Skip to main content

η-Class Carbonic Anhydrases as Antiplasmodial Drug Targets: Current State of the Art and Hurdles to Develop New Antimalarials

  • Chapter
  • First Online:
  • 234 Accesses

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 39))

Abstract

Plasmodium falciparum is responsible for the most severe and life-threatening form of malaria. The exceptionally high impact of malaria on human health is related to the ability of the parasites responsible for this disease to modify their genome to evade the human immune system and resist drug therapies. The lack of efficient treatments and acquired resistance to the existing therapies has stimulated efforts to identify new therapeutic targets to fight malaria. P. falciparum, during its exponential growth and replication in the erythrocytes, needs purines and pyrimidines for DNA/RNA synthesis, which are de novo synthesized from HCO3, ATP, and glutamine. HCO3 is involved in the Plasmodia pyrimidine pathway and is generated from CO2 through the action of metalloenzymes known as carbonic anhydrases (CAs). We will review the current state of the art for inhibiting the CA (PfCAdom) from Plasmodium falciparum using the classical CA inhibitors, such as sulfonamides and their bioisosteres, organic anions, as well as phenol compounds. Some of these showed effective nanomolar inhibitory effect for PfCAdom and could be considered as leads for finding new drug candidates possessing a different mechanism of action from the clinically used drugs to which a considerable degree of drug resistance has been reported.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rodrigues Ide A, da Silva BA, dos Santos AL, Vermelho AB, Alviano CS, Dutra PM, Rosa Mdo S (2010) A new experimental culture medium for cultivation of Leishmania amazonensis: its efficacy for the continuous in vitro growth and differentiation of infective promastigote forms. Parasitol Res 106(5):1249–1252. https://doi.org/10.1007/s00436-010-1775-4

    Article  PubMed  Google Scholar 

  2. Syrjanen L, Vermelho AB, Rodrigues Ide A, Corte-Real S, Salonen T, Pan P et al (2013) Cloning, characterization, and inhibition studies of a beta-carbonic anhydrase from Leishmania donovani chagasi, the protozoan parasite responsible for leishmaniasis. J Med Chem 56(18):7372–7381. https://doi.org/10.1021/jm400939k

    Article  CAS  PubMed  Google Scholar 

  3. Alafeefy AM, Ceruso M, Al-Jaber NA, Parkkila S, Vermelho AB, Supuran CT (2015) A new class of quinazoline-sulfonamides acting as efficient inhibitors against the alpha-carbonic anhydrase from Trypanosoma cruzi. J Enzyme Inhib Med Chem 30(4):581–585. https://doi.org/10.3109/14756366.2014.956309

    Article  CAS  PubMed  Google Scholar 

  4. de Menezes DD, Calvet CM, Rodrigues GC, de Souza Pereira MC, Almeida IR, de Aguiar AP et al (2015) Hydroxamic acid derivatives: a promising scaffold for rational compound optimization in Chagas disease. J Enzyme Inhib Med Chem:1–10. https://doi.org/10.3109/14756366.2015.1077330

  5. Guzel-Akdemir O, Akdemir A, Pan P, Vermelho AB, Parkkila S, Scozzafava A et al (2013) A class of sulfonamides with strong inhibitory action against the alpha-carbonic anhydrase from Trypanosoma cruzi. J Med Chem 56(14):5773–5781. https://doi.org/10.1021/jm400418p

    Article  CAS  PubMed  Google Scholar 

  6. Pan P, Vermelho AB, Scozzafava A, Parkkila S, Capasso C, Supuran CT (2013) Anion inhibition studies of the alpha-carbonic anhydrase from the protozoan pathogen Trypanosoma cruzi, the causative agent of Chagas disease. Bioorg Med Chem 21(15):4472–4476. https://doi.org/10.1016/j.bmc.2013.05.058

    Article  CAS  PubMed  Google Scholar 

  7. Rodrigues GC, Feijo DF, Bozza MT, Pan P, Vullo D, Parkkila S et al (2014) Design, synthesis, and evaluation of hydroxamic acid derivatives as promising agents for the management of Chagas disease. J Med Chem 57(2):298–308. https://doi.org/10.1021/jm400902y

    Article  CAS  PubMed  Google Scholar 

  8. Capasso C, Supuran CT (2013) Anti-infective carbonic anhydrase inhibitors: a patent and literature review. Expert Opin Ther Pat 23(6):693–704. https://doi.org/10.1517/13543776.2013.778245

    Article  CAS  PubMed  Google Scholar 

  9. Pan P, Vermelho AB, Capaci Rodrigues G, Scozzafava A, Tolvanen ME, Parkkila S et al (2013) Cloning, characterization, and sulfonamide and thiol inhibition studies of an alpha-carbonic anhydrase from Trypanosoma cruzi, the causative agent of Chagas disease. J Med Chem 56(4):1761–1771. https://doi.org/10.1021/jm4000616

    Article  CAS  PubMed  Google Scholar 

  10. Von Stebut E (2015) Leishmaniasis. J Dtsch Dermatol Ges 13(3):191–201. https://doi.org/10.1111/ddg.12595

    Article  Google Scholar 

  11. Maxfield L, Crane JS (2020) Leishmaniasis. StatPearls, Treasure Island

    Google Scholar 

  12. Kean BH (1977) Carlos Chagas and Chagas’ disease. Am J Trop Med Hyg 26(5 Pt 2 Suppl):1084–1087. https://doi.org/10.4269/ajtmh.1977.26.1084

    Article  CAS  PubMed  Google Scholar 

  13. Aith FMA, Forsyth C, Shikanai-Yasuda MA (2020) Chagas disease and healthcare rights in the Bolivian Immigrant Community of Sao Paulo, Brazil. Trop Med Infect Dis 5(2). https://doi.org/10.3390/tropicalmed5020062

  14. El-Taweel HA (2015) Understanding drug resistance in human intestinal protozoa. Parasitol Res 114(5):1647–1659. https://doi.org/10.1007/s00436-015-4423-1

    Article  PubMed  Google Scholar 

  15. Turkeltaub JA, McCarty 3rd TR, Hotez PJ (2015) The intestinal protozoa: emerging impact on global health and development. Curr Opin Gastroenterol 31(1):38–44. https://doi.org/10.1097/MOG.0000000000000135

    Article  PubMed  Google Scholar 

  16. Zekar L, Sharman T (2020) Plasmodium Falciparum Malaria. StatPearls, Treasure Island

    Google Scholar 

  17. Del Prete S, Vullo D, Fisher GM, Andrews KT, Poulsen SA, Capasso C, Supuran CT (2014) Discovery of a new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum – the eta-carbonic anhydrases. Bioorg Med Chem Lett 24(18):4389–4396. https://doi.org/10.1016/j.bmcl.2014.08.015

    Article  CAS  PubMed  Google Scholar 

  18. Krungkrai J, Krungkrai SR, Supuran CT (2007) Malarial parasite carbonic anhydrase and its inhibitors. Curr Top Med Chem 7(9):909–917. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17504136

    Article  CAS  Google Scholar 

  19. Krungkrai J, Krungkrai SR, Supuran CT (2008) Carbonic anhydrase inhibitors: inhibition of Plasmodium falciparum carbonic anhydrase with aromatic/heterocyclic sulfonamides-in vitro and in vivo studies. Bioorg Med Chem Lett 18(20):5466–5471. https://doi.org/10.1016/j.bmcl.2008.09.030

    Article  CAS  PubMed  Google Scholar 

  20. Krungkrai J, Supuran CT (2008) The alpha-carbonic anhydrase from the malaria parasite and its inhibition. Curr Pharm Des 14(7):631–640. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18336308

    Article  CAS  Google Scholar 

  21. Supuran CT, Capasso C (2015) The eta-class carbonic anhydrases as drug targets for antimalarial agents. Expert Opin Ther Targets 19(4):551–563. https://doi.org/10.1517/14728222.2014.991312

    Article  CAS  PubMed  Google Scholar 

  22. Syrjanen L, Kuuslahti M, Tolvanen M, Vullo D, Parkkila S, Supuran CT (2015) The beta-carbonic anhydrase from the malaria mosquito Anopheles gambiae is highly inhibited by sulfonamides. Bioorg Med Chem 23(10):2303–2309. https://doi.org/10.1016/j.bmc.2015.03.081

    Article  CAS  PubMed  Google Scholar 

  23. Vullo D, Del Prete S, Fisher GM, Andrews KT, Poulsen SA, Capasso C, Supuran CT (2015) Sulfonamide inhibition studies of the eta-class carbonic anhydrase from the malaria pathogen Plasmodium falciparum. Bioorg Med Chem 23(3):526–531. https://doi.org/10.1016/j.bmc.2014.12.009

    Article  CAS  PubMed  Google Scholar 

  24. Zareef M, Iqbal R, De Dominguez NG, Rodrigues J, Zaidi JH, Arfan M, Supuran CT (2007) Synthesis and antimalarial activity of novel chiral and achiral benzenesulfonamides bearing 1,3,4-oxadiazole moieties. J Enzyme Inhib Med Chem 22(3):301–308. https://doi.org/10.1080/14756360601114569

    Article  CAS  PubMed  Google Scholar 

  25. Arama C, Troye-Blomberg M (2014) The path of malaria vaccine development: challenges and perspectives. J Intern Med 275(5):456–466. https://doi.org/10.1111/joim.12223

    Article  CAS  PubMed  Google Scholar 

  26. Cui L, Lindner S, Miao J (2015) Translational regulation during stage transitions in malaria parasites. Ann N Y Acad Sci 1342:1–9. https://doi.org/10.1111/nyas.12573

    Article  CAS  PubMed  Google Scholar 

  27. Cotton M (2020) The Mosquirix (RTS.S) malaria vaccine. Trop Doct 50(2):107. https://doi.org/10.1177/0049475520916978

    Article  PubMed  Google Scholar 

  28. Keating C (2020) The history of the RTS,S/AS01 malaria vaccine trial. Lancet 395(10233):1336–1337. https://doi.org/10.1016/S0140-6736(20)30815-1

    Article  PubMed  Google Scholar 

  29. Kuijpers LM, Maltha J, Guiraud I, Kabore B, Lompo P, Devlieger H et al (2016) Severe anaemia associated with Plasmodium falciparum infection in children: consequences for additional blood sampling for research. Malar J 15:304. https://doi.org/10.1186/s12936-016-1356-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Scholzen A, Sauerwein RW (2016) Immune activation and induction of memory: lessons learned from controlled human malaria infection with Plasmodium falciparum. Parasitology 143(2):224–235. https://doi.org/10.1017/S0031182015000761

    Article  PubMed  Google Scholar 

  31. Antony HA, Parija SC (2016) Antimalarial drug resistance: an overview. Trop Parasitol 6(1):30–41. https://doi.org/10.4103/2229-5070.175081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Packard RM (2014) The origins of antimalarial-drug resistance. N Engl J Med 371(5):397–399. https://doi.org/10.1056/NEJMp1403340

    Article  CAS  PubMed  Google Scholar 

  33. Watts RE, Odedra A, Marquart L, Webb L, Abd-Rahman AN, Cascales L et al (2020) Safety and parasite clearance of artemisinin-resistant Plasmodium falciparum infection: a pilot and a randomised volunteer infection study in Australia. PLoS Med 17(8):e1003203. https://doi.org/10.1371/journal.pmed.1003203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yeka A, Banek K, Bakyaita N, Staedke SG, Kamya MR, Talisuna A et al (2005) Artemisinin versus nonartemisinin combination therapy for uncomplicated malaria: randomized clinical trials from four sites in Uganda. PLoS Med 2(7):e190. https://doi.org/10.1371/journal.pmed.0020190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Paton DG, Childs LM, Itoe MA, Holmdahl IE, Buckee CO, Catteruccia F (2019) Exposing Anopheles mosquitoes to antimalarials blocks Plasmodium parasite transmission. Nature 567(7747):239–243. https://doi.org/10.1038/s41586-019-0973-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. De Simone G, Di Fiore A, Capasso C, Supuran CT (2015) The zinc coordination pattern in the eta-carbonic anhydrase from Plasmodium falciparum is different from all other carbonic anhydrase genetic families. Bioorg Med Chem Lett 25(7):1385–1389. https://doi.org/10.1016/j.bmcl.2015.02.046

    Article  CAS  PubMed  Google Scholar 

  37. Cassera MB, Zhang Y, Hazleton KZ, Schramm VL (2011) Purine and pyrimidine pathways as targets in Plasmodium falciparum. Curr Top Med Chem 11(16):2103–2115. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21619511

    Article  CAS  Google Scholar 

  38. Del Prete S, Vullo D, De Luca V, Supuran CT, Capasso C (2014) Biochemical characterization of the delta-carbonic anhydrase from the marine diatom Thalassiosira weissflogii, TweCA. J Enzyme Inhib Med Chem. https://doi.org/10.3109/14756366.2013.868599

  39. Guzel O, Innocenti A, Vullo D, Scozzafava A, Supuran CT (2010) 3-phenyl-1H-indole-5-sulfonamides: structure-based drug design of a promising class of carbonic anhydrase inhibitors. Curr Pharm Des 16(29):3317–3326. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20819062

    Article  CAS  Google Scholar 

  40. Temperini C, Innocenti A, Guerri A, Scozzafava A, Rusconi S, Supuran CT (2007) Phosph(on)ate as a zinc-binding group in metalloenzyme inhibitors: X-ray crystal structure of the antiviral drug foscarnet complexed to human carbonic anhydrase I. Bioorg Med Chem Lett 17(8):2210–2215. https://doi.org/10.1016/j.bmcl.2007.01.113

    Article  CAS  PubMed  Google Scholar 

  41. Winum JY, Temperini C, El Cheikh K, Innocenti A, Vullo D, Ciattini S et al (2006) Carbonic anhydrase inhibitors: clash with Ala65 as a means for designing inhibitors with low affinity for the ubiquitous isozyme II, exemplified by the crystal structure of the topiramate sulfamide analogue. J Med Chem 49(24):7024–7031. https://doi.org/10.1021/jm060807n

    Article  CAS  PubMed  Google Scholar 

  42. Capasso C, Supuran CT (2015) Bacterial, fungal and protozoan carbonic anhydrases as drug targets. Expert Opin Ther Targets 19(12):1689–1704. https://doi.org/10.1517/14728222.2015.1067685

    Article  CAS  PubMed  Google Scholar 

  43. Capasso C, Supuran CT (2015) An overview of the alpha-, beta- and gamma-carbonic anhydrases from Bacteria: can bacterial carbonic anhydrases shed new light on evolution of bacteria? J Enzyme Inhib Med Chem 30(2):325–332. https://doi.org/10.3109/14756366.2014.910202

    Article  CAS  PubMed  Google Scholar 

  44. Capasso C, Supuran CT (2015) An overview of the selectivity and efficiency of the bacterial carbonic anhydrase inhibitors. Curr Med Chem 22(18):2130–2139. https://doi.org/10.2174/0929867321666141012174921

    Article  CAS  PubMed  Google Scholar 

  45. De Luca V, Del Prete S, Supuran CT, Capasso C (2015) Protonography, a new technique for the analysis of carbonic anhydrase activity. J Enzyme Inhib Med Chem 30(2):277–282. https://doi.org/10.3109/14756366.2014.917085

    Article  CAS  PubMed  Google Scholar 

  46. Del Prete S, De Luca V, Nocentini A, Scaloni A, Mastrolorenzo MD, Supuran CT, Capasso C (2020) Anion inhibition studies of the beta-carbonic anhydrase from Escherichia coli. Molecules 25(11). https://doi.org/10.3390/molecules25112564

  47. Supuran CT, Capasso C (2017) An overview of the bacterial carbonic anhydrases. Meta 7(4). https://doi.org/10.3390/metabo7040056

  48. Capasso C, Supuran CT (2016) An overview of the carbonic anhydrases from two pathogens of the oral cavity: streptococcus mutans and Porphyromonas gingivalis. Curr Top Med Chem 16(21):2359–2368. https://doi.org/10.2174/1568026616666160413135522

    Article  CAS  PubMed  Google Scholar 

  49. Buzas GM, Supuran CT (2016) The history and rationale of using carbonic anhydrase inhibitors in the treatment of peptic ulcers. In memoriam Ioan Puscas (1932-2015). J Enzyme Inhib Med Chem 31(4):527–533. https://doi.org/10.3109/14756366.2015.1051042

    Article  CAS  PubMed  Google Scholar 

  50. Carta F, Supuran CT, Scozzafava A (2014) Sulfonamides and their isosters as carbonic anhydrase inhibitors. Future Med Chem 6(10):1149–1165. https://doi.org/10.4155/fmc.14.68

    Article  CAS  PubMed  Google Scholar 

  51. Supuran CT (2016) Structure and function of carbonic anhydrases. Biochem J 473(14):2023–2032. https://doi.org/10.1042/BCJ20160115

    Article  CAS  PubMed  Google Scholar 

  52. De Luca L, Ferro S, Damiano FM, Supuran CT, Vullo D, Chimirri A, Gitto R (2014) Structure-based screening for the discovery of new carbonic anhydrase VII inhibitors. Eur J Med Chem 71:105–111. https://doi.org/10.1016/j.ejmech.2013.10.071

    Article  CAS  PubMed  Google Scholar 

  53. De Simone G, Monti SM, Alterio V, Buonanno M, De Luca V, Rossi M et al (2015) Crystal structure of the most catalytically effective carbonic anhydrase enzyme known, SazCA from the thermophilic bacterium Sulfurihydrogenibium azorense. Bioorg Med Chem Lett 25(9):2002–2006. https://doi.org/10.1016/j.bmcl.2015.02.068

    Article  CAS  PubMed  Google Scholar 

  54. Di Fiore A, Capasso C, De Luca V, Monti SM, Carginale V, Supuran CT et al (2013) X-ray structure of the first ‘extremo-alpha-carbonic anhydrase’, a dimeric enzyme from the thermophilic bacterium sulfurihydrogenibium yellowstonense YO3AOP1. Acta Crystallogr D Biol Crystallogr 69(Pt 6):1150–1159. https://doi.org/10.1107/S0907444913007208

    Article  CAS  PubMed  Google Scholar 

  55. Ferraroni M, Del Prete S, Vullo D, Capasso C, Supuran CT (2015) Crystal structure and kinetic studies of a tetrameric type II beta-carbonic anhydrase from the pathogenic bacterium vibrio cholerae. Acta Crystallogr D Biol Crystallogr 71(Pt 12):2449–2456. https://doi.org/10.1107/S1399004715018635

    Article  CAS  PubMed  Google Scholar 

  56. Pinard MA, Lotlikar SR, Boone CD, Vullo D, Supuran CT, Patrauchan MA, McKenna R (2015) Structure and inhibition studies of a type II beta-carbonic anhydrase psCA3 from Pseudomonas aeruginosa. Bioorg Med Chem 23(15):4831–4838. https://doi.org/10.1016/j.bmc.2015.05.029

    Article  CAS  PubMed  Google Scholar 

  57. Supuran CT (2008) Carbonic anhydrases – an overview. Curr Pharm Des 14(7):603–614. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18336305

    Article  CAS  Google Scholar 

  58. Supuran CT (2012) Structure-based drug discovery of carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 27(6):759–772. https://doi.org/10.3109/14756366.2012.672983

    Article  CAS  PubMed  Google Scholar 

  59. Zolnowska B, Slawinski J, Pogorzelska A, Chojnacki J, Vullo D, Supuran CT (2014) Carbonic anhydrase inhibitors. Synthesis, and molecular structure of novel series N-substituted N'-(2-arylmethylthio-4-chloro-5-methylbenzenesulfonyl)guanidines and their inhibition of human cytosolic isozymes I and II and the transmembrane tumor-associated isozymes IX and XII. Eur J Med Chem 71:135–147. https://doi.org/10.1016/j.ejmech.2013.10.081

    Article  CAS  PubMed  Google Scholar 

  60. Alterio V, Langella E, Viparelli F, Vullo D, Ascione G, Dathan NA et al (2012) Structural and inhibition insights into carbonic anhydrase CDCA1 from the marine diatom Thalassiosira weissflogii. Biochimie 94(5):1232–1241. https://doi.org/10.1016/j.biochi.2012.02.013

    Article  CAS  PubMed  Google Scholar 

  61. Bhatt A, Mahon BP, Cruzeiro VW, Cornelio B, Laronze-Cochard M, Ceruso M et al (2017) Structure-activity relationships of benzenesulfonamide-based inhibitors towards carbonic anhydrase isoform specificity. Chembiochem 18:213–222. https://doi.org/10.1002/cbic.201600513

    Article  CAS  PubMed  Google Scholar 

  62. Supuran CT (2017) Advances in structure-based drug discovery of carbonic anhydrase inhibitors. Expert Opin Drug Discov 12(1):61–88. https://doi.org/10.1080/17460441.2017.1253677

    Article  CAS  PubMed  Google Scholar 

  63. Jensen EL, Clement R, Kosta A, Maberly SC, Gontero B (2019) A new widespread subclass of carbonic anhydrase in marine phytoplankton. ISME J 13(8):2094–2106. https://doi.org/10.1038/s41396-019-0426-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lomelino CL, Mahon BP, McKenna R, Carta F, Supuran CT (2016) Kinetic and X-ray crystallographic investigations on carbonic anhydrase isoforms I, II, IX and XII of a thioureido analog of SLC-0111. Bioorg Med Chem 24(5):976–981. https://doi.org/10.1016/j.bmc.2016.01.019

    Article  CAS  PubMed  Google Scholar 

  65. Fu X, Yu LJ, Mao-Teng L, Wei L, Wu C, Yun-Feng M (2008) Evolution of structure in gamma-class carbonic anhydrase and structurally related proteins. Mol Phylogenet Evol 47(1):211–220. https://doi.org/10.1016/j.ympev.2008.01.005

    Article  CAS  PubMed  Google Scholar 

  66. D’Ambrosio K, Di Fiore A, Buonanno M, Monti SM, De Simone G (2019) Eta and teta-carbonic anhydrases. Elsevier, London

    Google Scholar 

  67. Supuran CT (2016) How many carbonic anhydrase inhibition mechanisms exist? J Enzyme Inhib Med Chem 31(3):345–360. https://doi.org/10.3109/14756366.2015.1122001

    Article  CAS  PubMed  Google Scholar 

  68. Aspatwar A, Tolvanen ME, Ortutay C, Parkkila S (2014) Carbonic anhydrase related proteins: molecular biology and evolution. Subcell Biochem 75:135–156. https://doi.org/10.1007/978-94-007-7359-2_8

    Article  CAS  PubMed  Google Scholar 

  69. Supuran CT (2007) Carbonic anhydrases as drug targets – an overview. Curr Top Med Chem 7(9):825–833. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17504127

    Article  CAS  Google Scholar 

  70. Del Prete S, Vullo D, Zoccola D, Tambutte S, Capasso C, Supuran CT (2017) Kinetic properties and affinities for sulfonamide inhibitors of an alpha-carbonic anhydrase (CruCA4) involved in coral biomineralization in the Mediterranean red coral Corallium rubrum. Bioorg Med Chem 25(13):3525–3530. https://doi.org/10.1016/j.bmc.2017.05.001

    Article  CAS  PubMed  Google Scholar 

  71. Perfetto R, Del Prete S, Vullo D, Sansone G, Barone C, Rossi M et al (2017) Biochemical characterization of the native alpha-carbonic anhydrase purified from the mantle of the Mediterranean mussel, Mytilus galloprovincialis. J Enzyme Inhib Med Chem 32(1):632–639. https://doi.org/10.1080/14756366.2017.1284069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Capasso C, Supuran CT (2014) Sulfa and trimethoprim-like drugs – antimetabolites acting as carbonic anhydrase, dihydropteroate synthase and dihydrofolate reductase inhibitors. J Enzyme Inhib Med Chem 29(3):379–387. https://doi.org/10.3109/14756366.2013.787422

    Article  CAS  PubMed  Google Scholar 

  73. Krungkrai J, Scozzafava A, Reungprapavut S, Krungkrai SR, Rattanajak R, Kamchonwongpaisan S, Supuran CT (2005) Carbonic anhydrase inhibitors. Inhibition of Plasmodium falciparum carbonic anhydrase with aromatic sulfonamides: towards antimalarials with a novel mechanism of action? Bioorg Med Chem 13(2):483–489. https://doi.org/10.1016/j.bmc.2004.10.015

    Article  CAS  PubMed  Google Scholar 

  74. Krungkrai SR, Suraveratum N, Rochanakij S, Krungkrai J (2001) Characterisation of carbonic anhydrase in Plasmodium falciparum. Int J Parasitol 31(7):661–668. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11336746

    Article  CAS  Google Scholar 

  75. Reungprapavut S, Krungkrai SR, Krungkrai J (2004) Plasmodium falciparum carbonic anhydrase is a possible target for malaria chemotherapy. J Enzyme Inhib Med Chem 19(3):249–256. https://doi.org/10.1080/14756360410001689577

    Article  CAS  PubMed  Google Scholar 

  76. Del Prete S, De Luca V, De Simone G, Supuran CT, Capasso C (2016) Cloning, expression and purification of the complete domain of the eta-carbonic anhydrase from Plasmodium falciparum. J Enzyme Inhib Med Chem 31(Suppl 4):54–59. https://doi.org/10.1080/14756366.2016.1217856

    Article  CAS  PubMed  Google Scholar 

  77. Supuran CT (2016) Carbonic anhydrase inhibition and the management of neuropathic pain. Expert Rev Neurother 16(8):961–968. https://doi.org/10.1080/14737175.2016.1193009

    Article  CAS  PubMed  Google Scholar 

  78. Supuran CT (2016) Drug interaction considerations in the therapeutic use of carbonic anhydrase inhibitors. Expert Opin Drug Metab Toxicol 12(4):423–431. https://doi.org/10.1517/17425255.2016.1154534

    Article  CAS  PubMed  Google Scholar 

  79. Otten H (1986) Domagk and the development of the sulphonamides. J Antimicrob Chemother 17(6):689–696. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/3525495

    Article  CAS  Google Scholar 

  80. Achari A, Somers DO, Champness JN, Bryant PK, Rosemond J, Stammers DK (1997) Crystal structure of the anti-bacterial sulfonamide drug target dihydropteroate synthase. Nat Struct Biol 4(6):490–497. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/9187658

    Article  CAS  Google Scholar 

  81. Abdel Gawad NM, Amin NH, Elsaadi MT, Mohamed FM, Angeli A, De Luca V et al (2016) Synthesis of 4-(thiazol-2-ylamino)-benzenesulfonamides with carbonic anhydrase I, II and IX inhibitory activity and cytotoxic effects against breast cancer cell lines. Bioorg Med Chem 24(13):3043–3051. https://doi.org/10.1016/j.bmc.2016.05.016

    Article  CAS  PubMed  Google Scholar 

  82. Alafeefy AM, Abdel-Aziz HA, Vullo D, Al-Tamimi AM, Awaad AS, Mohamed MA, Supuran CT (2015) Inhibition of human carbonic anhydrase isozymes I, II, IX and XII with a new series of sulfonamides incorporating aroylhydrazone-, [1,2,4]triazolo[3,4-b][1,3,4]thiadiazinyl- or 2-(cyanophenylmethylene)-1,3,4-thiadiazol-3(2H)-yl moieties. J Enzyme Inhib Med Chem 30(1):52–56. https://doi.org/10.3109/14756366.2013.877897

    Article  CAS  PubMed  Google Scholar 

  83. Alafeefy AM, Ceruso M, Al-Tamimi AM, Del Prete S, Supuran CT, Capasso C (2015) Inhibition studies of quinazoline-sulfonamide derivatives against the gamma-CA (PgiCA) from the pathogenic bacterium, Porphyromonas gingivalis. J Enzyme Inhib Med Chem 30(4):592–596. https://doi.org/10.3109/14756366.2014.957202

    Article  CAS  PubMed  Google Scholar 

  84. Carta F, Maresca A, Covarrubias AS, Mowbray SL, Jones TA, Supuran CT (2009) Carbonic anhydrase inhibitors. Characterization and inhibition studies of the most active beta-carbonic anhydrase from Mycobacterium tuberculosis, Rv3588c. Bioorg Med Chem Lett 19(23):6649–6654. https://doi.org/10.1016/j.bmcl.2009.10.009

    Article  CAS  PubMed  Google Scholar 

  85. Dedeoglu N, DeLuca V, Isik S, Yildirim H, Kockar F, Capasso C, Supuran CT (2015) Sulfonamide inhibition study of the beta-class carbonic anhydrase from the caries producing pathogen Streptococcus mutans. Bioorg Med Chem Lett 25:2291–2297. https://doi.org/10.1016/j.bmcl.2015.04.037

    Article  CAS  PubMed  Google Scholar 

  86. Del Prete S, Vullo D, De Luca V, Carginale V, di Fonzo P, Osman SM et al (2016) Anion inhibition profiles of the complete domain of the eta-carbonic anhydrase from Plasmodium falciparum. Bioorg Med Chem 24(18):4410–4414. https://doi.org/10.1016/j.bmc.2016.07.034

    Article  CAS  PubMed  Google Scholar 

  87. Del Prete S, Vullo D, De Luca V, Carginale V, Ferraroni M, Osman SM et al (2016) Sulfonamide inhibition studies of the beta-carbonic anhydrase from the pathogenic bacterium vibrio cholerae. Bioorg Med Chem 24(5):1115–1120. https://doi.org/10.1016/j.bmc.2016.01.037

    Article  CAS  PubMed  Google Scholar 

  88. Diaz JR, Fernandez Baldo M, Echeverria G, Baldoni H, Vullo D, Soria DB et al (2016) A substituted sulfonamide and its Co (II), Cu (II), and Zn (II) complexes as potential antifungal agents. J Enzyme Inhib Med Chem 31(Suppl 2):51–62. https://doi.org/10.1080/14756366.2016.1187143

    Article  CAS  PubMed  Google Scholar 

  89. Nishimori I, Minakuchi T, Maresca A, Carta F, Scozzafava A, Supuran CT (2010) The beta-carbonic anhydrases from Mycobacterium tuberculosis as drug targets. Curr Pharm Des 16(29):3300–3309. https://doi.org/10.2174/138161210793429814

    Article  CAS  PubMed  Google Scholar 

  90. Nishimori I, Vullo D, Minakuchi T, Scozzafava A, Capasso C, Supuran CT (2014) Sulfonamide inhibition studies of two beta-carbonic anhydrases from the bacterial pathogen Legionella pneumophila. Bioorg Med Chem 22(11):2939–2946. https://doi.org/10.1016/j.bmc.2014.04.006

    Article  CAS  PubMed  Google Scholar 

  91. Supuran CT (2016) Legionella pneumophila carbonic anhydrases: underexplored antibacterial drug targets. Pathogens 5(2). https://doi.org/10.3390/pathogens5020044

  92. Vullo D, De Luca V, Del Prete S, Carginale V, Scozzafava A, Capasso C, Supuran CT (2015) Sulfonamide inhibition studies of the gamma-carbonic anhydrase from the Antarctic bacterium Pseudoalteromonas haloplanktis. Bioorg Med Chem Lett 25(17):3550–3555. https://doi.org/10.1016/j.bmcl.2015.06.079

    Article  CAS  PubMed  Google Scholar 

  93. Vullo D, De Luca V, Del Prete S, Carginale V, Scozzafava A, Capasso C, Supuran CT (2015) Sulfonamide inhibition studies of the gamma-carbonic anhydrase from the Antarctic cyanobacterium Nostoc commune. Bioorg Med Chem 23(8):1728–1734. https://doi.org/10.1016/j.bmc.2015.02.045

    Article  CAS  PubMed  Google Scholar 

  94. Vullo D, Sai Kumar RS, Scozzafava A, Capasso C, Ferry JG, Supuran CT (2013) Anion inhibition studies of a beta-carbonic anhydrase from Clostridium perfringens. Bioorg Med Chem Lett 23(24):6706–6710. https://doi.org/10.1016/j.bmcl.2013.10.037

    Article  CAS  PubMed  Google Scholar 

  95. Nguyen K, Ahlawat R (2020) Famotidine. StatPearls, Treasure Island

    Google Scholar 

  96. Komiya T, Huang CH (2018) Updates in the clinical development of Epacadostat and other Indoleamine 2,3-dioxygenase 1 inhibitors (IDO1) for human cancers. Front Oncol 8:423. https://doi.org/10.3389/fonc.2018.00423

    Article  PubMed  PubMed Central  Google Scholar 

  97. De Simone G, Supuran CT (2012) (In)organic anions as carbonic anhydrase inhibitors. J Inorg Biochem 111:117–129. https://doi.org/10.1016/j.jinorgbio.2011.11.017

    Article  CAS  PubMed  Google Scholar 

  98. Angeli A, Pinteala M, Maier SS, Del Prete S, Capasso C, Simionescu BC, Supuran CT (2019) Inhibition of alpha-, beta-, gamma-, delta-, zeta- and eta-class carbonic anhydrases from bacteria, fungi, algae, diatoms and protozoans with famotidine. J Enzyme Inhib Med Chem 34(1):644–650. https://doi.org/10.1080/14756366.2019.1571273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sein KK, Aikawa M (1998) The pivotal role of carbonic anhydrase in malaria infection. Med Hypotheses 50(1):19–23. https://doi.org/10.1016/s0306-9877(98)90172-4

    Article  CAS  PubMed  Google Scholar 

  100. Krungkrai J, Prapunwatana P, Wichitkul C, Reungprapavut S, Krungkrai SR, Horii T (2003) Molecular biology and biochemistry of malarial parasite pyrimidine biosynthetic pathway. Southeast Asian J Trop Med Public Health 34(Suppl 2):32–43. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/19230569

    CAS  PubMed  Google Scholar 

  101. Fisher GM, Bua S, Del Prete S, Arnold MS, Capasso C, Supuran CT et al (2017) Investigating the antiplasmodial activity of primary sulfonamide compounds identified in open source malaria data. Int J Parasitol Drugs Drug Resist 7(1):61–70. https://doi.org/10.1016/j.ijpddr.2017.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  102. Alissa SA, Alghulikah HA, Othman ZAAL, Osman SM, Del Prete S, Capasso C et al (2020) Inhibition survey with phenolic compounds against the delta- and eta-class carbonic anhydrases from the marine diatom thalassiosira weissflogii and protozoan Plasmodium falciparum. J Enzyme Inhib Med Chem 35(1):377–382. https://doi.org/10.1080/14756366.2019.1706089

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Clemente Capasso or Claudiu T. Supuran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Capasso, C., Supuran, C.T. (2021). η-Class Carbonic Anhydrases as Antiplasmodial Drug Targets: Current State of the Art and Hurdles to Develop New Antimalarials. In: Vermelho, A.B., Supuran, C.T. (eds) Antiprotozoal Drug Development and Delivery. Topics in Medicinal Chemistry, vol 39. Springer, Cham. https://doi.org/10.1007/7355_2021_129

Download citation

Publish with us

Policies and ethics