neurofibrillary tangles activate neuroinflammatory components such as microglia which further induce the production of a variety of proinflammatory cytokines, ROS, nitric oxide, eicosanoids, etc. Previous studies have shown that apart from Hsp molecular chaperone function, it also plays a role in neuroinflammation and disease-related signaling mechanisms. In here, we aim to summarize the details of Hsp as a key modulator of neuroinflammation in Alzheimer’s Disease.

Methods

The authors reviewed most of the relevant papers of Hsp and their role in neuroinflammation in AD.

Results

Available data suggest that Hsp plays a protective role in neuroinflammation by acting as an immunomodulator in the central nervous system and is also associated with astrocytes in Aβ42 plaques in the brain of AD patients. It has been demonstrated that several signaling pathways are activated by cytokines such as TNF-α, INF-γ, IL-1β, etc. in the brain which exacerbates the AD-related pathologies and overexpression of Hsp decreases the inflammatory cytokines in the brain and decrease the progression and severity of the disease.

Conclusions

Hsp are significantly involved in the modulation of neuroinflammation via interacting with inflammation-causing molecules and helps in the prevention of neuroinflammation in AD. It is used as a potential therapeutic target for the prevention of AD-related pathologies. The supplementation of compounds, known as inducers/co-inducers of Hsp in AD might be one of the potential therapeutic targets to treat/prolong the AD related pathologies in future. Moreover, membrane lipid rearrangement and nanoparticle-based therapies are also involved in decreasing the neuroinflammation via increasing the Hsp level at the site of neuroinflammation. Thus, apart from the supplementation of drugs to modulate the Hsp level, the interaction of Hsp with inflammatory cells and their affinity to reduce/inactivate them should be a more focused area in the case of AD and need to be extensively studied to get better therapeutic approach to treat the AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

17-AAG:

17-allylamino-demethoxygeldanamycin

AA:

arachidonic acid

AAVs:

adeno-associated viruses

ACD:

α-crystallin domain

AD:

Alzheimer’s disease

AP1:

activator protein 1

ApoE:

apolipoprotein E

APP:

amyloid precursor protein

Appl:

amyloid precursor protein like

ASK1:

apoptosis signal-regulating kinase 1

ATP:

adenosine triphosphate

Aβ:

amyloid-β

BACE-1:

beta-site amyloid precursor protein cleaving enzyme – 1

BAX:

Bcl-2-associated X protein

BBB:

blood brain barrier

Bcl2:

B-cell lymphoma 2

CD:

cluster of differentiation

Clp:

Casein lytic proteinase

CNS:

central nervous system

COX-2:

cyclooxygenase-2

CPX:

cyclooxygenase – 2

CSF:

cerebrospinal fluid

CTF:

C-terminal fragment

CTL:

cytotoxic T lymphocytes

CTR:

c-terminal region

CvHsp:

cardiovascular heat shock protein

DAXX:

death domain associated protein

DHMN2C:

distal hereditary motor neuropathy 2C

DMPK:

myotonic dystrophy protein kinase

DNA:

deoxyribonucleic acid

DPPC:

dipalmitoyl phosphatidyl choline

EEVD:

Glu-Glu-Val-Asp (Glu- glutamic acid, Val- Valine, Asp- Aspartic acid)

eIF4E:

eukaryotic translation initiation factor

EPF:

extracellular protein factor

ER:

endoplasmic reticulum

ERGIC:

ER-Golgi intermediate compartment

ERK:

extracellular-signal regulated kinases

FLT3:

FMS-like tyrosine kinase-3

GGA:

Geranylgeranyl acetone

GRP78:

glucose-regulated protein 78kD

HD:

Huntington’s disease

HSE:

heat shock elements

HSF:

heat shock factor

Hsp:

heat shock proteins

HTPG:

high-temperature protein G

IL:

interleukins

INF:

interferone

iNOS:

inducible nitric oxide synthase

JAK2:

Janus kinase

JNK:

c-Jun N-terminal kinase

kDa:

kilo Dalton

LPS:

lipopolysaccharides

MAPK:

mitogen-activated protein kinase

MCP-1:

macrophage chemo-attractant protein-1

M-CSF:

macrophage colony-stimulating factor

MHC:

major histocompatibility complex

MIP-1α:

macrophage inflammatory peptide

MKBP:

myotonic dystrophy kinase binding protein

MN:

motor neuron

MS:

multiple sclerosis

MtUPR:

mitochondrial related unfolding protein response

Myd88:

myeloid differentiation factor 88

NDDs:

neurodegenerative diseases

NF-kB:

nuclear factor-kappa B

NFT:

neurofibrillary tangles

NO:

nitric oxide

NOD:

leucine rich repeat and pyrin containing protein 3 (NLRP3)

NTR:

N-terminal region

ODF1:

outer dense fiber protein 1

PD:

Parkinson’s disease

PG:

prostaglandins

PI3K:

phosphatidylinositol-3-kinase

PP1:

protein phosphatase 1

PS:

presenilin

RAF:

rapidly accelerated fibrosarcoma

RIP:

receptor-interacting kinase

ROS:

reactive oxygen species

SAPK:

stress-activated kinases

sAPP:

soluble amyloid precursor protein

sHsp:

small heat shock protein

STAT-1:

signal transducers and activator of transcription-1

TBI:

traumatic brain injury

TCTEL1:

T-complex-associated-testis-expressed 1-like 1

TGF:

transforming growth factor

TLR:

toll like receptor

TNF:

tumor necrosis factor

TRAP:

tryptophan regulated attenuation protein

WD/EPF domain:

WD (Tryptophan-aspartic acid (W-D) dipeptide), epf-domain

References

  1. Ikwegbue PC, Masamba P, Oyinloye BE, Kappo AP (2018) Roles of heat shock proteins in apoptosis, oxidative stress, human inflammatory diseases, and cancer. Pharmaceuticals 11:2

    Article  CAS  Google Scholar 

  2. Panchal K, Kumar A, Tiwari AK (2018) Heat shock protein 70 and molecular confession during neurodegeneration. In: HSP70 in human diseases and disorders. Springer, New York pp 3–35

    Google Scholar 

  3. Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10:S10

    Article  PubMed  CAS  Google Scholar 

  4. Verghese J, Abrams J, Wang Y, Morano KA (2012) Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev 76:115–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Arya R, Mallik M, Lakhotia SC (2007) Heat shock genes—integrating cell survival and death. J Biosci 32:595–610

    Article  CAS  PubMed  Google Scholar 

  6. Beere HM (2004) The stress of dying’: the role of heat shock proteins in the regulation of apoptosis. J Cell Sci 117:2641–2651

    Article  CAS  PubMed  Google Scholar 

  7. Li Z, Srivastava P (2003) Heat-shock proteins. Curr Protoc Immunol 58:A. 1T. 1–A. 1T. 6

    Article  Google Scholar 

  8. Mosser DD, Caron AW, Bourget L, Meriin AB, Sherman MY, Morimoto RI, Massie B (2000) The chaperone function of Hsp70 is required for protection against stress-induced apoptosis. Mol Cell Biol 20:7146–7159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Candido E (2001) Heat shock proteins

    Google Scholar 

  10. Jee H (2016) Size dependent classification of heat shock proteins: a mini-review. J Exerc Rehabil 12:255

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lindquist S, Craig E (1988) The heat-shock proteins. Annu Rev Genet 22:631–677

    Article  CAS  PubMed  Google Scholar 

  12. Ritossa F (1968) Unstable redundancy of genes for ribosomal RNA. Proc Natl Acad Sci U S A 60:509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Miller D, Fort PE (2018) Heat shock proteins regulatory role in neurodevelopment. Front Neurosci 12:821

    Article  PubMed  PubMed Central  Google Scholar 

  14. Latchman DS (1998) Heat shock proteins: protective effect and potential therapeutic use. Int J Mol Med 2:375–456

    CAS  PubMed  Google Scholar 

  15. Wang X, Chen M, Zhou J, Zhang X (2014) HSP27, 70 and 90, anti-apoptotic proteins, in clinical cancer therapy. Int J Oncol 45:18–30

    Article  PubMed  CAS  Google Scholar 

  16. Gupta RS, Singh B (1994) Phylogenetic analysis of 70 kD heat shock protein sequences suggests a chimeric origin for the eukaryotic cell nucleus. Curr Biol 4:1104–1114

    Article  CAS  PubMed  Google Scholar 

  17. Kim JY, Han Y, Lee JE, Yenari MA (2018) The 70-kDa heat shock protein (Hsp70) as a therapeutic target for stroke. Expert Opin Ther Targets 22:191–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bolhassani A, Agi E (2019) Heat shock proteins in infection. Clin Chim Acta 498:90–100

    Article  CAS  PubMed  Google Scholar 

  19. Multhoff G (2006) Heat shock proteins in immunity. In: Molecular chaperones in health and disease. Springer, Berlin/New York, pp 279–304

    Chapter  Google Scholar 

  20. Tobian AA, Canaday DH, Boom WH, Harding CV (2004) Bacterial heat shock proteins promote CD91-dependent class I MHC cross-presentation of chaperoned peptide to CD8+ T cells by cytosolic mechanisms in dendritic cells versus vacuolar mechanisms in macrophages. J Immunol 172:5277–5286

    Article  CAS  PubMed  Google Scholar 

  21. Pockley AG (2001) Heat shock proteins in health and disease: therapeutic targets or therapeutic agents? Expert Rev Mol Med 3:1–21

    Article  CAS  PubMed  Google Scholar 

  22. Voellmy R (1994) Transduction of the stress signal and mechanisms of transcriptional regulation of heat shock/stress protein gene expression in higher eukaryotes. Crit Rev Eukaryot Gene Expr 4:357–401

    CAS  PubMed  Google Scholar 

  23. Egel R (2013) The molecular biology of Schizosaccharomyces pombe: genetics, genomics and beyond. Springer Science & Business Media, Berlin/Heidelberg

    Google Scholar 

  24. Neef DW, Jaeger AM, Thiele DJ (2013) Genetic selection for constitutively trimerized human HSF1 mutants identifies a role for coiled-coil motifs in DNA binding. G3: Genes Genomes Genetics 3:1315–1324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Sharp FR, Zhan X, Liu D-Z (2013) Heat shock proteins in the brain: role of Hsp70, Hsp 27, and HO-1 (Hsp32) and their therapeutic potential. Transl Stroke Res 4:685–692

    Article  CAS  PubMed  Google Scholar 

  26. Morimoto RI (1998) Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12:3788–3796

    Article  CAS  PubMed  Google Scholar 

  27. Voisine C, Orton K, Morimoto RI (2007) Protein misfolding, chaperone networks, and the heat shock response in the nervous system. Elsevier/Academic Press, United States

    Google Scholar 

  28. Åkerfelt M, Morimoto RI, Sistonen L (2010) Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 11:545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Guettouche T, Boellmann F, Lane WS, Voellmy R (2005) Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress. BMC Biochem 6:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Kline MP, Morimoto RI (1997) Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation. Mol Cell Biol 17:2107–2115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Naidu SD, Sutherland C, Zhang Y, Risco A, de la Vega L, Caunt CJ, Hastie CJ, Lamont DJ, Torrente L, Chowdhry S (2016) Heat shock factor 1 is a substrate for p38 mitogen-activated protein kinases. Mol Cell Biol 36:2403–2417

    Article  CAS  Google Scholar 

  32. Mivechi NF, Shi XY, Hahn GM (1995) Stable overexpression of human HSF-1 in murine cells suggests activation rather than expression of HSF-1 to be the key regulatory step in the heat shock gene expression. J Cell Biochem 59:266–280

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Y, Chou S-D, Murshid A, Prince TL, Schreiner S, Stevenson MA, Calderwood SK (2011) The role of heat shock factors in stress-induced transcription. In: Molecular chaperones. Springer, New York pp 21–32

    Google Scholar 

  34. Caplan AJ, Cyr DM, Douglas MG (1992) YDJ1p facilitates polypeptide translocation across different intracellular membranes by a conserved mechanism. Cell 71:1143–1155

    Article  CAS  PubMed  Google Scholar 

  35. Zhong T, Arndt KT (1993) The yeast SIS1 protein, a DnaJ homolog, is required for the initiation of translation. Cell 73:1175–1186

    Article  CAS  PubMed  Google Scholar 

  36. Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366

    Article  CAS  PubMed  Google Scholar 

  37. Ohtsuka K, Hata M (2000) Mammalian HSP40/DNAJ homologs: cloning of novel cDNAs and a proposal for their classification and nomenclature. Cell Stress Chaperones 5:98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Qian X, Hou W, Zhengang L, Sha B (2001) Direct interactions between molecular chaperones heat-shock protein (Hsp) 70 and Hsp40: yeast Hsp70 Ssa1 binds the extreme C-terminal region of yeast Hsp40 Sis1. Biochem J 361:27–34

    Article  Google Scholar 

  39. Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858

    Article  CAS  PubMed  Google Scholar 

  40. Hennessy F, Nicoll WS, Zimmermann R, Cheetham ME, Blatch GL (2005) Not all J domains are created equal: implications for the specificity of Hsp40–Hsp70 interactions. Protein Sci 14:1697–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Benyair R, Ron E, Lederkremer GZ (2011) Protein quality control, retention, and degradation at the endoplasmic reticulum. Int Rev Cell Mol Biol 292:197–280. Elsevier

    Article  CAS  PubMed  Google Scholar 

  42. Sopha P, Ren HY, Grove DE, Cyr DM (2017) Endoplasmic reticulum stress–induced degradation of DNAJB12 stimulates BOK accumulation and primes cancer cells for apoptosis. J Biol Chem 292:11792–11803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Delbecq SP, Klevit RE (2019) HSPB5 engages multiple states of a destabilized client to enhance chaperone activity in a stress-dependent manner. J Biol Chem 294:3261–3270

    Article  CAS  PubMed  Google Scholar 

  44. Ito H, Kamei K, Iwamoto I, Inaguma Y, Tsuzuki M, Kishikawa M, Shimada A, Hosokawa M, Kato K (2003) Hsp27 suppresses the formation of inclusion bodies induced by expression of R120GαB-crystallin, a cause of desmin-related myopathy. Cellular and Molecular Life Sciences CMLS 60:1217–1223

    Article  CAS  PubMed  Google Scholar 

  45. Tasab M, Batten MR, Bulleid NJ (2000) Hsp47: a molecular chaperone that interacts with and stabilizes correctly-folded procollagen. EMBO J 19:2204–2211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brown KE, Broadhurst KA, Mathahs MM, Brunt EM, Schmidt WN (2005) Expression of HSP47, a collagen-specific chaperone, in normal and diseased human liver. Lab Investig 85:789

    Article  CAS  PubMed  Google Scholar 

  47. Mala JGS, Rose C (2010) Interactions of heat shock protein 47 with collagen and the stress response: an unconventional chaperone model? Life Sci 87:579–586

    Article  CAS  PubMed  Google Scholar 

  48. Ishida Y, Nagata K (2011) Hsp47 as a collagen-specific molecular chaperone. Methods Enzymol 499:167–182. Elsevier

    Article  CAS  PubMed  Google Scholar 

  49. Widmer C, Gebauer JM, Brunstein E, Rosenbaum S, Zaucke F, Drögemüller C, Leeb T, Baumann U (2012) Molecular basis for the action of the collagen-specific chaperone Hsp47/SERPINH1 and its structure-specific client recognition. Proc Natl Acad Sci 109:13243–13247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rousseau J, Gioia R, Layrolle P, Lieubeau B, Heymann D, Rossi A, Marini JC, Trichet V, Forlino A (2014) Allele-specific Col1a1 silencing reduces mutant collagen in fibroblasts from Brtl mouse, a model for classical osteogenesis imperfecta. Eur J Hum Genet 22:667

    Article  CAS  PubMed  Google Scholar 

  51. Atkinson K (2017) The biology and therapeutic application of mesenchymal cells, 2 volume set. Wiley, Hoboken

    Google Scholar 

  52. Song X, Liao Z, Zhou C, Lin R, Lu J, Cai L, Tan X, Zeng W, Lu X, Zheng W (2017) HSP47 is associated with the prognosis of laryngeal squamous cell carcinoma by inhibiting cell viability and invasion and promoting apoptosis. Oncol Rep 38:2444–2452

    Article  CAS  PubMed  Google Scholar 

  53. Cheng MY, Hartl F-U, Norwich AL (1990) The mitochondrial chaperonin Hsp60 is required for its own assembly. Nature 348:455

    Article  CAS  PubMed  Google Scholar 

  54. Itoh H, Kobayashi R, Wakui H, Komatsuda A, Ohtani H, Miura AB, Otaka M, Masamune O, Andoh H, Koyama K (1995) Mammalian 60-kDa stress protein (chaperonin homolog). Identification, biochemical properties, and localization. J Biol Chem 270:13429–13435

    Article  CAS  PubMed  Google Scholar 

  55. Soltys BJ, Gupta RS (1996) Immunoelectron microscopic localization of the 60-kDa heat shock chaperonin protein (Hsp60) in mammalian cells. Exp Cell Res 222:16–27

    Article  CAS  PubMed  Google Scholar 

  56. Nielsen KL, McLennan N, Masters M, Cowan NJ (1999) A single-ring mitochondrial chaperonin (Hsp60-Hsp10) can substitute for GroEL-GroES in vivo. J Bacteriol 181:5871–5875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kirchhoff S, Gupta S, Knowlton AA (2002) Cytosolic heat shock protein 60, apoptosis, and myocardial injury. Circulation 105:2899–2904

    Article  CAS  PubMed  Google Scholar 

  58. Gupta S, Knowlton AA (2007) HSP60 trafficking in adult cardiac myocytes: role of the exosomal pathway. Am J Phys Heart Circ Phys 292:H3052–H3056

    CAS  Google Scholar 

  59. Chun JN, Choi B, Lee KW, Lee DJ, Kang DH, Lee JY, Song IS, Kim HI, Lee S-H, Kim HS (2010) Cytosolic Hsp60 is involved in the NF-κB-dependent survival of cancer cells via IKK regulation. PLoS One 5:e9422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Zonneveld-Huijssoon E, van Wijk F, Roord S, Delemarre E, Meerding J, de Jager W, Klein M, Raz E, Albani S, Kuis W (2012) TLR9 agonist CpG enhances protective nasal HSP60 peptide vaccine efficacy in experimental autoimmune arthritis. Ann Rheum Dis 71:1706–1715

    Article  CAS  PubMed  Google Scholar 

  61. Henderson B, Kaiser F (2013) Do reciprocal interactions between cell stress proteins and cytokines create a new intra-/extra-cellular signalling nexus? Cell Stress Chaperones 18:685–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Finka A, Mattoo RU, Goloubinoff P (2016) Experimental milestones in the discovery of molecular chaperones as polypeptide unfolding enzymes. Annu Rev Biochem 85:715–742

    Article  CAS  PubMed  Google Scholar 

  63. Wiechmann K, Müller H, König S, Wielsch N, Svatoš A, Jauch J, Werz O (2017) Mitochondrial chaperonin HSP60 is the apoptosis-related target for myrtucommulone. Cell Chem Biol 24:614–623. e616

    Article  CAS  PubMed  Google Scholar 

  64. Meng Q, Li BX, Xiao X (2018) Toward developing chemical modulators of Hsp60 as potential therapeutics. Front Mol Biosci 5:35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Vilasi S, Bulone D, Caruso Bavisotto C, Campanella C, Marino Gammazza A, San Biagio PL, Cappello F, Conway de Macario E, Macario AJ (2018) Chaperonin of group I: oligomeric spectrum and biochemical and biological implications. Front Mol Biosci 4:99

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Freeman BC, Myers M, Schumacher R, Morimoto RI (1995) Identification of a regulatory motif in Hsp70 that affects ATPase activity, substrate binding and interaction with HDJ-1. EMBO J 14:2281–2292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Azem A, Oppliger W, Lustig A, Jenö P, Feifel B, Schatz G, Horst M (1997) The Mitochondrial Hsp70 Chaperone System effect of adenine nucleotides, peptide substrate, and mGrpE on the oligomeric state of mHsp70. J Biol Chem 272:20901–20906

    Article  CAS  PubMed  Google Scholar 

  68. Sriram M, Osipiuk J, Freeman B, Morimoto R, Joachimiak A (1997) Human Hsp70 molecular chaperone binds two calcium ions within the ATPase domain. Structure 5:403–414

    Article  CAS  PubMed  Google Scholar 

  69. Ngosuwan J, Wang NM, Fung KL, Chirico WJ (2003) Roles of cytosolic Hsp70 and Hsp40 molecular chaperones in post-translational translocation of presecretory proteins into the endoplasmic reticulum. J Biol Chem 278:7034–7042

    Article  CAS  PubMed  Google Scholar 

  70. Banfi G, Dolci A, Verna R, Corsi MM (2004) Exercise raises serum heat-shock protein 70 (Hsp70) levels. Clin Chem Lab Med 42:1445–1446

    Article  CAS  PubMed  Google Scholar 

  71. Ogawa Y, Miura Y, Harazono A, Kanai-Azuma M, Akimoto Y, Kawakami H, Yamaguchi T, Toda T, Endo T, Tsubuki M (2011) Proteomic analysis of two types of exosomes in human whole saliva. Biol Pharm Bull 34:13–23

    Article  CAS  PubMed  Google Scholar 

  72. Mogk A, Kummer E, Bukau B (2015) Cooperation of Hsp70 and Hsp100 chaperone machines in protein disaggregation. Front Mol Biosci 2:22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Radons J (2016) The human HSP70 family of chaperones: where do we stand? Cell Stress Chaperones 21:379–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Żwirowski S, Kłosowska A, Obuchowski I, Nillegoda NB, Piróg A, Ziętkiewicz S, Bukau B, Mogk A, Liberek K (2017) Hsp70 displaces small heat shock proteins from aggregates to initiate protein refolding. EMBO J 36:783–796

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Fernández-Fernández MR, Valpuesta JM (2018) Hsp70 chaperone: a master player in protein homeostasis. F1000Research 7:pii: F1000

    Google Scholar 

  76. Mayer MP, Gierasch LM (2019) Recent advances in the structural and mechanistic aspects of Hsp70 molecular chaperones. J Biol Chem 294:2085–2097

    Article  CAS  PubMed  Google Scholar 

  77. Rosenzweig R, Nillegoda NB, Mayer MP, Bukau B (2019) The Hsp70 chaperone network. Nat Rev Mol Cell Biol 20:665–680

    Article  CAS  PubMed  Google Scholar 

  78. Nair SC, Rimerman RA, Toran EJ, Chen S, Prapapanich V, Butts RN, Smith DF (1997) Molecular cloning of human FKBP51 and comparisons of immunophilin interactions with Hsp90 and progesterone receptor. Mol Cell Biol 17:594–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pratt WB (1997) The role of TheHsp90-based chaperone system in signal transduction by nuclear receptors and receptors signaling via map kinase. Annu Rev Pharmacol Toxicol 37:297–326

    Article  CAS  PubMed  Google Scholar 

  80. Johnson BD, Schumacher RJ, Ross ED, Toft DO (1998) Hop modulates Hsp70/Hsp90 interactions in protein folding. J Biol Chem 273:3679–3686

    Article  CAS  PubMed  Google Scholar 

  81. Mayer MP, Nikolay R, Bukau B (2002) Aha, another regulator for Hsp90 chaperones. Mol Cell 10:1255–1256

    Article  CAS  PubMed  Google Scholar 

  82. Zhao Y, Lu J, Sun H, Chen X, Huang W, Tao D, Huang B (2005) Histone acetylation regulates both transcription initiation and elongation of Hsp22 gene in Drosophila. Biochem Biophys Res Commun 326:811–816

    Article  CAS  PubMed  Google Scholar 

  83. Li J, Soroka J, Buchner J (2012) The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones. Biochim Biophys Acta Mol Cell Res 1823:624–635

    Article  CAS  Google Scholar 

  84. Buchner J, Li J (2013) Structure, function and regulation of the Hsp90 machinery. Biom J 36:106

    Google Scholar 

  85. Biella G, Fusco F, Nardo E, Bernocchi O, Colombo A, Lichtenthaler SF, Forloni G, Albani D (2016) Sirtuin 2 inhibition improves cognitive performance and acts on amyloid-β protein precursor processing in two Alzheimer’s disease mouse models. J Alzheimers Dis 53:1193–1207

    Article  CAS  PubMed  Google Scholar 

  86. Hoter A, El-Sabban ME, Naim HY (2018) The HSP90 family: structure, regulation, function, and implications in health and disease. Int J Mol Sci 19:2560

    Article  PubMed Central  CAS  Google Scholar 

  87. Kravats AN, Hoskins JR, Reidy M, Johnson JL, Doyle SM, Genest O, Masison DC, Wickner S (2018) Functional and physical interaction between yeast Hsp90 and Hsp70. Proc Natl Acad Sci 115:E2210–E2219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Parsell DA, Kowal AS, Singer MA, Lindquist S (1994) Protein disaggregation mediated by heatshock protein Hspl04. Nature 372:475

    Article  CAS  PubMed  Google Scholar 

  89. Singh A, Singh U, Mittal D, Grover A (2010) Genome-wide analysis of rice ClpB/HSP100, ClpC and ClpD genes. BMC Genomics 11:95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Rath P, K Singh P, K Batra J (2012) Functional and structural characterization of Helicobacter pylori ClpX: a molecular chaperone of Hsp100 family. Protein Pept Lett 19:1263–1271

    Article  CAS  PubMed  Google Scholar 

  91. Zolkiewski M, Zhang T, Nagy M (2012) Aggregate reactivation mediated by the Hsp100 chaperones. Arch Biochem Biophys 520:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zeymer C, Werbeck ND, Schlichting I, Reinstein J (2013) The molecular mechanism of Hsp100 chaperone inhibition by the prion curing agent guanidinium chloride. J Biol Chem 288:7065–7076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bobkova NV, Evgen’ev M, Garbuz DG, Kulikov AM, Morozov A, Samokhin A, Velmeshev D, Medvinskaya N, Nesterova I, Pollock A (2015) Exogenous Hsp70 delays senescence and improves cognitive function in aging mice. Proc Natl Acad Sci 112:16006–16011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Deville C, Carroni M, Franke KB, Topf M, Bukau B, Mogk A, Saibil HR (2017) Structural pathway of regulated substrate transfer and threading through an Hsp100 disaggregase. Sci Adv 3:e1701726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Alderson TR, Roche J, Gastall HY, Dias DM, Pritišanac I, Ying J, Bax A, Benesch JL, Baldwin AJ (2019) Local unfolding of the HSP27 monomer regulates chaperone activity. Nat Commun 10:1068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Doshi BM, Hightower LE, Lee J (2009) The role of Hsp27 and actin in the regulation of movement in human cancer cells responding to heat shock. Cell Stress Chaperones 14:445–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Arrigo A-P, Gibert B (2014) HspB1, HspB5 and HspB4 in human cancers: potent oncogenic role of some of their client proteins. Cancers 6:333–365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Kuroyanagi G, Tokuda H, Yamamoto N, Matsushima-Nishiwaki R, Kozawa O, Otsuka T (2015) Unphosphorylated HSP27 (HSPB1) regulates the translation initiation process via a direct association with eIF4E in osteoblasts. Int J Mol Med 36:881–889

    Article  CAS  PubMed  Google Scholar 

  99. Rajagopal P, Liu Y, Shi L, Clouser AF, Klevit RE (2015) Structure of the α-crystallin domain from the redox-sensitive chaperone, HSPB1. J Biomol NMR 63:223–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Matsushima-Nishiwaki R, Toyoda H, Takamatsu R, Yasuda E, Okuda S, Maeda A, Kaneoka Y, Yoshimi N, Kumada T, Kozawa O (2017) Heat shock protein 22 (HSPB8) reduces the migration of hepatocellular carcinoma cells through the suppression of the phosphoinositide 3-kinase (PI3K)/AKT pathway. Biochim Biophys Acta Mol Basis Dis 1863:1629–1639

    Article  CAS  PubMed  Google Scholar 

  101. Mymrikov EV, Daake M, Richter B, Haslbeck M, Buchner J (2017) The chaperone activity and substrate spectrum of human small heat shock proteins. J Biol Chem 292:672–684

    Article  CAS  PubMed  Google Scholar 

  102. Kappé G, Verschuure P, Philipsen RL, Staalduinen AA, Van de Boogaart P, Boelens WC, De Jong WW (2001) Characterization of two novel human small heat shock proteins: protein kinase-related HspB8 and testis-specific HspB9. Biochim Biophys Acta Gene Struct Expr 1520:1–6

    Article  Google Scholar 

  103. Basha E, O’Neill H, Vierling E (2012) Small heat shock proteins and α-crystallins: dynamic proteins with flexible functions. Trends Biochem Sci 37:106–117

    Article  CAS  PubMed  Google Scholar 

  104. Zhang J, Liu J, Wu J, Li W, Chen Z, Yang L (2019) Progression of the role of CRYAB in signaling pathways and cancers. Onco Targets Ther 12:4129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Fontaine J-M, Sun X, Benndorf R, Welsh MJ (2005) Interactions of HSP22 (HSPB8) with HSP20, αB-crystallin, and HSPB3. Biochem Biophys Res Commun 337:1006–1011

    Article  CAS  PubMed  Google Scholar 

  106. Herzig RP, Scacco S, Scarpulla RC (2000) Sequential serum-dependent activation of CREB and NRF-1 leads to enhanced mitochondrial respiration through the induction of cytochrome c. J Biol Chem 275:13134–13141

    Article  CAS  PubMed  Google Scholar 

  107. Bagneris C, Bateman OA, Naylor CE, Cronin N, Boelens W, Keep NH, Slingsby C (2009) Crystal structures of α-crystallin domain dimers of αB-crystallin and Hsp20. J Mol Biol 392:1242–1252

    Article  CAS  PubMed  Google Scholar 

  108. Zhang H-M, Dang H, Kamat A, Yeh C-K, Zhang B-X (2012) Geldanamycin derivative ameliorates high fat diet-induced renal failure in diabetes. PLoS One 7:e32746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Heirbaut M, Lermyte F, Martin EM, Beelen S, Verschueren T, Sobott F, Strelkov SV, Weeks SD (2016) The preferential heterodimerization of human small heat shock proteins HSPB1 and HSPB6 is dictated by the N-terminal domain. Arch Biochem Biophys 610:41–50

    Article  CAS  PubMed  Google Scholar 

  110. Gober MD, Smith CC, Ueda K, Toretsky JA, Aurelian L (2003) Forced expression of the H11 heat shock protein can be regulated by DNA methylation and trigger apoptosis in human cells. J Biol Chem 278:37600–37609

    Article  CAS  PubMed  Google Scholar 

  111. Morrow G, Battistini S, Zhang P, Tanguay RM (2004) Decreased lifespan in the absence of expression of the mitochondrial small heat shock protein Hsp22 in Drosophila. J Biol Chem 279:43382–43385

    Article  CAS  PubMed  Google Scholar 

  112. Shemetov AA, Seit-Nebi AS, Gusev NB (2008) Structure, properties, and functions of the human small heat-shock protein HSP22 (HspB8, H11, E2IG1): a critical review. J Neurosci Res 86:264–269

    Article  CAS  PubMed  Google Scholar 

  113. Guan X, Tu C, Li M, Hu Z (2011) HSP22 and its role in human neurological disease. Curr Neurovasc Res 8:323–333

    Article  CAS  PubMed  Google Scholar 

  114. Modem S, Chinnakannu K, Bai U, Reddy GPV, Reddy TR (2011) Hsp22 (HspB8/H11) knockdown induces Sam68 expression and stimulates proliferation of glioblastoma cells. J Cell Physiol 226:2747–2751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Rashed E, Lizano P, Dai H, Thomas A, Suzuki CK, Depre C, Qiu H (2015) Heat shock protein 22 (Hsp22) regulates oxidative phosphorylation upon its mitochondrial translocation with the inducible nitric oxide synthase in mammalian heart. PLoS One 10:e0119537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Yu W-W, Cao S-N, Zang C-X, Wang L, Yang H-Y, Bao X-Q, Zhang D (2018) Heat shock protein 70 suppresses neuroinflammation induced by α-synuclein in astrocytes. Mol Cell Neurosci 86:58–64

    Article  CAS  PubMed  Google Scholar 

  117. Sun X, Fontaine J-M, Rest JS, Shelden EA, Welsh MJ, Benndorf R (2004) Interaction of human HSP22 (HSPB8) with other small heat shock proteins. J Biol Chem 279:2394–2402

    Article  CAS  PubMed  Google Scholar 

  118. Nakagawa M, Tsujimoto N, Nakagawa H, Iwaki T, Fukumaki Y, Iwaki A (2001) Association of HSPB2, a member of the small heat shock protein family, with mitochondria. Exp Cell Res 271:161–168

    Article  CAS  PubMed  Google Scholar 

  119. Kondaurova EM, Naumenko VS, Sinyakova NA, Kulikov AV (2011) Map 3k1, Il6st, Gzmk, and Hspb3 gene coexpression network in the mechanism of freezing reaction in mice. J Neurosci Res 89:267–273

    Article  CAS  PubMed  Google Scholar 

  120. Prabhu S, Raman B, Ramakrishna T, Rao CM (2012) HspB2/myotonic dystrophy protein kinase binding protein (MKBP) as a novel molecular chaperone: structural and functional aspects. PLoS One 7:e29810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Dubińska-Magiera M, Jabłońska J, Saczko J, Kulbacka J, Jagla T, Daczewska M (2014) Contribution of small heat shock proteins to muscle development and function. FEBS Lett 588:517–530

    Article  PubMed  CAS  Google Scholar 

  122. Morelli FF, Verbeek DS, Bertacchini J, Vinet J, Mediani L, Marmiroli S, Cenacchi G, Nasi M, De Biasi S, Brunsting JF (2017) Aberrant compartment formation by HSPB2 mislocalizes Lamin A and compromises nuclear integrity and function. Cell Rep 20:2100–2115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Clark AR, Egberts WV, Kondrat FD, Hilton GR, Ray NJ, Cole AR, Carver JA, Benesch JL, Keep NH, Boelens WC (2018) Terminal regions confer plasticity to the tetrameric assembly of human HspB2 and HspB3. J Mol Biol 430:3297–3310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Haslbeck M, Weinkauf S, Buchner J (2019) Small heat shock proteins: simplicity meets complexity. J Biol Chem 294:2121–2132

    Article  CAS  PubMed  Google Scholar 

  125. Sugiyama Y, Suzuki A, Kishikawa M, Akutsu R, Hirose T, Waye MM, Tsui SK, Yoshida S, Ohno S (2000) Muscle develops a specific form of small heat shock protein complex composed of MKBP/HSPB2 and HSPB3 during myogenic differentiation. J Biol Chem 275:1095–1104

    Article  CAS  PubMed  Google Scholar 

  126. Nam DE, Nam SH, Lee AJ, Hong YB, Choi BO, Chung KW (2018) Small heat shock protein B3 (HSPB3) mutation in an axonal Charcot-Marie-Tooth disease family. J Peripher Nerv Syst 23:60–66

    Article  CAS  PubMed  Google Scholar 

  127. Kolb S, Snyder P, Poi E, Renard E, Bartlett A, Gu S, Sutton S, Arnold W, Freimer M, Lawson V (2010) Mutant small heat shock protein B3 causes motor neuropathy: utility of a candidate gene approach. Neurology 74:502–506

    Article  CAS  PubMed  Google Scholar 

  128. Vos MJ, Zijlstra MP, Kanon B, van Waarde-Verhagen MA, Brunt ER, Oosterveld-Hut HM, Carra S, Sibon OC, Kampinga HH (2010) HSPB7 is the most potent polyQ aggregation suppressor within the HSPB family of molecular chaperones. Hum Mol Genet 19:4677–4693

    Article  CAS  PubMed  Google Scholar 

  129. Slingsby C, Wistow GJ, Clark AR (2013) Evolution of crystallins for a role in the vertebrate eye lens. Protein Sci 22:367–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Slingsby C, Wistow GJ (2014) Functions of crystallins in and out of lens: roles in elongated and post-mitotic cells. Prog Biophys Mol Biol 115:52–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Krief S, Faivre J-F, Robert P, Le Douarin B, Brument-Larignon N, Lefrere I, Bouzyk MM, Anderson KM, Greller LD, Tobin FL (1999) Identification and characterization of cvHsp A novel human small stress protein selectively expressed in cardiovascular and insulin-sensitive tissues. J Biol Chem 274:36592–36600

    Article  CAS  PubMed  Google Scholar 

  132. Elicker KS, Hutson LD (2007) Genome-wide analysis and expression profiling of the small heat shock proteins in zebrafish. Gene 403:60–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Lahvic JL, Ji Y, Marin P, Zuflacht JP, Springel MW, Wosen JE, Davis L, Hutson LD, Amack JD, Marvin MJ (2013) Small heat shock proteins are necessary for heart migration and laterality determination in zebrafish. Dev Biol 384:166–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Juo L-Y, Liao W-C, Shih Y-L, Yang B-Y, Liu A-B, Yan Y-T (2016) HSPB7 interacts with dimerized FLNC and its absence results in progressive myopathy in skeletal muscles. J Cell Sci 129:1661–1670

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Wu T, Mu Y, Bogomolovas J, Fang X, Veevers J, Nowak RB, Pappas CT, Gregorio CC, Evans SM, Fowler VM (2017) HSPB7 is indispensable for heart development by modulating actin filament assembly. Proc Natl Acad Sci 114:11956–11961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Mercer EJ, Lin Y-F, Cohen-Gould L, Evans T (2018) Hspb7 is a cardioprotective chaperone facilitating sarcomeric proteostasis. Dev Biol 435:41–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Yang K, Meinhardt A, Zhang B, Grzmil P, Adham IM, Hoyer-Fender S (2012) The small heat shock protein ODF1/HSPB10 is essential for tight linkage of sperm head to tail and male fertility in mice. Mol Cell Biol 32:216–225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Gastmann O, Burfeind P, Güunther E, Hameister H, Szpirer C, Hoyer-Fender S (1993) Sequence, expression, and chromosomal assignment of a human sperm outer dense fiber gene. Mol Reprod Dev 36:407–418

    Article  CAS  PubMed  Google Scholar 

  139. Xun W, Shi L, Cao T, Zhao C, Yu P, Wang D, Hou G, Zhou H (2015) Dual functions in response to heat stress and spermatogenesis: Characterization of expression profile of small heat shock proteins 9 and 10 in goat testis. Biomed Res Int 2015:686239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. MacPhee DJ (2017) The role of heat shock proteins in reproductive system development and function. Springer, Cham

    Book  Google Scholar 

  141. Li J, Qian X, Sha B (2009) Heat shock protein 40: structural studies and their functional implications. Protein Pept Lett 16:606–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Cyr DM, Langer T, Douglas MG (1994) DnaJ-like proteins: molecular chaperones and specific regulators of Hsp70. Trends Biochem Sci 19:176–181

    Article  CAS  PubMed  Google Scholar 

  143. Cheetham ME, Caplan AJ (1998) Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress Chaperones 3:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wittung-Stafshede P, Guidry J, Horne BE, Landry SJ (2003) The J-domain of Hsp40 couples ATP hydrolysis to substrate capture in Hsp70. Biochemistry 42:4937–4944

    Article  CAS  PubMed  Google Scholar 

  145. Ito S, Nagata K (2017) Biology of Hsp47 (Serpin H1), a collagen-specific molecular chaperone. Semin Cell Dev Biol 62:142–151. Elsevier

    Article  CAS  PubMed  Google Scholar 

  146. Ishikawa Y, Rubin K, Bächinger HP, Kalamajski S (2018) The endoplasmic reticulum–resident collagen chaperone Hsp47 interacts with and promotes the secretion of decorin, fibromodulin, and lumican. J Biol Chem 293:13707–13716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ito S, Nagata K (2019) Roles of the endoplasmic reticulum–resident, collagen-specific molecular chaperone Hsp47 in vertebrate cells and human disease. J Biol Chem 294:2133–2141

    Article  CAS  PubMed  Google Scholar 

  148. Koide T, Nishikawa Y, Asada S, Yamazaki CM, Takahara Y, Homma DL, Otaka A, Ohtani K, Wakamiya N, Nagata K (2006) Specific recognition of the collagen triple helix by chaperone HSP47 II. The HSP47-binding structural motif in collagens and related proteins. J Biol Chem 281:11177–11185

    Article  CAS  PubMed  Google Scholar 

  149. Nisemblat S, Yaniv O, Parnas A, Frolow F, Azem A (2015) Crystal structure of the human mitochondrial chaperonin symmetrical football complex. Proc Natl Acad Sci 112:6044–6049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hemmingsen SM, Woolford C, van der Vies SM, Tilly K, Dennis DT, Georgopoulos CP, Hendrix RW, Ellis RJ (1988) Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333:330

    Article  CAS  PubMed  Google Scholar 

  151. Stevens M, Abdeen S, Salim N, Ray A-M, Washburn A, Chitre S, Sivinski J, Park Y, Hoang QQ, Chapman E (2019) HSP60/10 chaperonin systems are inhibited by a variety of approved drugs, natural products, and known bioactive molecules. Bioorg Med Chem Lett 29:1106–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Vilasi S, Carrotta R, Mangione MR, Campanella C, Librizzi F, Randazzo L, Martorana V, Gammazza AM, Ortore MG, Vilasi A (2014) Human Hsp60 with its mitochondrial import signal occurs in solution as heptamers and tetradecamers remarkably stable over a wide range of concentrations. PLoS One 9:e97657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Horwich AL, Fenton WA, Chapman E, Farr GW (2007) Two families of chaperonin: physiology and mechanism. Annu Rev Cell Dev Biol 23:115–145

    Article  CAS  PubMed  Google Scholar 

  154. Okamoto T, Yamamoto H, Kudo I, Matsumoto K, Odaka M, Grave E, Itoh H (2017) HSP60 possesses a GTPase activity and mediates protein folding with HSP10. Sci Rep 7:16931

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Ostermann J, Horwich AL, Neupert W, Hartl F-U (1989) Protein folding in mitochondria requires complex formation with Hsp60 and ATP hydrolysis. Nature 341:125

    Article  CAS  PubMed  Google Scholar 

  156. Reading DS, Hallberg RL, Myers AM (1989) Characterization of the yeast HSP60 gene coding for a mitochondrial assembly factor. Nature 337:655

    Article  CAS  PubMed  Google Scholar 

  157. Brocchieri L, De Macario EC, Macario AJ (2008) Hsp70 genes in the human genome: conservation and differentiation patterns predict a wide array of overlapping and specialized functions. BMC Evol Biol 8:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, Hightower LE (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111

    Article  CAS  PubMed  Google Scholar 

  159. Genest O, Wickner S, Doyle SM (2019) Hsp90 and Hsp70 chaperones: collaborators in protein remodeling. J Biol Chem 294:2109–2120

    Article  CAS  PubMed  Google Scholar 

  160. Van Eden W, Jansen MA, Ludwig I, van Kooten P, Van Der Zee R, Broere F (2017) The enigma of heat shock proteins in immune tolerance. Front Immunol 8:1599

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Mayer M, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Cajo GC, Horne BE, Kelley WL, Schwager F, Georgopoulos C, Genevaux P (2006) The role of the DIF motif of the DnaJ (Hsp40) co-chaperone in the regulation of the DnaK (Hsp70) chaperone cycle. J Biol Chem 281:12436–12444

    Article  CAS  PubMed  Google Scholar 

  163. Chen H, Wu Y, Zhang Y, Jin L, Luo L, Xue B, Lu C, Zhang X, Yin Z (2006) Hsp70 inhibits lipopolysaccharide-induced NF-κB activation by interacting with TRAF6 and inhibiting its ubiquitination. FEBS Lett 580:3145–3152

    Article  CAS  PubMed  Google Scholar 

  164. Csermely P, Schnaider T, So C, Prohászka Z, Nardai G (1998) The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 79:129–168

    Article  CAS  PubMed  Google Scholar 

  165. Felts SJ, Owen BA, Nguyen P, Trepel J, Donner DB, Toft DO (2000) The Hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J Biol Chem 275:3305–3312

    Article  CAS  PubMed  Google Scholar 

  166. Biebl MM, Buchner J (2019) Structure, function, and regulation of the Hsp90 machinery. Cold Spring Harb Perspect Biol 11:a034017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Carretero-Paulet L, Albert VA, Fares MA (2013) Molecular evolutionary mechanisms driving functional diversification of the HSP90A family of heat shock proteins in eukaryotes. Mol Biol Evol 30:2035–2043

    Article  CAS  PubMed  Google Scholar 

  168. Yamamoto S, Subedi GP, Hanashima S, Satoh T, Otaka M, Wakui H, Sawada K-i, Yokota S-i, Yamaguchi Y, Kubota H (2014) ATPase activity and ATP-dependent conformational change in the co-chaperone HSP70/HSP90-organizing protein (HOP). J Biol Chem 289:9880–9886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Zhao R, Houry WA (2005) Hsp90: a chaperone for protein folding and gene regulation. Biochem Cell Biol 83:703–710

    Article  CAS  PubMed  Google Scholar 

  170. Lee U, Rioflorido I, Hong SW, Larkindale J, Waters ER, Vierling E (2007) The Arabidopsis ClpB/Hsp100 family of proteins: chaperones for stress and chloroplast development. Plant J 49:115–127

    Article  CAS  PubMed  Google Scholar 

  171. Kummer E, Szlachcic A, Franke KB, Ungelenk S, Bukau B, Mogk A (2016) Bacterial and yeast AAA+ disaggregases ClpB and Hsp104 operate through conserved mechanism involving cooperation with Hsp70. J Mol Biol 428:4378–4391

    Article  CAS  PubMed  Google Scholar 

  172. Lackie RE, Maciejewski A, Ostapchenko VG, Marques-Lopes J, Choy W-Y, Duennwald ML, Prado VF, Prado MA (2017) The Hsp70/Hsp90 chaperone machinery in neurodegenerative diseases. Front Neurosci 11:254

    Article  PubMed  PubMed Central  Google Scholar 

  173. Grimminger-Marquardt V, Lashuel HA (2010) Structure and function of the molecular chaperone Hsp104 from yeast. Biopolymers 93:252–276

    Article  CAS  PubMed  Google Scholar 

  174. Guo F, Maurizi MR, Esser L, Xia D (2002) Crystal structure of ClpA, an Hsp100 chaperone and regulator of ClpAP protease. J Biol Chem 277:46743–46752

    Article  CAS  PubMed  Google Scholar 

  175. Carroni M, Kummer E, Oguchi Y, Wendler P, Clare DK, Sinning I, Kopp J, Mogk A, Bukau B, Saibil HR (2014) Head-to-tail interactions of the coiled-coil domains regulate ClpB activity and cooperation with Hsp70 in protein disaggregation. elife 3:e02481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Glover JR, Lindquist S (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94:73–82

    Article  CAS  PubMed  Google Scholar 

  177. Sanchez Y, Lindquist SL (1990) HSP104 required for induced thermotolerance. Science 248:1112–1115

    Article  CAS  PubMed  Google Scholar 

  178. Goloubinoff P, Mogk A, Zvi APB, Tomoyasu T, Bukau B (1999) Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc Natl Acad Sci 96:13732–13737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381:571

    Article  CAS  PubMed  Google Scholar 

  180. Zhang K, Ezemaduka AN, Wang Z, Hu H, Shi X, Liu C, Lu X, Fu X, Chang Z, Yin C-C (2015) A novel mechanism for small heat shock proteins to function as molecular chaperones. Sci Rep 5:8811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Treweek TM, Meehan S, Ecroyd H, Carver JA (2015) Small heat-shock proteins: important players in regulating cellular proteostasis. Cell Mol Life Sci 72:429–451

    Article  CAS  PubMed  Google Scholar 

  182. Zhu Z, Reiser G (2018) The small heat shock proteins, especially HspB4 and HspB5 are promising protectants in neurodegenerative diseases. Neurochem Int 115:69–79

    Article  PubMed  CAS  Google Scholar 

  183. Webster JM, Darling AL, Uversky VN, Blair LJ (2019) Small heat shock proteins, big impact on protein aggregation in neurodegenerative disease. Front Pharmacol 10:1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Dukay B, Csoboz B, Tóth ME (2019) Heat shock proteins in neuroinflammation. Front Pharmacol 10:920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Zininga T, Ramatsui L, Shonhai A (2018) Heat shock proteins as immunomodulants. Molecules 23:2846

    Article  PubMed Central  CAS  Google Scholar 

  186. Bakthisaran R, Tangirala R, Rao CM (2015) Small heat shock proteins: role in cellular functions and pathology. Biochim Biophys Acta Proteins Proteomics 1854:291–319

    Article  CAS  Google Scholar 

  187. Tiwari S, Thakur R, Shankar J (2015) Role of heat-shock proteins in cellular function and in the biology of fungi. Biotechnol Res Int 2015:132635

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Acunzo J, Katsogiannou M, Rocchi P (2012) Small heat shock proteins HSP27 (HspB1), αB-crystallin (HspB5) and HSP22 (HspB8) as regulators of cell death. Int J Biochem Cell Biol 44:1622–1631

    Article  CAS  PubMed  Google Scholar 

  189. McLoughlin F, Basha E, Fowler ME, Kim M, Bordowitz J, Katiyar-Agarwal S, Vierling E (2016) Class I and II small heat shock proteins together with HSP101 protect protein translation factors during heat stress. Plant Physiol 172:1221–1236

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Taylor RP, Benjamin IJ (2005) Small heat shock proteins: a new classification scheme in mammals. J Mol Cell Cardiol 38:433–444

    Article  CAS  PubMed  Google Scholar 

  191. Mymrikov EV, Seit-Nebi AS, Gusev NB (2012) Heterooligomeric complexes of human small heat shock proteins. Cell Stress Chaperones 17:157–169

    Article  CAS  PubMed  Google Scholar 

  192. Carver JA, Esposito G, Schwedersky G, Gaestel M (1995) 1H NMR spectroscopy reveals that mouse Hsp25 has a flexible C-terminal extension of 18 amino acids. FEBS Lett 369:305–310

    Article  CAS  PubMed  Google Scholar 

  193. Kostenko S, Moens U (2009) Heat shock protein 27 phosphorylation: kinases, phosphatases, functions and pathology. Cell Mol Life Sci 66:3289–3307

    Article  CAS  PubMed  Google Scholar 

  194. Zhang D, Wong LL, Koay ES (2007) Phosphorylation of Ser 78 of Hsp27 correlated with HER-2/neu status and lymph node positivity in breast cancer. Mol Cancer 6:52

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Gobbo J, Gaucher-Di-Stasio C, Weidmann S, Guzzo J, Garrido C (2011) Quantification of HSP27 and HSP70 molecular chaperone activities. In: Molecular chaperones. Springer, New York pp 137–143

    Google Scholar 

  196. Rogalla T, Ehrnsperger M, Preville X, Kotlyarov A, Lutsch G, Ducasse C, Paul C, Wieske M, Arrigo A-P, Buchner J (1999) Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor α by phosphorylation. J Biol Chem 274:18947–18956

    Article  CAS  PubMed  Google Scholar 

  197. Arrigo A-P, Virot S, Chaufour S, Firdaus W, Kretz-Remy C, Diaz-Latoud C (2005) Hsp 27 consolidates intracellular redox homeostasis by upholding glutathione in its reduced form and by decreasing iron intracellular levels. Antioxid Redox Signal 7:414–422

    Article  CAS  PubMed  Google Scholar 

  198. Mehlen P, Hickey E, Weber LA, Arrigo A-P (1997) Large unphosphorylated aggregates as the active form of Hsp27 which controls intracellular reactive oxygen species and glutathione levels and generates a protection against TNFα in NIH-3T3-ras cells. Biochem Biophys Res Commun 241:187–192

    Article  CAS  PubMed  Google Scholar 

  199. Vidyasagar A, Wilson NA, Djamali A (2012) Heat shock protein 27 (HSP27): biomarker of disease and therapeutic target. Fibrogenesis Tissue Repair 5:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Charette SJ, Lavoie JN, Lambert H, Landry J (2000) Inhibition of Daxx-mediated apoptosis by heat shock protein 27. Mol Cell Biol 20:7602–7612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Manero F, Ljubic-Thibal V, Moulin M, Goutagny N, Yvin J-C, Arrigo A-P (2004) Stimulation of Fas agonistic antibody–mediated apoptosis by heparin-like agents suppresses Hsp27 but not Bcl-2 protective activity. Cell Stress Chaperones 9:150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Bruey J-M, Paul C, Fromentin A, Hilpert S, Arrigo A-P, Solary E, Garrido C (2000) Differential regulation of HSP27 oligomerization in tumor cells grown in vitro and in vivo. Oncogene 19:4855

    Article  CAS  PubMed  Google Scholar 

  203. Tian X, Zhao L, Song X, Yan Y, Liu N, Li T, Yan B, Liu B (2016) HSP27 inhibits homocysteine-induced endothelial apoptosis by modulation of ROS production and mitochondrial caspase-dependent apoptotic pathway. Biomed Res Int 2016:4847874

    PubMed  PubMed Central  Google Scholar 

  204. Huot J, Houle F, Spitz DR, Landry J (1996) HSP27 phosphorylation-mediated resistance against actin fragmentation and cell death induced by oxidative stress. Cancer Res 56:273–279

    CAS  PubMed  Google Scholar 

  205. Mounier N, Arrigo A-P (2002) Actin cytoskeleton and small heat shock proteins: how do they interact? Cell Stress Chaperones 7:167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Dimauro I, Antonioni A, Mercatelli N, Caporossi D (2018) The role of αB-crystallin in skeletal and cardiac muscle tissues. Cell Stress Chaperones 23:491–505

    Article  PubMed  Google Scholar 

  207. Kappé G, Franck E, Verschuure P, Boelens WC, Leunissen JA, de Jong WW (2003) The human genome encodes 10 α-crystallin–related small heat shock proteins: HspB1–10. Cell Stress Chaperones 8:53

    Article  PubMed  PubMed Central  Google Scholar 

  208. Neppl RL, Kataoka M, Wang D-Z (2014) Crystallin-αB regulates skeletal muscle homeostasis via modulation of argonaute2 activity. J Biol Chem 289:17240–17248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Kamradt MC, Chen F, Cryns VL (2001) The small heat shock protein αB-crystallin negatively regulates cytochrome c-and caspase-8-dependent activation of caspase-3 by inhibiting its autoproteolytic maturation. J Biol Chem 276:16059–16063

    Article  CAS  PubMed  Google Scholar 

  210. Liu Y, Walter S, Stagi M, Cherny D, Letiembre M, Schulz-Schaeffer W, Heine H, Penke B, Neumann H, Fassbender K (2005) LPS receptor (CD14): a receptor for phagocytosis of Alzheimer’s amyloid peptide. Brain 128:1778–1789

    Article  PubMed  Google Scholar 

  211. Maaroufi H, Tanguay RM (2013) Analysis and phylogeny of small heat shock proteins from marine viruses and their cyanobacteria host. PLoS One 8:e81207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Fan G-C, Ren X, Qian J, Yuan Q, Nicolaou P, Wang Y, Jones WK, Chu G, Kranias EG (2005) Novel cardioprotective role of a small heat-shock protein, Hsp20, against ischemia/reperfusion injury. Circulation 111:1792–1799

    Article  CAS  PubMed  Google Scholar 

  213. Stamler R, Kappé G, Boelens W, Slingsby C (2005) Wrapping the α-crystallin domain fold in a chaperone assembly. J Mol Biol 353:68–79

    Article  CAS  PubMed  Google Scholar 

  214. Brophy CM, Lamb S, Graham A (1999) The small heat shock-related protein–20 is an actin-associated protein. J Vasc Surg 29:326–333

    Article  CAS  PubMed  Google Scholar 

  215. Tessier DJ, Komalavilas P, Panitch A, Joshi L, Brophy CM (2003) The small heat shock protein (HSP) 20 is dynamically associated with the actin cross-linking protein actinin. J Surg Res 111:152–157

    Article  CAS  PubMed  Google Scholar 

  216. Morrow G, Tanguay RM (2015) Drosophila melanogaster Hsp22: a mitochondrial small heat shock protein influencing the aging process. Front Genet 6:103

    Article  CAS  Google Scholar 

  217. Marunouchi T, Abe Y, Murata M, Inomata S, Sanbe A, Takagi N, Tanonaka K (2013) Changes in small heat shock proteins HSPB1, HSPB5 and HSPB8 in mitochondria of the failing heart following myocardial infarction in rats. Biol Pharm Bull 36:529–539

    Article  CAS  PubMed  Google Scholar 

  218. Morrow G, Inaguma Y, Kato K, Tanguay RM (2000) The small heat shock protein Hsp22 of Drosophila melanogaster is a mitochondrial protein displaying oligomeric organization. J Biol Chem 275:31204–31210

    Article  CAS  PubMed  Google Scholar 

  219. Nagata K (1996) Hsp47: a collagen-specific molecular chaperone. Trends Biochem Sci 21:23–26

    Article  CAS  Google Scholar 

  220. Benndorf R, Sun X, Gilmont RR, Biederman KJ, Molloy MP, Goodmurphy CW, Cheng H, Andrews PC, Welsh MJ (2001) HSP22, a new member of the small heat shock protein superfamily, interacts with mimic of phosphorylated HSP27 (3DHSP27). J Biol Chem 276:26753–26761

    Article  CAS  PubMed  Google Scholar 

  221. Dreiza CM, Komalavilas P, Furnish EJ, Flynn CR, Sheller MR, Smoke CC, Lopes LB, Brophy CM (2010) The small heat shock protein, HSPB6, in muscle function and disease. Cell Stress Chaperones 15(1):1–11

    Article  CAS  PubMed  Google Scholar 

  222. Mishra S, Palanivelu K (2008) The effect of curcumin (turmeric) on Alzheimer’s disease: an overview. Ann Indian Acad Neurol 11:13

    Article  PubMed  PubMed Central  Google Scholar 

  223. Yu L, Liang Q, Zhang W, Liao M, Wen M, Zhan B, Bao H, Cheng X (2019) HSP22 suppresses diabetes-induced endothelial injury by inhibiting mitochondrial reactive oxygen species formation. Redox Biol 21:101095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Ophir G, Amariglio N, Jacob-Hirsch J, Elkon R, Rechavi G, Michaelson DM (2005) Apolipoprotein E4 enhances brain inflammation by modulation of the NF-κB signaling cascade. Neurobiol Dis 20:709–718

    Article  CAS  PubMed  Google Scholar 

  225. Horváth I, Glatz A, Nakamoto H, Mishkind ML, Munnik T, Saidi Y, Goloubinoff P, Harwood JL, Vigh L (2012) Heat shock response in photosynthetic organisms: membrane and lipid connections. Prog Lipid Res 51:208–220

    Article  PubMed  CAS  Google Scholar 

  226. Landis G, Shen J, Tower J (2012) Gene expression changes in response to aging compared to heat stress, oxidative stress and ionizing radiation in Drosophila melanogaster. Aging (Albany NY) 4:768

    Article  CAS  Google Scholar 

  227. Michaud S, Morrow G, Marchand J, Tanguay RM (2002) Drosophila small heat shock proteins: cell and organelle-specific chaperones? In: Small stress proteins. Springer, New York pp 79–101

    Google Scholar 

  228. Rodgers KJ, Ford JL, Brunk UT (2009) Heat shock proteins: keys to healthy ageing? Redox Rep 14:147–153

    Article  CAS  PubMed  Google Scholar 

  229. Tower J (2015) Mitochondrial maintenance failure in aging and role of sexual dimorphism. Arch Biochem Biophys 576:17–31

    Article  CAS  PubMed  Google Scholar 

  230. Kim H-J, Morrow G, Westwood JT, Michaud S, Tanguay RM (2010) Gene expression profiling implicates OXPHOS complexes in lifespan extension of flies over-expressing a small mitochondrial chaperone, Hsp22. Exp Gerontol 45:611–620

    Article  CAS  PubMed  Google Scholar 

  231. Tower J, Landis G, Gao R, Luan A, Lee J, Sun Y (2013) Variegated expression of Hsp22 transgenic reporters indicates cell-specific patterns of aging in Drosophila oenocytes. J Gerontol Ser Biomed Sci Med Sci 69:253–259

    Google Scholar 

  232. Fernandez-Ayala DJ, Chen S, Kemppainen E, O’Dell KM, Jacobs HT (2010) Gene expression in a Drosophila model of mitochondrial disease. PLoS One 5:e8549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  233. Dabbaghizadeh A, Morrow G, Amer YO, Chatelain EH, Pichaud N, Tanguay RM (2018) Identification of proteins interacting with the mitochondrial small heat shock protein Hsp22 of Drosophila melanogaster: implication in mitochondrial homeostasis. PLoS One 13:e0193771

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  234. Pantic B, Trevisan E, Citta A, Rigobello M, Marin O, Bernardi P, Salvatori S, Rasola A (2013) Myotonic dystrophy protein kinase (DMPK) prevents ROS-induced cell death by assembling a hexokinase II-Src complex on the mitochondrial surface. Cell Death Dis 4:e858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. La Padula V, Staszewski O, Nestel S, Busch H, Boerries M, Roussa E, Prinz M, Krieglstein K (2016) HSPB3 protein is expressed in motoneurons and induces their survival after lesion-induced degeneration. Exp Neurol 286:40–49

    Article  PubMed  CAS  Google Scholar 

  236. Adriaenssens E, Geuens T, Baets J, Echaniz-Laguna A, Timmerman V (2017) Novel insights in the disease biology of mutant small heat shock proteins in neuromuscular diseases. Brain 140:2541–2549

    Article  PubMed  Google Scholar 

  237. Asthana A, Raman B, Ramakrishna T, Rao CM (2012) Structural aspects and chaperone activity of human HspB3: role of the “C-terminal extension”. Cell Biochem Biophys 64:61–72

    Article  CAS  PubMed  Google Scholar 

  238. Boelens WC, Van Boekel MA, De Jong WW (1998) HspB3, the most deviating of the six known human small heat shock proteins. Biochim Biophys Acta Protein Struct Mol Enzymol 1388:513–516

    Article  CAS  Google Scholar 

  239. Dabbaghizadeh A, Finet S, Morrow G, Moutaoufik MT, Tanguay RM (2017) Oligomeric structure and chaperone-like activity of Drosophila melanogaster mitochondrial small heat shock protein Hsp22 and arginine mutants in the alpha-crystallin domain. Cell Stress Chaperones 22:577–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. de Jong WW, Caspers G-J, Leunissen JA (1998) Genealogy of the α-crystallin—small heat-shock protein superfamily. Int J Biol Macromol 22:151–162

    Article  PubMed  Google Scholar 

  241. Liao W-C, Juo L-Y, Shih Y-L, Chen Y-H, Yan Y-T (2017) HSPB7 prevents cardiac conduction system defect through maintaining intercalated disc integrity. PLoS Genet 13:e1006984

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  242. Liu T, Zhang L, Joo D, Sun S-C (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther 2:17023

    Article  PubMed  PubMed Central  Google Scholar 

  243. Yang J, Carra S, Zhu W-G, Kampinga HH (2013) The regulation of the autophagic network and its implications for human disease. Int J Biol Sci 9:1121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  244. Wu D, Vonk JJ, Salles F, Vonk D, Haslbeck M, Melki R, Bergink S, Kampinga HH (2019) The N terminus of the small heat shock protein HSPB7 drives its polyQ aggregation–suppressing activity. J Biol Chem 294:9985–9994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. de Wit NJ, Verschuure P, Kappé G, King SM, de Jong WW, van Muijen GN, Boelens WC (2004) Testis-specific human small heat shock protein HSPB9 is a cancer/testis antigen, and potentially interacts with the dynein subunit TCTEL1. Eur J Cell Biol 83:337–345

    Article  PubMed  Google Scholar 

  246. Fontaine J-M, Rest JS, Welsh MJ, Benndorf R (2003) The sperm outer dense fiber protein is the 10th member of the superfamily of mammalian small stress proteins. Cell Stress Chaperones 8:62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Lehti MS, Sironen A (2017) Formation and function of sperm tail structures in association with sperm motility defects. Biol Reprod 97:522–536

    Article  PubMed  Google Scholar 

  248. Ashley NT, Demas GE (2017) Neuroendocrine-immune circuits, phenotypes, and interactions. Horm Behav 87:25–34

    Article  CAS  PubMed  Google Scholar 

  249. Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L (2018) Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9:7204

    Article  PubMed  Google Scholar 

  250. Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454:428

    Article  CAS  PubMed  Google Scholar 

  251. Agostinho P, A Cunha R, Oliveira C (2010) Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr Pharm Des 16:2766–2778

    Article  CAS  PubMed  Google Scholar 

  252. Calsolaro V, Edison P (2016) Neuroinflammation in Alzheimer’s disease: current evidence and future directions. Alzheimers Dement 12:719–732

    Article  PubMed  Google Scholar 

  253. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Leyva-López N, Gutierrez-Grijalva EP, Ambriz-Perez DL, Heredia JB (2016) Flavonoids as cytokine modulators: a possible therapy for inflammation-related diseases. Int J Mol Sci 17:921

    Article  PubMed Central  CAS  Google Scholar 

  255. Swaroop S, Sengupta N, Suryawanshi AR, Adlakha YK, Basu A (2016) HSP60 plays a regulatory role in IL-1β-induced microglial inflammation via TLR4-p38 MAPK axis. J Neuroinflammation 13:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  256. Carson MJ, Thrash JC, Walter B (2006) The cellular response in neuroinflammation: The role of leukocytes, microglia and astrocytes in neuronal death and survival. Clin Neurosci Res 6:237–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Cekanaviciute E, Buckwalter MS (2016) Astrocytes: integrative regulators of neuroinflammation in stroke and other neurological diseases. Neurotherapeutics 13:685–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Park B-K, Kim YH, Kim YR, Choi JJ, Yang C, Jang I-S, Lee MY (2019) Antineuroinflammatory and neuroprotective effects of Gyejibokryeong-hwan in lipopolysaccharide-stimulated BV2 microglia. Evid Based Complement Alternat Med 2019:7585896

    PubMed  PubMed Central  Google Scholar 

  259. Morales I, Guzmán-Martínez L, Cerda-Troncoso C, Farías GA, Maccioni RB (2014) Neuroinflammation in the pathogenesis of Alzheimer’s disease. A rational framework for the search of novel therapeutic approaches. Front Cell Neurosci 8:112

    PubMed  PubMed Central  Google Scholar 

  260. Colombo E, Farina C (2016) Astrocytes: key regulators of neuroinflammation. Trends Immunol 37:608–620

    Article  CAS  PubMed  Google Scholar 

  261. Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Dursun E, Gezen-Ak D, Hanağası H, Bilgiç B, Lohmann E, Ertan S, Atasoy İL, Alaylıoğlu M, Araz ÖS, Önal B (2015) The interleukin 1 alpha, interleukin 1 beta, interleukin 6 and alpha-2-macroglobulin serum levels in patients with early or late onset Alzheimer’s disease, mild cognitive impairment or Parkinson’s disease. J Neuroimmunol 283:50–57

    Article  CAS  PubMed  Google Scholar 

  263. Newcombe EA, Camats-Perna J, Silva ML, Valmas N, Huat TJ, Medeiros R (2018) Inflammation: the link between comorbidities, genetics, and Alzheimer’s disease. J Neuroinflammation 15:1–26

    Article  CAS  Google Scholar 

  264. Ramanan VK, Saykin AJ (2013) Pathways to neurodegeneration: mechanistic insights from GWAS in Alzheimer’s disease, Parkinson’s disease, and related disorders. Am J Neurodegener Dis 2:145

    PubMed  PubMed Central  Google Scholar 

  265. Jeibmann A, Paulus W (2009) Drosophila melanogaster as a model organism of brain diseases. Int J Mol Sci 10:407–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. O’Brien RJ, Wong PC (2011) Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci 34:185–204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  267. Rajasekhar K, Chakrabarti M, Govindaraju T (2015) Function and toxicity of amyloid beta and recent therapeutic interventions targeting amyloid beta in Alzheimer’s disease. Chem Commun 51:13434–13450

    Article  CAS  Google Scholar 

  268. Cárdenas-Aguayo MdC, Silva-Lucero MdC, Cortes-Ortiz M, Jiménez-Ramos B, Gómez-Virgilio L, Ramírez-Rodríguez G, Vera-Arroyo E, Fiorentino-Pérez R, García U, Luna-Muñoz J (2014) Physiological role of amyloid beta in neural cells: the cellular trophic activity. In: Neurochemistry. IntechOpen, London

    Google Scholar 

  269. Wang X, Zhou X, Li G, Zhang Y, Wu Y, Song W (2017b) Modifications and trafficking of APP in the pathogenesis of Alzheimer’s disease. Front Mol Neurosci 10:294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  270. Albers MW, Gilmore GC, Kaye J, Murphy C, Wingfield A, Bennett DA, Boxer AL, Buchman AS, Cruickshanks KJ, Devanand DP, Duffy CJ, Gall CM, Gates GA, Granholm AC, Hensch T, Holtzer R, Hyman BT, Lin FR, McKee AC, Morris JC, Petersen RC, Silbert LC, Struble RG, Trojanowski JQ, Verghese J, Wilson DA, Xu S, Zhang LI (2015) At the interface of sensory and motor dysfunctions and Alzheimer’s disease. Alzheimers Dement 11:70–98

    Article  PubMed  Google Scholar 

  271. Baker-Nigh A, Vahedi S, Davis EG, Weintraub S, Bigio EH, Klein WL, Geula C (2015) Neuronal amyloid-beta accumulation within cholinergic basal forebrain in ageing and Alzheimer’s disease. Brain 138:1722–1737

    Article  PubMed  PubMed Central  Google Scholar 

  272. Arnold SE, Hyman BT, Flory J, Damasio AR, Van Hoesen GW (1991) The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cereb Cortex 1:103–116

    Article  CAS  PubMed  Google Scholar 

  273. Lee Y-J, Han SB, Nam S-Y, Oh K-W, Hong JT (2010) Inflammation and Alzheimer’s disease. Arch Pharm Res 33:1539–1556

    Article  CAS  PubMed  Google Scholar 

  274. Ardura-Fabregat A, Boddeke E, Boza-Serrano A, Brioschi S, Castro-Gomez S, Ceyzériat K, Dansokho C, Dierkes T, Gelders G, Heneka MT (2017) Targeting neuroinflammation to treat Alzheimer’s disease. CNS Drugs 31:1057–1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  275. Sciacca F, Ferri C, Licastro F, Veglia F, Biunno I, Gavazzi A, Calabrese E, Boneschi FM, Sorbi S, Mariani C (2003) Interleukin-1B polymorphism is associated with age at onset of Alzheimer’s disease. Neurobiol Aging 24:927–931

    Article  CAS  PubMed  Google Scholar 

  276. Eikelenboom P, Bate C, Van Gool W, Hoozemans J, Rozemuller J, Veerhuis R, Williams A (2002) Neuroinflammation in Alzheimer’s disease and prion disease. Glia 40:232–239

    Article  CAS  PubMed  Google Scholar 

  277. Shaftel SS, Griffin WST, O’Banion MK (2008) The role of interleukin-1 in neuroinflammation and Alzheimer disease: an evolving perspective. J Neuroinflammation 5:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  278. Ray B, Lahiri DK (2009) Neuroinflammation in Alzheimer’s disease: different molecular targets and potential therapeutic agents including curcumin. Curr Opin Pharmacol 9:434–444

    Article  CAS  PubMed  Google Scholar 

  279. Coraci IS, Husemann J, Berman JW, Hulette C, Dufour JH, Campanella GK, Luster AD, Silverstein SC, El Khoury JB (2002) CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer’s disease brains and can mediate production of reactive oxygen species in response to β-amyloid fibrils. Am J Pathol 160:101–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Barger SW, Mattson MP (1996) Induction of neuroprotective κB-dependent transcription by secreted forms of the Alzheimer’s β-amyloid precursor. Mol Brain Res 40:116–126

    Article  CAS  PubMed  Google Scholar 

  281. Guo Q, Robinson N, Mattson MP (1998) Secreted β-amyloid precursor protein counteracts the proapoptotic action of mutant presenilin-1 by activation of NF-κB and stabilization of calcium homeostasis. J Biol Chem 273:12341–12351

    Article  CAS  PubMed  Google Scholar 

  282. Salminen A, Huuskonen J, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T (2008) Activation of innate immunity system during aging: NF-kβ signaling is the molecular culprit of inflamm-aging. Ageing Res Rev 7:83–105

    Article  CAS  PubMed  Google Scholar 

  283. Verri M, Pastoris O, Dossena M, Aquilani R, Guerriero F, Cuzzoni G, Venturini L, Ricevuti G, Bongiorno A (2012) Mitochondrial alterations, oxidative stress and neuroinflammation in Alzheimer’s disease. SAGE Publications Sage UK, London

    Book  Google Scholar 

  284. Heneka MT, O’Banion MK, Terwel D, Kummer MP (2010) Neuroinflammatory processes in Alzheimer’s disease. J Neural Transm 117:919–947

    Article  CAS  PubMed  Google Scholar 

  285. Vom Berg J, Prokop S, Miller KR, Obst J, Kälin RE, Lopategui-Cabezas I, Wegner A, Mair F, Schipke CG, Peters O (2012) Inhibition of IL-12/IL-23 signaling reduces Alzheimer’s disease–like pathology and cognitive decline. Nat Med 18:1812

    Article  CAS  PubMed  Google Scholar 

  286. Guillot-Sestier M-V, Doty KR, Gate D, Rodriguez J Jr, Leung BP, Rezai-Zadeh K, Town T (2015) Il10 deficiency rebalances innate immunity to mitigate Alzheimer-like pathology. Neuron 85:534–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Chakrabarty P, Li A, Ceballos-Diaz C, Eddy JA, Funk CC, Moore B, DiNunno N, Rosario AM, Cruz PE, Verbeeck C (2015) IL-10 alters immunoproteostasis in APP mice, increasing plaque burden and worsening cognitive behavior. Neuron 85:519–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Patel NS, Paris D, Mathura V, Quadros AN, Crawford FC, Mullan MJ (2005) Inflammatory cytokine levels correlate with amyloid load in transgenic mouse models of Alzheimer’s disease. J Neuroinflammation 2:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  289. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P, Emmerling M, Fiebich BL (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21:383–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Rogers J, Luber-Narod J, Styren SD, Civin WH (1988) Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer’s disease. Neurobiol Aging 9:339–349

    Article  CAS  PubMed  Google Scholar 

  291. Jeffrey M, Halliday WG, Bell J, Johnston AR, Macleod NK, Ingham C, Sayers AR, Brown DA, Fraser JR (2000) Synapse loss associated with abnormal PrP precedes neuronal degeneration in the scrapie-infected murine hippocampus. Neuropathol Appl Neurobiol 26:41–54

    Article  CAS  PubMed  Google Scholar 

  292. Williams A, Van Dam A-M, Ritchie D, Eikelenboom P, Fraser H (1997) Immunocytochemical appearance of cytokines, prostaglandin E2 and lipocortin-1 in the CNS during the incubation period of murine scrapie correlates with progressive PrP accumulations. Brain Res 754:171–180

    Article  CAS  PubMed  Google Scholar 

  293. Robinson M, Lee BY, Hane FT (2017) Recent progress in Alzheimer’s disease research, part 2: genetics and epidemiology. J Alzheimers Dis 57:317–330

    Article  PubMed  PubMed Central  Google Scholar 

  294. Wyss-Coray T, Rogers J (2012) Inflammation in Alzheimer disease—a brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med 2:a006346

    Article  PubMed  PubMed Central  Google Scholar 

  295. McCusker SM, Curran MD, Dynan KB, McCullagh CD, Urquhart DD, MacPhee DJ (2017) The role of heat shock proteins in reproductive system development and function. Springer, New York

    Google Scholar 

  296. Papassotiropoulos A, Bagli M, Jessen F, Bayer TA, Maier W, Rao ML, Heun R (1999) A genetic variation of the inflammatory cytokine interleukin-6 delays the initial onset and reduces the risk for sporadic Alzheimer’s disease. Ann Neurol 45:666–668

    Article  CAS  PubMed  Google Scholar 

  297. Griffin W, Stanley L, Ling C, White L, MacLeod V, Perrot L, White Cr, Araoz C (1989) Brain interleukin 1 and S-100 immunoreactivity are elevated in down syndrome and Alzheimer disease. Proc Natl Acad Sci 86:7611–7615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Guo K, Kang NX, Li Y, Sun L, Gan L, Cui FJ, Gao MD, Liu KY (2009) Regulation of HSP27 on NF-κB pathway activation may be involved in metastatic hepatocellular carcinoma cells apoptosis. BMC Cancer 9:100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  299. Bamberger ME, Harris ME, McDonald DR, Husemann J, Landreth GE (2003) A cell surface receptor complex for fibrillar β-amyloid mediates microglial activation. J Neurosci 23:2665–2674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Paresce DM, Ghosh RN, Maxfield FR (1996) Microglial cells internalize aggregates of the Alzheimer’s disease amyloid β-protein via a scavenger receptor. Neuron 17:553–565

    Article  CAS  PubMed  Google Scholar 

  301. Stewart CR, Stuart LM, Wilkinson K, Van Gils JM, Deng J, Halle A, Rayner KJ, Boyer L, Zhong R, Frazier WA (2010) CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol 11:155

    Article  CAS  PubMed  Google Scholar 

  302. Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ (2010) Decreased clearance of CNS β-amyloid in Alzheimer’s disease. Science 330:1774–1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Beauquis J, Pavía P, Pomilio C, Vinuesa A, Podlutskaya N, Galvan V, Saravia F (2013) Environmental enrichment prevents astroglial pathological changes in the hippocampus of APP transgenic mice, model of Alzheimer’s disease. Exp Neurol 239:28–37

    Article  CAS  PubMed  Google Scholar 

  304. Olabarria M, Noristani HN, Verkhratsky A, Rodríguez JJ (2010) Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer’s disease. Glia 58:831–838

    PubMed  Google Scholar 

  305. Olabarria M, Noristani HN, Verkhratsky A, Rodríguez JJ (2011) Age-dependent decrease in glutamine synthetase expression in the hippocampal astroglia of the triple transgenic Alzheimer’s disease mouse model: mechanism for deficient glutamatergic transmission? Mol Neurodegener 6:55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Koistinaho M, Lin S, Wu X, Esterman M, Koger D, Hanson J, Higgs R, Liu F, Malkani S, Bales KR (2004) Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-β peptides. Nat Med 10:719

    Article  CAS  PubMed  Google Scholar 

  307. Lue LF, Rydel R, Brigham EF, Yang LB, Hampel H, Murphy GM Jr, Brachova L, Yan SD, Walker DG, Shen Y (2001) Inflammatory repertoire of Alzheimer’s disease and nondemented elderly microglia in vitro. Glia 35:72–79

    Article  CAS  PubMed  Google Scholar 

  308. Yu J, Cheng Y, Feng K, Ruan M, Ye Q, Wang R, Li Z, Zhou G, Yao Z, Yang Y (2016) Genome-wide identification and expression profiling of tomato Hsp20 gene family in response to biotic and abiotic stresses. Front Plant Sci 7:1215

    PubMed  PubMed Central  Google Scholar 

  309. Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE (2009) Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 78:959–991

    Article  CAS  PubMed  Google Scholar 

  310. Tóth ME, Gombos I, Sántha M (2015) Heat shock proteins and their role in human diseases. Acta Biologica Szegediensis 59:121–141

    Google Scholar 

  311. Balogh G, Péter M, Glatz A, Gombos I, Török Z, Horváth I, Harwood JL, Vígh L (2013) Key role of lipids in heat stress management. FEBS Lett 587:1970–1980

    Article  CAS  PubMed  Google Scholar 

  312. Vigh L, Nakamoto H, Landry J, Gomez-Munoz A, Harwood JL, Horvath I (2007) Membrane regulation of the stress response from prokaryotic models to mammalian cells. Ann N Y Acad Sci 1113:40–51

    Article  CAS  PubMed  Google Scholar 

  313. Tytell M, Greenberg S, Lasek R (1986) Heat shock-like protein is transferred from glia to axon. Brain Res 363:161–164

    Article  CAS  PubMed  Google Scholar 

  314. Guzhova I, Kislyakova K, Moskaliova O, Fridlanskaya I, Tytell M, Cheetham M, Margulis B (2001) In vitro studies show that Hsp70 can be released by glia and that exogenous Hsp70 can enhance neuronal stress tolerance. Brain Res 914:66–73

    Article  CAS  PubMed  Google Scholar 

  315. Taylor AR, Robinson MB, Gifondorwa DJ, Tytell M, Milligan CE (2007) Regulation of heat shock protein 70 release in astrocytes: role of signaling kinases. Dev Neurobiol 67:1815–1829

    Article  CAS  PubMed  Google Scholar 

  316. Li Z, Dai J, Zheng H, Liu B, Caudill M (2002) An integrated view of the roles and mechanisms of heat shock protein gp96-peptide complex in eliciting immune response. Front Biosci 7:731–751

    Article  Google Scholar 

  317. Murshid A, Gong J, Calderwood SK (2012) The role of heat shock proteins in antigen cross presentation. Front Immunol 3:63

    Article  PubMed  PubMed Central  Google Scholar 

  318. Mussbacher M, Salzmann M, Brostjan C, Hoesel B, Schoergenhofer C, Datler H, Hohensinner P, Basílio J, Petzelbauer P, Assinger A (2019) Cell type-specific roles of NF-κB linking inflammation and thrombosis. Front Immunol 10:85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Gupta V, Gupta B, Rastogi A, Agarwal S, Nayak A (2011) Pesticides removal from waste water by activated carbon prepared from waste rubber tire. Water Res 45:4047–4055

    Article  CAS  PubMed  Google Scholar 

  320. Kammanadiminti SJ, Chadee K (2006) Suppression of NF-κB activation by Entamoeba histolytica in intestinal epithelial cells is mediated by heat shock protein 27. J Biol Chem 281:26112–26120

    Article  CAS  PubMed  Google Scholar 

  321. Buommino E, Schiraldi C, Baroni A, Paoletti I, Lamberti M, De Rosa M, Tufano MA (2005) Ectoine from halophilic microorganisms induces the expression of Hsp70 and Hsp70B′ in human keratinocytes modulating the proinflammatory response. Cell Stress Chaperones 10:197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Aneja R, Odoms K, Dunsmore K, Shanley TP, Wong HR (2006) Extracellular heat shock protein-70 induces endotoxin tolerance in THP-1 cells. J Immunol 177:7184–7192

    Article  CAS  PubMed  Google Scholar 

  323. Sulistyowati E, Lee M-Y, Wu L-C, Hsu J-H, Dai Z-K, Wu B-N, Lin M-C, Yeh J-L (2018) Exogenous heat shock cognate protein 70 suppresses LPS-induced inflammation by down-regulating NF-κB through MAPK and MMP-2/-9 Pathways In Macrophages. Molecules 23:2124

    Article  PubMed Central  CAS  Google Scholar 

  324. Ali A, Biswas A, Pal M (2018) HSF1 mediated TNF-α production during proteotoxic stress response pioneers proinflammatory signal in human cells. FASEB J 33:2621–2635

    Article  PubMed  Google Scholar 

  325. Lehnardt S, Schott E, Trimbuch T, Laubisch D, Krueger C, Wulczyn G, Nitsch R, Weber JR (2008) A vicious cycle involving release of heat shock protein 60 from injured cells and activation of toll-like receptor 4 mediates neurodegeneration in the CNS. J Neurosci 28:2320–2331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. Liu L, An D, Xu J, Shao B, Li X, Shi J (2018) Ac2-26 Induces IKKβ Degradation Through Chaperone-Mediated Autophagy Via HSPB1 in NCM-Treated Microglia. Front Mol Neurosci 11:76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  327. Rozhkova E, Yurinskaya M, Zatsepina O, Garbuz D, Karpov V, Surkov S, Murashev A, Ostrov V, Margulis B, Evgen’ev M (2010) Exogenous mammalian extracellular HSP70 reduces endotoxin manifestations at the cellular and organism levels. Ann N Y Acad Sci 1197:94–107

    Article  CAS  PubMed  Google Scholar 

  328. Kim JY, Kim N, Zheng Z, Lee JE, Yenari MA (2016) 70-kDa heat shock protein downregulates dynamin in experimental stroke: a new therapeutic target? Stroke 47:2103–2111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Wang B, Liu Y, Huang L, Chen J, Li JJ, Wang R, Kim E, Chen Y, Justicia C, Sakata K (2017a) A CNS-permeable Hsp90 inhibitor rescues synaptic dysfunction and memory loss in APP-overexpressing Alzheimer’s mouse model via an HSF1-mediated mechanism. Mol Psychiatry 22:990

    Article  CAS  PubMed  Google Scholar 

  330. Afkarian M, Sedy JR, Yang J, Jacobson NG, Cereb N, Yang SY, Murphy TL, Murphy KM (2002) T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nat Immunol 3:549

    Article  CAS  PubMed  Google Scholar 

  331. Ghosh S, May MJ, Kopp EB (1998) NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16:225–260

    Article  CAS  PubMed  Google Scholar 

  332. Kim J, Yenari M, Lee J (2015) Regulation of inflammatory transcription factors by heat shock protein 70 in primary cultured astrocytes exposed to oxygen–glucose deprivation. Neuroscience 286:272–280

    Article  CAS  PubMed  Google Scholar 

  333. Shaulian E, Karin M (2001) AP-1 in cell proliferation and survival. Oncogene 20:2390

    Article  CAS  PubMed  Google Scholar 

  334. Guo C, Yang L, Wan C-X, Xia Y-Z, Zhang C, Chen M-H, Wang Z-D, Li Z-R, Li X-M, Geng Y-D (2016) Anti-neuroinflammatory effect of Sophoraflavanone G from Sophora alopecuroides in LPS-activated BV2 microglia by MAPK, JAK/STAT and Nrf2/HO-1 signaling pathways. Phytomedicine 23:1629–1637

    Article  CAS  PubMed  Google Scholar 

  335. Yang Y, Wang H, Kouadir M, Song H, Shi F (2019) Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis 10:1–11

    Article  CAS  Google Scholar 

  336. Shao B-Z, Cao Q, Liu C (2018) Targeting NLRP3 inflammasome in the treatment of CNS diseases. Front Mol Neurosci 11:320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  337. Tőzsér J, Benkő S (2016) Natural compounds as regulators of NLRP3 inflammasome-mediated IL-1β production. Mediat Inflamm 2016:5460302

    Article  CAS  Google Scholar 

  338. Martine P, Rébé C (2019) Heat shock proteins and inflammasomes. Int J Mol Sci 20:4508

    Article  CAS  PubMed Central  Google Scholar 

  339. Riedemann NC, Guo R-F, Ward PA (2003) The enigma of sepsis. J Clin Invest 112:460–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Sanna MD, Ghelardini C, Galeotti N (2015) Activation of JNK pathway in spinal astrocytes contributes to acute ultra–low-dose morphine thermal hyperalgesia. Pain 156:1265–1275

    Article  CAS  PubMed  Google Scholar 

  341. Zhou K, Chen J, Wu J, Wu Q, Jia C, Xu YXZ, Chen L, Tu W, Yang G, Kong J (2019) Atractylenolide III ameliorates cerebral ischemic injury and neuroinflammation associated with inhibiting JAK2/STAT3/Drp1-dependent mitochondrial fission in microglia. Phytomedicine 59:152922

    Article  CAS  PubMed  Google Scholar 

  342. Van Eden W, Van der Zee R, Prakken B (2005) Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat Rev Immunol 5:318

    Article  PubMed  CAS  Google Scholar 

  343. Zheng Z, Kim JY, Ma H, Lee JE, Yenari MA (2008) Anti-inflammatory effects of the 70 kDa heat shock protein in experimental stroke. J Cereb Blood Flow Metab 28:53–63

    Article  CAS  PubMed  Google Scholar 

  344. Ousman SS, Tomooka BH, Van Noort JM, Wawrousek EF, O’Conner K, Hafler DA, Sobel RA, Robinson WH, Steinman L (2007) Protective and therapeutic role for αB-crystallin in autoimmune demyelination. Nature 448:474

    Article  CAS  PubMed  Google Scholar 

  345. Shimada Y, Shimura H, Tanaka R, Yamashiro K, Koike M, Uchiyama Y, Urabe T, Hattori N (2018) Phosphorylated recombinant HSP27 protects the brain and attenuates blood-brain barrier disruption following stroke in mice receiving intravenous tissue-plasminogen activator. PLoS One 13:e0198039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  346. Kalderon B, Kogan G, Bubis E, Pines O (2015) Cytosolic Hsp60 can modulate proteasome activity in yeast. J Biol Chem 290:3542–3551

    Article  CAS  PubMed  Google Scholar 

  347. Sarangi U, Singh MK, Abhijnya KVV, Reddy LPA, Prasad BS, Pitke VV, Paithankar K, Sreedhar AS (2013) Hsp60 chaperonin acts as barrier to pharmacologically induced oxidative stress mediated apoptosis in tumor cells with differential stress response. Drug Target Insights 7:DTI. S12513

    Article  CAS  Google Scholar 

  348. Cheng W, Li Y, Hou X, Zhang N, Ma J, Ding F, Li F, Miao Z, Zhang Y, Qi Q (2014) HSP60 is involved in the neuroprotective effects of naloxone. Mol Med Rep 10:2172–2176

    Article  CAS  PubMed  Google Scholar 

  349. Cahill CM, Waterman WR, Xie Y, Auron PE, Calderwood SK (1996) Transcriptional repression of the prointerleukin 1β gene by heat shock factor 1. J Biol Chem 271:24874–24879

    Article  CAS  PubMed  Google Scholar 

  350. Singh IS, He J-R, Calderwood S, Hasday JD (2002) A high affinity HSF-1 binding site in the 5′-untranslated region of the murine tumor necrosis factor-α gene is a transcriptional repressor. J Biol Chem 277:4981–4988

    Article  CAS  PubMed  Google Scholar 

  351. Xie Y, Chen C, Stevenson MA, Hume DA, Auron PE, Calderwood SK (2002) NF-IL6 and HSF1 have mutually antagonistic effects on transcription in monocytic cells. Biochem Biophys Res Commun 291:1071–1080

    Article  CAS  PubMed  Google Scholar 

  352. Schett G, Steiner C, Xu Q, Smolen J, Steiner G (2003) TNF α mediates susceptibility to heatinduced apoptosis by protein phosphatase-mediated inhibition of the HSF1/hsp70 stress response. Cell Death & Differentiation 10:1126–1136

    Article  CAS  Google Scholar 

  353. Guzman-Martinez L, Maccioni RB, Andrade V, Navarrete LP, Pastor MG, Ramos-Escobar N (2019) Neuroinflammation as a common feature of neurodegenerative disorders. Front Pharmacol 10:1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Kim JY, Yenari MA (2013) The immune modulating properties of the heat shock proteins after brain injury. Anat Cell Biol 46:1–7

    Article  PubMed  PubMed Central  Google Scholar 

  355. Tjalkens RB, Popichak KA, Kirkley KA (2017) Inflammatory activation of microglia and astrocytes in manganese neurotoxicity. In: Neurotoxicity of metals. Springer, New York pp 159–181

    Google Scholar 

  356. Roe MS, Wahab B, Török Z, Horváth I, Vigh L, Prodromou C (2018) Dihydropyridines allosterically modulate HSP90 providing a novel mechanism for heat shock protein co-induction and neuroprotection. Front Mol Biosci 5:51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  357. Wilhelmus MM, De Waal RM, Verbeek MM (2007) Heat shock proteins and amateur chaperones in amyloid-Beta accumulation and clearance in Alzheimer’s disease. Mol Neurobiol 35:203–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  358. Banjara M, Ghosh C (2017) Sterile neuroinflammation and strategies for therapeutic intervention. Int J Inflamm 2017:8385961

    Article  CAS  Google Scholar 

  359. Jassam YN, Izzy S, Whalen M, McGavern DB, El Khoury J (2017) Neuroimmunology of traumatic brain injury: time for a paradigm shift. Neuron 95:1246–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Salinaro AT, Pennisi M, Di Paola R, Scuto M, Crupi R, Cambria MT, Ontario ML, Tomasello M, Uva M, Maiolino L (2018) Neuroinflammation and neurohormesis in the pathogenesis of Alzheimer’s disease and Alzheimer-linked pathologies: modulation by nutritional mushrooms. Immun Ageing 15:8

    Article  CAS  Google Scholar 

  361. Fakhoury M (2018) Microglia and astrocytes in Alzheimer’s disease: implications for therapy. Curr Neuropharmacol 16:508–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  362. Kelly AM (2018) Exercise-induced modulation of neuroinflammation in models of Alzheimer’s disease. Brain Plast 4:81–94

    Article  PubMed  PubMed Central  Google Scholar 

  363. Kakimura J-I, Kitamura Y, Takata K, Umeki M, Suzuki S, Shibagaki K, Taniguchi T, Nomura Y, Gebicke-Haerter PJ, Smith MA (2002) Microglial activation and amyloid-β clearance induced by exogenous heat-shock proteins. FASEB J 16:601–603

    Article  CAS  PubMed  Google Scholar 

  364. Chen C-H, Zhou W, Liu S, Deng Y, Cai F, Tone M, Tone Y, Tong Y, Song W (2012) Increased NF-κB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer’s disease. Int J Neuropsychopharmacol 15:77–90

    Article  CAS  PubMed  Google Scholar 

  365. Jones SV, Kounatidis I (2017) Nuclear factor-kappa B and Alzheimer disease, unifying genetic and environmental risk factors from cell to humans. Front Immunol 8:1805

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  366. Goyzueta MLD, Magalhães AI Jr, Ruan Z, de Carvalho JC, Soccol CR (2019) Industrial production, patent landscape, and market trends of arachidonic acid-rich oil of Mortierella alpina. Biotechnol Res Innov 3(1):103–119

    Article  Google Scholar 

  367. Prestes-Carneiro L, Shio M, Fernandes P, Jancar S (2007) Cross-regulation of iNOS and COX-2 by its products in murine macrophages under stress conditions. Cell Physiol Biochem 20:283–292

    Article  CAS  PubMed  Google Scholar 

  368. Wilhelmus MM, Boelens WC, Otte-Höller I, Kamps B, de Waal RM, Verbeek MM (2006) Small heat shock proteins inhibit amyloid-β protein aggregation and cerebrovascular amyloid-β protein toxicity. Brain Res 1089:67–78

    Article  CAS  PubMed  Google Scholar 

  369. Walker D, Lue L-F (2007) Anti-inflammatory and immune therapy for Alzheimer’s disease: current status and future directions. Curr Neuropharmacol 5:232–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  370. Borges TJ, Wieten L, Van Herwijnen MJ, Broere F, Van Der Zee R, Bonorino C, Van Eden W (2012) The anti-inflammatory mechanisms of Hsp70. Front Immunol 3:95

    Article  PubMed  PubMed Central  Google Scholar 

  371. Stocki P, Dickinson AM (2012) The immunosuppressive activity of heat shock protein 70. Autoimmune Dis 2012:617213

    PubMed  PubMed Central  Google Scholar 

  372. Edkins AL, Price JT, Pockley AG, Blatch GL (2017) Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective. The Royal Society, London

    Google Scholar 

  373. Taha AY, Blanchard HC, Cheon Y, Ramadan E, Chen M, Chang L, Rapoport SI (2017) Dietary linoleic acid lowering reduces lipopolysaccharide-induced increase in brain arachidonic acid metabolism. Mol Neurobiol 54:4303–4315

    Article  CAS  PubMed  Google Scholar 

  374. Crul T, Toth N, Piotto S, Literati-Nagy P, Tory K, Haldimann P, Kalmar B, Greensmith L, Torok Z, Balogh G (2013) Hydroximic acid derivatives: pleiotropic HSP co-inducers restoring homeostasis and robustness. Curr Pharm Des 19:309–346

    Article  CAS  PubMed  Google Scholar 

  375. Escriba PV, Ferrer-Montiel AV, Ferragut JA, Gonzalez-Ros JM (1990) Role of membrane lipids in the interaction of daunomycin with plasma membranes from tumor cells: implications in drug-resistance phenomena. Biochemistry 29:7275–7282

    Article  CAS  PubMed  Google Scholar 

  376. Török Z, Crul T, Maresca B, Schütz GJ, Viana F, Dindia L, Piotto S, Brameshuber M, Balogh G, Peter M (2014) Plasma membranes as heat stress sensors: from lipid-controlled molecular switches to therapeutic applications. Biochim Biophys Acta Biomembranes 1838:1594–1618

    Article  CAS  Google Scholar 

  377. Ruiz-Gutiérrez V, Muriana FJ, Guerrero A, Cert AM, Villar J (1996) Plasma lipids, erythrocyte membrane lipids and blood pressure of hypertensive women after ingestion of dietary oleic acid from two different sources. J Hypertens 14:1483–1490

    Article  PubMed  Google Scholar 

  378. Nagy E, Balogi Z, Gombos I, Åkerfelt M, Björkbom A, Balogh G, Török Z, Maslyanko A, Fiszer-Kierzkowska A, Lisowska K (2007) Hyperfluidization-coupled membrane microdomain reorganization is linked to activation of the heat shock response in a murine melanoma cell line. Proc Natl Acad Sci 104:7945–7950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  379. Sheppard PW, Sun X, Khammash M, Giffard RG (2014) Overexpression of heat shock protein 72 attenuates NF-κB activation using a combination of regulatory mechanisms in microglia. PLoS Comput Biol 10:e1003471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  380. Gombos I, Crul T, Piotto S, Güngör B, Török Z, Balogh G, Péter M, Slotte JP, Campana F, Pilbat A-M (2011) Membrane-lipid therapy in operation: the HSP co-inducer BGP-15 activates stress signal transduction pathways by remodeling plasma membrane rafts. PLoS One 6:e28818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  381. Literáti-Nagy Z, Tory K, Literáti-Nagy B, Kolonics A, Török Z, Gombos I, Balogh G, Vígh L, Horváth I, Mandl J (2012) The HSP co-inducer BGP-15 can prevent the metabolic side effects of the atypical antipsychotics. Cell Stress Chaperones 17:517–521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  382. Ou J-R, Tan M-S, Xie A-M, Yu J-T, Tan L (2014) Heat shock protein 90 in Alzheimer’s disease. Biomed Res Int 2014:796869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  383. Penke B, Bogár F, Crul T, Sántha M, Tóth ME, Vígh L (2018) Heat shock proteins and autophagy pathways in neuroprotection: from molecular bases to pharmacological interventions. Int J Mol Sci 19:325

    Article  PubMed Central  CAS  Google Scholar 

  384. Allison AC, Cacabelos R, Lombardi VR, Álvarez XA, Vigo C (2001) Celastrol, a potent antioxidant and anti-inflammatory drug, as a possible treatment for Alzheimer’s disease. Prog Neuro-Psychopharmacol Biol Psychiatry 25:1341–1357

    Article  CAS  Google Scholar 

  385. Cascão R, Fonseca JE, Moita LF (2017) Celastrol: a spectrum of treatment opportunities in chronic diseases. Front Med 4:69

    Article  Google Scholar 

  386. Faust K, Gehrke S, Yang Y, Yang L, Beal MF, Lu B (2009) Neuroprotective effects of compounds with antioxidant and anti-inflammatory properties in a Drosophila model of Parkinson’s disease. BMC Neurosci 10:109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  387. Ju SM, Youn GS, Cho YS, Choi SY, Park J (2015) Celastrol ameliorates cytokine toxicity and pro-inflammatory immune responses by suppressing NF-κB activation in RINm5F beta cells. BMB Rep 48:172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  388. Sharma S, Mishra R, Walker BL, Deshmukh S, Zampino M, Patel J, Anamalai M, Simpson D, Singh IS, Kaushal S (2015) Celastrol, an oral heat shock activator, ameliorates multiple animal disease models of cell death. Cell Stress Chaperones 20:185–201

    Article  CAS  PubMed  Google Scholar 

  389. Westerheide SD, Morimoto RI (2005) Heat shock response modulators as therapeutic tools for diseases of protein conformation. J Biol Chem 280:33097–33100

    Article  CAS  PubMed  Google Scholar 

  390. Deane CA, Brown IR (2016) Induction of heat shock proteins in differentiated human neuronal cells following co-application of celastrol and arimoclomol. Cell Stress Chaperones 21:837–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  391. Francis S, Kramarenko I, Brandon C, Lee F, Baker T, Cunningham L (2011) Celastrol inhibits aminoglycoside-induced ototoxicity via heat shock protein 32. Cell Death Dis 2:e195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  392. Shen H-H, Huang S-Y, Cheng P-Y, Chu Y-J, Chen S-Y, Lam K-K, Lee Y-M (2017) Involvement of HSP70 and HO-1 in the protective effects of raloxifene on multiple organ dysfunction syndrome by endotoxemia in ovariectomized rats. Menopause 24:959–969

    Article  PubMed  Google Scholar 

  393. Ferat-Osorio E, Sánchez-Anaya A, Gutiérrez-Mendoza M, Boscó-Gárate I, Wong-Baeza I, Pastelin-Palacios R, Pedraza-Alva G, Bonifaz LC, Cortés-Reynosa P, Pérez-Salazar E (2014) Heat shock protein 70 down-regulates the production of toll-like receptor-induced pro-inflammatory cytokines by a heat shock factor-1/constitutive heat shock element-binding factor-dependent mechanism. J Inflamm 11:19

    Article  CAS  Google Scholar 

  394. Chow AM, Brown IR (2007) Induction of heat shock proteins in differentiated human and rodent neurons by celastrol. Cell Stress Chaperones 12:237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  395. Chow AM, Tang DW, Hanif A, Brown IR (2014) Localization of heat shock proteins in cerebral cortical cultures following induction by celastrol. Cell Stress Chaperones 19:845–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  396. Lu R-C, Tan M-S, Wang H, Xie A-M, Yu J-T, Tan L (2014) Heat shock protein 70 in Alzheimer’s disease. Biomed Res Int 2014:435203

    PubMed  PubMed Central  Google Scholar 

  397. Abbott NJ (2002) Astrocyte–endothelial interactions and blood–brain barrier permeability. J Anat 200:629–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  398. Paris D, Ganey NJ, Laporte V, Patel NS, Beaulieu-Abdelahad D, Bachmeier C, March A, Ait-Ghezala G, Mullan MJ (2010) Reduction of β-amyloid pathology by celastrol in a transgenic mouse model of Alzheimer’s disease. J Neuroinflammation 7:17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  399. Taldone T, Ochiana SO, Patel PD, Chiosis G (2014) Selective targeting of the stress chaperome as a therapeutic strategy. Trends Pharmacol Sci 35:592–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  400. Ansar S, Burlison JA, Hadden MK, Yu XM, Desino KE, Bean J, Neckers L, Audus KL, Michaelis ML, Blagg BS (2007) A non-toxic Hsp90 inhibitor protects neurons from Aβ-induced toxicity. Bioorg Med Chem Lett 17:1984–1990

    Article  CAS  PubMed  Google Scholar 

  401. Campanella C, Pace A, Caruso Bavisotto C, Marzullo P, Marino Gammazza A, Buscemi S, Palumbo Piccionello A (2018) Heat shock proteins in Alzheimer’s disease: role and targeting. Int J Mol Sci 19:2603

    Article  PubMed Central  CAS  Google Scholar 

  402. Kalmar B, Burnstock G, Vrbova G, Urbanics R, Csermely P, Greensmith L (2002) Upregulation of heat shock proteins rescues motoneurones from axotomy-induced cell death in neonatal rats. Exp Neurol 176:87–97

    Article  CAS  PubMed  Google Scholar 

  403. Kieran D, Kalmar B, Dick JR, Riddoch-Contreras J, Burnstock G, Greensmith L (2004) Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice. Nat Med 10:402

    Article  CAS  PubMed  Google Scholar 

  404. Hargitai J, Lewis H, Boros I, Rácz Tm, Fiser A, Kurucz I, Benjamin I, Vı́gh L, Pénzes Z, Csermely P (2003) Bimoclomol, a heat shock protein co-inducer, acts by the prolonged activation of heat shock factor-1. Biochem Biophys Res Commun 307:689–695

    Article  CAS  PubMed  Google Scholar 

  405. Ebrahimi-Fakhari D, Wahlster L, McLean PJ (2011) Molecular chaperones in Parkinson’s disease–present and future. J Parkinsons Dis 1:299–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  406. Keppel Hesselink J (2016) Bimoclomol and arimoclomol: HSP-co-inducers for the treatment of protein misfolding disorders, neuropathy and neuropathic pain. J Pain Relief 6:2167–0846.1000279

    Google Scholar 

  407. Fujibayashi T, Hashimoto N, Jijiwa M, Hasegawa Y, Kojima T, Ishiguro N (2009) Protective effect of geranylgeranylacetone, an inducer of heat shock protein 70, against drug-induced lung injury/fibrosis in an animal model. BMC Pulm Med 9:45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  408. Zhong J-M, Wu S-Y, Bai J, Guo Q, Tao J, Chen H, Zhao N-W, Zhao Z, Fu H (2012) Antidepressant effect of geranylgeranylacetone in a chronic mild stress model of depression and its possible mechanism. Exp Ther Med 4:627–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  409. Ohkawara T, Nishihira J, Takeda H, Miyashita K, Kato K, Kato M, Sugiyama T, Asaka M (2005) Geranylgeranylacetone protects mice from dextran sulfate sodium-induced colitis. Scand J Gastroenterol 40:1049–1057

    Article  CAS  PubMed  Google Scholar 

  410. Sun Y, Zhang JR, Chen S (2017) Suppression of Alzheimer’s disease-related phenotypes by the heat shock protein 70 inducer, geranylgeranylacetone, in APP/PS1 transgenic mice via the ERK/p38 MAPK signaling pathway. Exp Ther Med 14:5267–5274

    CAS  PubMed  PubMed Central  Google Scholar 

  411. Hoshino T, Suzuki K, Matsushima T, Yamakawa N, Suzuki T, Mizushima T (2013) Suppression of Alzheimer’s disease-related phenotypes by geranylgeranylacetone in mice. PLoS One 8:e76306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  412. Yasuda H, Shichinohe H, Kuroda S, Ishikawa T, Iwasaki Y (2005) Neuroprotective effect of a heat shock protein inducer, geranylgeranylacetone in permanent focal cerebral ischemia. Brain Res 1032:176–182

    Article  CAS  PubMed  Google Scholar 

  413. Gaspar N, Sharp SY, Pacey S, Jones C, Walton M, Vassal G, Eccles S, Pearson A, Workman P (2009) Acquired resistance to 17-allylamino-17-demethoxygeldanamycin (17-AAG, tanespimycin) in glioblastoma cells. Cancer Res 69:1966–1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  414. Schulte TW, Neckers LM (1998) The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother Pharmacol 42:273–279

    Article  CAS  PubMed  Google Scholar 

  415. Nanke Y, Kawamoto M, Yago T, Chiba J, Yamanaka H, Kotake S (2009) Geranylgeranylacetone, a non-toxic inducer of heat shock protein, induces cell death in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Mod Rheumatol 19:379–383

    Article  CAS  PubMed  Google Scholar 

  416. Schaefer S, Svenstrup TH, Guerra B (2017) The small-molecule kinase inhibitor D11 counteracts 17-AAG-mediated up-regulation of HSP70 in brain cancer cells. PLoS One 12:e0177706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  417. Gu Y, Chen J, Wang T, Zhou C, Liu Z, Ma L (2016) Hsp70 inducer, 17-allylamino-demethoxygeldanamycin, provides neuroprotection via anti-inflammatory effects in a rat model of traumatic brain injury. Exp Ther Med 12:3767–3772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  418. Galluzzi L, Bravo-San Pedro JM, Blomgren K, Kroemer G (2016) Autophagy in acute brain injury. Nat Rev Neurosci 17:467

    Article  CAS  PubMed  Google Scholar 

  419. Ortega L, Calvillo M, Luna F, Pérez-Severiano F, Rubio-Osornio M, Guevara J, Limón ID (2014) 17-AAG improves cognitive process and increases heat shock protein response in a model lesion with Aβ25–35. Neuropeptides 48:221–232

    Article  CAS  PubMed  Google Scholar 

  420. Choudhary MI, Naheed N, Abbaskhan A, Musharraf SG, Siddiqui H (2008) Phenolic and other constituents of fresh water fern Salvinia molesta. Phytochemistry 69:1018–1023

    Article  CAS  PubMed  Google Scholar 

  421. He D-Y, Dai S-M (2011) Anti-inflammatory and immunomodulatory effects of Paeonia lactiflora Pall., a traditional Chinese herbal medicine. Front Pharmacol 2:10

    Article  PubMed  PubMed Central  Google Scholar 

  422. Zhao X, Chen Z, Zhao J, Zhang P, Pu Y, Jiang S, Hou J, Cui Y, Jia X, Zhang S (2016b) Hsp90 modulates the stability of MLKL and is required for TNF-induced necroptosis. Cell Death Dis 7:e2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  423. Dai Yan KS, Ohmi Y, Fujie N, Ohtsuka K (2004) Paeoniflorin, a novel heat shock protein–inducing compound. Cell Stress Chaperones 9:378

    Article  PubMed  PubMed Central  Google Scholar 

  424. Ohtsuka K, Kawashima D, Gu Y, Saito K (2005) Inducers and co-inducers of molecular chaperones. Int J Hyperth 21:703–711

    Article  CAS  Google Scholar 

  425. Asai M, Kawashima D, Katagiri K, Takeuchi R, Tohnai G, Ohtsuka K (2011) Protective effect of a molecular chaperone inducer, paeoniflorin, on the HCl-and ethanol-triggered gastric mucosal injury. Life Sci 88:350–357

    Article  CAS  PubMed  Google Scholar 

  426. Lee W-H, Loo C-Y, Bebawy M, Luk F, Mason RS, Rohanizadeh R (2013) Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Curr Neuropharmacol 11:338–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  427. Prasad S, Aggarwal BB (2011) Turmeric, the golden spice: from traditional medicine to modern medicine. Herbal medicine: Biomolecular and Clinical Aspects, 13

    Google Scholar 

  428. Kato K, Ito H, Kamei K, Iwamoto I (1998) Stimulation of the stress-induced expression of stress proteins by curcumin in cultured cells and in rat tissues in vivo. Cell Stress Chaperones 3:152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  429. Wieten L, Broere F, van der Zee R, Koerkamp EK, Wagenaar J, van Eden W (2007) Cell stress induced HSP are targets of regulatory T cells: a role for HSP inducing compounds as anti-inflammatory immuno-modulators? FEBS Lett 581:3716–3722

    Article  CAS  PubMed  Google Scholar 

  430. Ma Q-L, Zuo X, Yang F, Ubeda OJ, Gant DJ, Alaverdyan M, Teng E, Hu S, Chen P-P, Maiti P (2013) Curcumin suppresses soluble tau dimers and corrects molecular chaperone, synaptic, and behavioral deficits in aged human tau transgenic mice. J Biol Chem 288:4056–4065

    Article  CAS  PubMed  Google Scholar 

  431. Zhang L, Fiala M, Cashman J, Sayre J, Espinosa A, Mahanian M, Zaghi J, Badmaev V, Graves MC, Bernard G (2006) Curcuminoids enhance amyloid-β uptake by macrophages of Alzheimer’s disease patients. J Alzheimers Dis 10:1–7

    Article  PubMed  Google Scholar 

  432. Singh S, Aggarwal BB (1995) Activation of transcription factor NF-κB is suppressed by curcumin (diferuloylmethane). J Biol Chem 270:24995–25000

    Article  CAS  PubMed  Google Scholar 

  433. Xu Y, Pindolia K, Janakiraman N, Chapman R, Gautam S (1997) Curcumin inhibits IL1 alpha and TNF-alpha induction of AP-1 and NF-kβ DNA-binding activity in bone marrow stromal cells. Hematopathol Mol Hematol 11:49–62

    CAS  PubMed  Google Scholar 

  434. Sundaram JR, Poore CP, Sulaimee NHB, Pareek T, Cheong WF, Wenk MR, Pant HC, Frautschy SA, Low C-M, Kesavapany S (2017) Curcumin ameliorates neuroinflammation, neurodegeneration, and memory deficits in p25 transgenic mouse model that bears hallmarks of Alzheimer’s disease. J Alzheimers Dis 60:1429–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  435. Lewis J, Devin A, Miller A, Lin Y, Rodriguez Y, Neckers L, Liu Z-g (2000) Disruption of Hsp90 function results in degradation of the death domain kinase, receptor-interacting protein (RIP), and blockage of tumor necrosis factor-induced nuclear factor-κB activation. J Biol Chem 275:10519–10526

    Article  CAS  PubMed  Google Scholar 

  436. Zhao D-D, Jiang L-L, Li H-Y, Yan P-F, Zhang Y-L (2016a) Chemical components and pharmacological activities of terpene natural products from the genus Paeonia. Molecules 21:1362

    Article  PubMed Central  CAS  Google Scholar 

  437. Sevin M, Girodon F, Garrido C, de Thonel A (2015) HSP90 and HSP70: implication in inflammation processes and therapeutic approaches for myeloproliferative neoplasms. Mediat Inflamm 2015:970242

    Article  CAS  Google Scholar 

  438. Ali A, Bharadwaj S, O’Carroll R, Ovsenek N (1998) HSP90 interacts with and regulates the activity of heat shock factor 1 in Xenopus oocytes. Mol Cell Biol 18:4949–4960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  439. Ambade A, Catalano D, Lim A, Mandrekar P (2012) Inhibition of Hsp90 attenuates pro-inflammatory cytokines and prevents LPS induced liver injury. Hepatology (Baltimore, Md) 55:1585

    Article  CAS  Google Scholar 

  440. Sable A, Rai KM, Choudhary A, Yadav VK, Agarwal SK, Sawant SV (2018) Inhibition of Heat Shock proteins HSP90 and HSP70 induce oxidative stress, suppressing cotton fiber development. Sci Rep 8:3620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  441. Solárová Z, MOJžiš J, SOLáR P (2015) Hsp90 inhibitor as a sensitizer of cancer cells to different therapies. Int J Oncol 46:907–926

    PubMed  Google Scholar 

  442. Blair LJ, Sabbagh JJ, Dickey CA (2014) Targeting Hsp90 and its co-chaperones to treat Alzheimer’s disease. Expert Opin Ther Targets 18:1219–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  443. Talaei S, Mellatyar H, Asadi A, Akbarzadeh A, Sheervalilou R, Zarghami N (2019) Spotlight on 17-AAG as an Hsp90 inhibitor for molecular targeted cancer treatment. Chem Biol Drug Des 93(5):760–786

    Article  CAS  PubMed  Google Scholar 

  444. Pearl LH, Prodromou C, Workman P (2008) The Hsp90 molecular chaperone: an open and shut case for treatment. Biochem J 410:439–453

    Article  CAS  PubMed  Google Scholar 

  445. Prodromou C, Roe SM, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1997) Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90:65–75

    Article  CAS  PubMed  Google Scholar 

  446. Zuo Y, Wang J, Liao F, Yan X, Li J, Huang L, Liu F (2018) Inhibition of heat shock protein 90 by 17-AAG reduces inflammation via P2X7 receptor/NLRP3 Inflammasome pathway and increases neurogenesis after subarachnoid hemorrhage in mice. Front Mol Neurosci:11

    Google Scholar 

  447. Bradley E, Zhao X, Wang R, Brann D, Bieberich E, Wang G (2014) Low dose Hsp90 inhibitor 17AAG protects neural progenitor cells from ischemia induced death. J Cell Commun Signal 8:353–362

    Article  PubMed  PubMed Central  Google Scholar 

  448. Li J, Csibi A, Yang S, Hoffman GR, Li C, Zhang E, Jane JY, Blenis J (2015) Synthetic lethality of combined glutaminase and Hsp90 inhibition in mTORC1-driven tumor cells. Proc Natl Acad Sci 112:E21–E29

    Article  CAS  PubMed  Google Scholar 

  449. Ho SW, Tsui YTC, Wong TT, Cheung SK-K, Goggins WB, Yi LM, Cheng KK, Baum L (2013) Effects of 17-allylamino-17-demethoxygeldanamycin (17-AAG) in transgenic mouse models of frontotemporal lobar degeneration and Alzheimer’s disease. Transl Neurodegener 2:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  450. Waza M, Adachi H, Katsuno M, Minamiyama M, Tanaka F, Doyu M, Sobue G (2006) Modulation of Hsp90 function in neurodegenerative disorders: a molecular-targeted therapy against disease-causing protein. J Mol Med 84:635–646

    Article  CAS  PubMed  Google Scholar 

  451. Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94:471–480

    Article  CAS  PubMed  Google Scholar 

  452. Kitson RR, Chang C-H, Xiong R, Williams HE, Davis AL, Lewis W, Dehn DL, Siegel D, Roe SM, Prodromou C (2013) Synthesis of 19-substituted geldanamycins with altered conformations and their binding to heat shock protein Hsp90. Nat Chem 5:307

    Article  CAS  PubMed  Google Scholar 

  453. Reigan P, Siegel D, Guo W, Ross D (2011) A mechanistic and structural analysis of the inhibition of the 90-kDa heat shock protein by the benzoquinone and hydroquinone ansamycins. Mol Pharmacol 79:823–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  454. Ochel H-J, Eichhorn K, Gademann G (2001) Geldanamycin: the prototype of a class of antitumor drugs targeting the heat shock protein 90 family of molecular chaperones. Cell Stress Chaperones 6:105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  455. Pezzulo AA, Tudas RA, Stewart CG, Buonfiglio LGV, Lindsay BD, Taft PJ, Gansemer ND, Zabner J (2019) HSP90 inhibitor geldanamycin reverts IL-13–And IL-17–induced airway goblet cell metaplasia. J Clin Invest 129:744–758

    Article  PubMed  PubMed Central  Google Scholar 

  456. Whitesell L, Robbins N, Huang DS, McLellan CA, Shekhar-Guturja T, LeBlanc EV, Nation CS, Hui R, Hutchinson A, Collins C (2019) Structural basis for species-selective targeting of Hsp90 in a pathogenic fungus. Nat Commun 10:402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  457. Sittler A, Lurz R, Lueder G, Priller J, Hayer-Hartl MK, Hartl FU, Lehrach H, Wanker EE (2001) Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington’s disease. Hum Mol Genet 10:1307–1315

    Article  CAS  PubMed  Google Scholar 

  458. Tukaj S, Węgrzyn G (2016) Anti-Hsp90 therapy in autoimmune and inflammatory diseases: a review of preclinical studies. Cell Stress Chaperones 21:213–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  459. Bartsch K, Hombach-Barrigah A, Clos J (2017) Hsp90 inhibitors radicicol and geldanamycin have opposing effects on Leishmania Aha1-dependent proliferation. Cell Stress Chaperones 22:729–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  460. Chang YS, Lee LC, Sun FC, Chao CC, Fu HW, Lai YK (2006) Involvement of calcium in the differential induction of heat shock protein 70 by heat shock protein 90 inhibitors, geldanamycin and radicicol, in human non-small cell lung cancer H460 cells. J Cell Biochem 97:156–165

    Article  CAS  PubMed  Google Scholar 

  461. Gomez-Monterrey I, Sala M, Musella S, Campiglia P (2012) Heat shock protein 90 inhibitors as therapeutic agents. Recent Pat Anticancer Drug Discov 7:313–336

    Article  CAS  PubMed  Google Scholar 

  462. Louis KS (2014) Investigation of the novel small molecule HSP90 inhibitor, NXD30001, in a mouse model of amyotrophic lateral sclerosis. McGill University Libraries, Montreal

    Google Scholar 

  463. Rao JS, Kim H-W, Kellom M, Greenstein D, Chen M, Kraft AD, Harry GJ, Rapoport SI, Basselin M (2012) Increased neuroinflammatory and arachidonic acid cascade markers, and reduced synaptic proteins, in brain of HIV-1 transgenic rats. J Neuroinflammation 9:19

    Article  PubMed Central  Google Scholar 

  464. Toyomura K, Saito T, Emori S, Matsumoto I, Kato E, Kaneko M, Okuma Y, Nakamura H, Murayama T (2012) Effects of Hsp90 inhibitors, geldanamycin and its analog, on ceramide metabolism and cytotoxicity in PC12 cells. J Toxicol Sci 37:1049–1057

    Article  CAS  PubMed  Google Scholar 

  465. Brash AR (2001) Arachidonic acid as a bioactive molecule. J Clin Invest 107:1339–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  466. Tallima H, El Ridi R (2018) Arachidonic acid: physiological roles and potential health benefits–a review. J Adv Res 11:33–41

    Article  CAS  PubMed  Google Scholar 

  467. Calder PC (2010) Omega-3 fatty acids and inflammatory processes. Nutrients 2:355–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  468. Granström E (1984) The arachidonic acid cascade. Inflammation 8:S15–S25

    Article  PubMed  Google Scholar 

  469. Jurivich DA, Sistonen L, Sarge KD, Morimoto RI (1994) Arachidonate is a potent modulator of human heat shock gene transcription. Proc Natl Acad Sci 91:2280–2284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  470. Elia G, Polla B, Rossi A, Santoro MG (1999) Induction of ferritin and heat shock proteins by prostaglandin A1 in human monocytes: evidence for transcriptional and post-transcriptional regulation. Eur J Biochem 264:736–745

    Article  CAS  PubMed  Google Scholar 

  471. Rossi A, Elia G, Santoro MG (1998) Activation of the heat shock factor 1 by serine protease inhibitors an effect associated with nuclear factor-κB inhibition. J Biol Chem 273:16446–16452

    Article  CAS  PubMed  Google Scholar 

  472. West JD, Wang Y, Morano KA (2012) Small molecule activators of the heat shock response: chemical properties, molecular targets, and therapeutic promise. Chem Res Toxicol 25:2036–2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  473. Ianaro A, Ialenti A, Maffia P, Pisano B, Di Rosa M (2001) HSF1/Hsp72 pathway as an endogenous anti-inflammatory system. FEBS Lett 499:239–244

    Article  CAS  PubMed  Google Scholar 

  474. Sanchez-Mejia RO, Mucke L (2010) Phospholipase A2 and arachidonic acid in Alzheimer’s disease. Biochim Biophys Acta Mol Cell Biol Lipids 1801:784–790

    Article  CAS  Google Scholar 

  475. Evgen’ev MB, Garbuz DG, Morozov AV, Bobkova NV (2018) Intranasal administration of Hsp70: molecular and therapeutic consequences. In: HSP70 in human diseases and disorders. Springer, New York pp 305–323

    Google Scholar 

  476. Hulina A, Rajković MG, Despot DJ, Jelić D, Dojder A, Čepelak I, Rumora L (2018) Extracellular Hsp70 induces inflammation and modulates LPS/LTA-stimulated inflammatory response in THP-1 cells. Cell Stress Chaperones 23:373–384

    Article  CAS  PubMed  Google Scholar 

  477. Wong KH, Riaz MK, Xie Y, Zhang X, Liu Q, Chen H, Bian Z, Chen X, Lu A, Yang Z (2019) Review of current strategies for delivering Alzheimer’s disease drugs across the blood-brain barrier. Int J Mol Sci 20:381

    Article  PubMed Central  CAS  Google Scholar 

  478. Brzica H, Abdullahi W, Ibbotson K, Ronaldson PT (2017) Role of transporters in central nervous system drug delivery and blood-brain barrier protection: relevance to treatment of stroke. J Cent Nerv Syst Dis 9:1179573517693802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  479. Pardridge WM (2012) Drug transport across the blood–brain barrier. J Cereb Blood Flow Metab 32:1959–1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  480. Upadhyay RK (2014) Drug delivery systems, CNS protection, and the blood brain barrier. Biomed Res Int 2014:1–37

    Google Scholar 

  481. Singh R, Lillard JW Jr (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  482. Wong KH, Riaz MK, Xie Y, Zhang X, Liu Q, Chen H, Bian Z, Chen X, Lu A, Yang Z (2019) Review of current strategies for delivering Alzheimer’s disease drugs across the bloodbrain barrier. Int J Mol Sci 20:381

    Article  PubMed Central  CAS  Google Scholar 

  483. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8:102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  484. Bozzuto G, Molinari A (2015) Liposomes as nanomedical devices. Int J Nanomedicine 10:975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  485. Çağdaş M, Sezer AD, Bucak S (2014) Liposomes as potential drug carrier systems for drug delivery. In: Application of nanotechnology in drug delivery. IntechOpen, London

    Google Scholar 

  486. Silva S, Almeida AJ, Vale N (2019) Combination of cell-penetrating peptides with nanoparticles for therapeutic application: a review. Biomol Ther 9:22

    Google Scholar 

  487. Spuch C, Navarro C (2011) Liposomes for targeted delivery of active agents against neurodegenerative diseases (Alzheimer’s disease and Parkinson’s disease). Journal Drug Del 2011:1–12

    Article  CAS  Google Scholar 

  488. Nizri E, Irony-Tur-Sinai M, Faranesh N, Lavon I, Lavi E, Weinstock M, Brenner T (2008) Suppression of neuroinflammation and immunomodulation by the acetylcholinesterase inhibitor rivastigmine. J Neuroimmunol 203:12–22

    Article  CAS  PubMed  Google Scholar 

  489. Ravi G, Gupta NV (2017) Development of Solid lipid Nanoparticles of Rivastigmine Tartrate by using full factorial design for the treatment of Alzheimer’s disease. J Pharm Sci Res 9:2447–2452

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are very much thankful to Science and Engineering Research Board (SERB), New Delhi, India (No. EMR/2016/006911/HS), Gujarat Council on Science & Technology (GUJCOST/MRP/2015-16/2680) Gujarat for financial support to AKT and DST-Innovation of Science Pursuit for Inspire Research (INSPIRE), New Delhi for financial support to KP (IF140990).

Disclosure of Interests

All authors declare they have no conflict of interest.

Ethical Approval for Studies Involving Humans

This article does not contain any studies with human participants performed by any of the authors.

Ethical Approval for Studies Involving Animals

This article does not contain any studies with animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Krishna Tiwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Panchal, K., Bhatt, V., Raval, M., Tiwari, A.K. (2020). Heat Shock Proteins, a Key Modulator of Neuroinflammation in Alzheimer’s Disease. In: Asea, A.A.A., Kaur, P. (eds) Heat Shock Proteins in Inflammatory Diseases. Heat Shock Proteins, vol 22. Springer, Cham. https://doi.org/10.1007/7515_2020_12

Download citation

Publish with us

Policies and ethics