Skip to main content

Advanced Assays in Epigenetics

  • Chapter
  • First Online:
Book cover Chemical Epigenetics

Part of the book series: Topics in Medicinal Chemistry ((TMC,volume 33))

  • 844 Accesses

Abstract

Epigenetic mechanisms orchestrate the finely tuned regulation of genetic material and play a pivotal role in defining cellular functions and phenotypes. A growing set of tools supports analysis of the epigenome. This chapter will provide an overview of the principle methods of studying complex epigenetic machinery, focusing on recent advancements of tools and techniques in the field of epigenetics. It will also address the advantages, limitations and perspectives of each approach. Increasingly, the high sensitivity, specificity, accuracy, precision and reproducibility of cutting-edge technologies in epigenetics are allowing the identification of new key targets and molecular mechanisms in healthy and pathological states and are becoming methods of choice for clinical investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5caC:

5-Carboxylcytosine

5fC:

5-Formylcytosine

5hmC:

5-Hydroxymethylcytosine

5mC:

5-Methylcytosine

AlphaScreen:

Amplified Luminescent Proximity Homogeneous Assay Screen

BRET:

Bioluminescence resonance energy transfer

BS-seq:

Bisulfite sequencing

CAB-seq:

Chemical modification-assisted bisulfite sequencing

CE-SSCP:

Capillary electrophoresis single-strand conformation polymorphism

CETSA:

Cellular thermal shift assay

ChIP:

Chromatin immunoprecipitation

ChroP:

Chromatin proteomics

ddPCR:

Droplet digital PCR

EDC:

1-Ethyl-3(3-dimethylaminoproyl)-carbodiimide hydrochloride

EnIGMA:

Enzyme-assisted identification of genome modification assay

ePL:

Enhanced ProLabel

ES:

Embryonic stem

EWAS:

Epigenome-wide association studies

EXPAR:

Exponential amplification reaction

fCAB-seq:

5-Formylcytosine chemical modification-assisted bisulfite sequencing

FISH:

Fluorescent in situ hybridization

FLIM:

Fluorescence lifetime microscopy

FRET:

Förster resonance energy transfer

G4:

G-quadruplex

HATs:

Histone acetyltransferases

HMTs:

Histone methyltransferases

HTDR:

High-throughput dose-response

HTS:

High-throughput screening

HT-seq:

High-throughput sequencing

ISH:

In situ hybridization

ITC:

Isothermal titration colorimetry

LC-MS:

Liquid chromatography-mass spectrometry

LNA:

Locked nucleic acid

miRNA:

microRNA

miR-TRAP:

miRNA trapping

MPS:

Massive parallel sequencing

MS:

Mass spectrometry

MST:

Microscale thermophoresis

NGS:

Next-generation sequencing

Nluc:

NanoLuc luciferase

PAR-CLIP:

Photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation

QD:

Quantum dot

RBPs:

RNA binding proteins

RIME:

Rapid immunoprecipitation mass spectrometry of endogenous protein

Rluc:

Renilla luciferase

RRBS:

Reduced representation bisulfite sequencing

scBS-seq:

Single-cell bisulfite sequencing

scM&T-seq:

Single-cell genome-wide methylome and transcriptome sequencing

scRRBS:

Single-cell reduced representation bisulfite sequencing

snmC-seq:

Single-nucleus methylcytosine sequencing

SNPs:

Single-nucleotide polymorphisms

SPR:

Surface plasmon resonance

TAB-seq:

Tet-assisted bisulfite sequencing

TCL:

Targeted chromatin ligation

Tm:

Melting temperature

TR-FRET:

Time-resolved fluorescent energy transfer

UV:

Ultraviolet

YFP:

Yellow fluorescent protein

References

  1. Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128(4):669–681. https://doi.org/10.1016/j.cell.2007.01.033

    Article  CAS  PubMed  Google Scholar 

  2. Baylin SB, Jones PA (2011) A decade of exploring the cancer epigenome – biological and translational implications. Nat Rev Cancer 11(10):726–734. https://doi.org/10.1038/nrc3130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cheuk IW, Shin VY, Kwong A (2017) Detection of methylated circulating DNA as noninvasive biomarkers for breast cancer diagnosis. J Breast Cancer 20(1):12–19. https://doi.org/10.4048/jbc.2017.20.1.12

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ho SM, Johnson A, Tarapore P, Janakiram V, Zhang X, Leung YK (2012) Environmental epigenetics and its implication on disease risk and health outcomes. ILAR J 53(3–4):289–305. https://doi.org/10.1093/ilar.53.3-4.289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Thomas ML, Marcato P (2018) Epigenetic modifications as biomarkers of tumor development, therapy response, and recurrence across the cancer care continuum. Cancers (Basel) 10(4). https://doi.org/10.3390/cancers10040101

  6. Vardabasso C, Gaspar-Maia A, Hasson D, Punzeler S, Valle-Garcia D, Straub T, Keilhauer EC, Strub T, Dong J, Panda T, Chung CY, Yao JL, Singh R, Segura MF, Fontanals-Cirera B, Verma A, Mann M, Hernando E, Hake SB, Bernstein E (2015) Histone variant H2A.Z.2 mediates proliferation and drug sensitivity of malignant melanoma. Mol Cell 59(1):75–88. https://doi.org/10.1016/j.molcel.2015.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jia M, Jansen L, Walter V, Tagscherer K, Roth W, Herpel E, Kloor M, Blaker H, Chang-Claude J, Brenner H, Hoffmeister M (2016) No association of CpG island methylator phenotype and colorectal cancer survival: population-based study. Br J Cancer 115(11):1359–1366. https://doi.org/10.1038/bjc.2016.361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ullman EF, Kirakossian H, Singh S, Wu ZP, Irvin BR, Pease JS, Switchenko AC, Irvine JD, Dafforn A, Skold CN et al (1994) Luminescent oxygen channeling immunoassay: measurement of particle binding kinetics by chemiluminescence. Proc Natl Acad Sci U S A 91(12):5426–5430

    Article  CAS  Google Scholar 

  9. Yasgar A, Jadhav A, Simeonov A, Coussens NP (2016) AlphaScreen-based assays: ultra-high-throughput screening for small-molecule inhibitors of challenging enzymes and protein-protein interactions. Methods Mol Biol 1439:77–98. https://doi.org/10.1007/978-1-4939-3673-1_5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wigle TJ, Herold JM, Senisterra GA, Vedadi M, Kireev DB, Arrowsmith CH, Frye SV, Janzen WP (2010) Screening for inhibitors of low-affinity epigenetic peptide-protein interactions: an AlphaScreen-based assay for antagonists of methyl-lysine binding proteins. J Biomol Screen 15(1):62–71. https://doi.org/10.1177/1087057109352902

    Article  CAS  Google Scholar 

  11. Prabhu L, Chen L, Wei H, Demir O, Safa A, Zeng L, Amaro RE, O’Neil BH, Zhang ZY, Lu T (2017) Development of an AlphaLISA high throughput technique to screen for small molecule inhibitors targeting protein arginine methyltransferases. Mol Biosyst 13(12):2509–2520. https://doi.org/10.1039/c7mb00391a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Scarano S, Scuffi C, Mascini M, Minunni M (2011) Surface plasmon resonance imaging-based sensing for anti-bovine immunoglobulins detection in human milk and serum. Anal Chim Acta 707(1–2):178–183. https://doi.org/10.1016/j.aca.2011.09.012

    Article  CAS  PubMed  Google Scholar 

  13. Kim D, Lee IS, Jung JH, Yang SI (1999) Psammaplin A, a natural bromotyrosine derivative from a sponge, possesses the antibacterial activity against methicillin-resistant Staphylococcus aureus and the DNA gyrase-inhibitory activity. Arch Pharm Res 22(1):25–29

    Article  CAS  Google Scholar 

  14. Duff MR Jr, Grubbs J, Howell EE (2011) Isothermal titration calorimetry for measuring macromolecule-ligand affinity. J Vis Exp (55). https://doi.org/10.3791/2796

  15. Holdgate G (2009) Isothermal titration calorimetry and differential scanning calorimetry. Methods Mol Biol 572:101–133. https://doi.org/10.1007/978-1-60761-244-5_7

    Article  CAS  PubMed  Google Scholar 

  16. Jerabek-Willemsen M, Wienken CJ, Braun D, Baaske P, Duhr S (2011) Molecular interaction studies using microscale thermophoresis. Assay Drug Dev Technol 9(4):342–353. https://doi.org/10.1089/adt.2011.0380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zillner K, Jerabek-Willemsen M, Duhr S, Braun D, Langst G, Baaske P (2012) Microscale thermophoresis as a sensitive method to quantify protein: nucleic acid interactions in solution. Methods Mol Biol 815:241–252. https://doi.org/10.1007/978-1-61779-424-7_18

    Article  CAS  PubMed  Google Scholar 

  18. Alpatov R, Lesch BJ, Nakamoto-Kinoshita M, Blanco A, Chen S, Stutzer A, Armache KJ, Simon MD, Xu C, Ali M, Murn J, Prisic S, Kutateladze TG, Vakoc CR, Min J, Kingston RE, Fischle W, Warren ST, Page DC, Shi Y (2014) A chromatin-dependent role of the fragile X mental retardation protein FMRP in the DNA damage response. Cell 157(4):869–881. https://doi.org/10.1016/j.cell.2014.03.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Josling GA, Petter M, Oehring SC, Gupta AP, Dietz O, Wilson DW, Schubert T, Langst G, Gilson PR, Crabb BS, Moes S, Jenoe P, Lim SW, Brown GV, Bozdech Z, Voss TS, Duffy MF (2015) A plasmodium falciparum bromodomain protein regulates invasion gene expression. Cell Host Microbe 17(6):741–751. https://doi.org/10.1016/j.chom.2015.05.009

    Article  CAS  PubMed  Google Scholar 

  20. Raha D, Hong M, Snyder M (2010) ChIP-seq: a method for global identification of regulatory elements in the genome. Curr Protoc Mol Biol Chapter 21:Unit 21 19 21-14. https://doi.org/10.1002/0471142727.mb2119s91

  21. Wang CI, Alekseyenko AA, LeRoy G, Elia AE, Gorchakov AA, Britton LM, Elledge SJ, Kharchenko PV, Garcia BA, Kuroda MI (2013) Chromatin proteins captured by ChIP-mass spectrometry are linked to dosage compensation in Drosophila. Nat Struct Mol Biol 20(2):202–209. https://doi.org/10.1038/nsmb.2477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mohammed H, Taylor C, Brown GD, Papachristou EK, Carroll JS, D'Santos CS (2016) Rapid immunoprecipitation mass spectrometry of endogenous proteins (RIME) for analysis of chromatin complexes. Nat Protoc 11(2):316–326. https://doi.org/10.1038/nprot.2016.020

    Article  CAS  PubMed  Google Scholar 

  23. Cao Z, Lu C (2016) A microfluidic device with integrated sonication and immunoprecipitation for sensitive epigenetic assays. Anal Chem 88(3):1965–1972. https://doi.org/10.1021/acs.analchem.5b04707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jafari R, Almqvist H, Axelsson H, Ignatushchenko M, Lundback T, Nordlund P, Martinez Molina D (2014) The cellular thermal shift assay for evaluating drug target interactions in cells. Nat Protoc 9(9):2100–2122. https://doi.org/10.1038/nprot.2014.138

    Article  CAS  PubMed  Google Scholar 

  25. Becher I, Werner T, Doce C, Zaal EA, Togel I, Khan CA, Rueger A, Muelbaier M, Salzer E, Berkers CR, Fitzpatrick PF, Bantscheff M, Savitski MM (2016) Thermal profiling reveals phenylalanine hydroxylase as an off-target of panobinostat. Nat Chem Biol 12(11):908–910. https://doi.org/10.1038/nchembio.2185

    Article  CAS  PubMed  Google Scholar 

  26. McNulty DE, Bonnette WG, Qi H, Wang L, Ho TF, Waszkiewicz A, Kallal LA, Nagarajan RP, Stern M, Quinn AM, Creasy CL, Su DS, Graves AP, Annan RS, Sweitzer SM, Holbert MA (2018) A high-throughput dose-response cellular thermal shift assay for rapid screening of drug target engagement in living cells, exemplified using SMYD3 and IDO1. SLAS Discov 23(1):34–46. https://doi.org/10.1177/2472555217732014

    Article  CAS  PubMed  Google Scholar 

  27. Song Y, Madahar V, Liao J (2011) Development of FRET assay into quantitative and high-throughput screening technology platforms for protein-protein interactions. Ann Biomed Eng 39(4):1224–1234. https://doi.org/10.1007/s10439-010-0225-x

    Article  PubMed  Google Scholar 

  28. Alibhai D, Kelly DJ, Warren S, Kumar S, Margineau A, Serwa RA, Thinon E, Alexandrov Y, Murray EJ, Stuhmeier F, Tate EW, Neil MA, Dunsby C, French PM (2013) Automated fluorescence lifetime imaging plate reader and its application to Forster resonant energy transfer readout of Gag protein aggregation. J Biophotonics 6(5):398–408. https://doi.org/10.1002/jbio.201200185

    Article  CAS  PubMed  Google Scholar 

  29. Wade M, Mendez J, Coussens NP, Arkin MR, Glicksman MA (2004) Inhibition of protein-protein interactions: cell-based assays. In: Sittampalam GS, Coussens NP, Brimacombe K et al (eds) Assay guidance manual. Eli Lilly & Company and the National Center for Advancing Translational Sciences, Bethesda

    Google Scholar 

  30. Bacart J, Corbel C, Jockers R, Bach S, Couturier C (2008) The BRET technology and its application to screening assays. Biotechnol J 3(3):311–324. https://doi.org/10.1002/biot.200700222

    Article  CAS  PubMed  Google Scholar 

  31. Machleidt T, Woodroofe CC, Schwinn MK, Mendez J, Robers MB, Zimmerman K, Otto P, Daniels DL, Kirkland TA, Wood KV (2015) NanoBRET – a novel BRET platform for the analysis of protein-protein interactions. ACS Chem Biol 10(8):1797–1804. https://doi.org/10.1021/acschembio.5b00143

    Article  CAS  PubMed  Google Scholar 

  32. Hu F, Martin H, Martinez A, Everitt J, Erkanli A, Lee WT, Dewhirst M, Ramanujam N (2017) Distinct angiogenic changes during carcinogenesis defined by novel label-free dark-field imaging in a hamster cheek pouch model. Cancer Res 77(24):7109–7119. https://doi.org/10.1158/0008-5472.CAN-17-1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tollefsbol TO (2011) Advances in epigenetic technology. Methods Mol Biol 791:1–10. https://doi.org/10.1007/978-1-61779-316-5_1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Weinhold B (2006) Epigenetics: the science of change. Environ Health Perspect 114(3):A160–A167

    Article  Google Scholar 

  35. Gasperskaja E, Kucinskas V (2017) The most common technologies and tools for functional genome analysis. Acta Med Litu 24(1):1–11. https://doi.org/10.6001/actamedica.v24i1.3457

    Article  PubMed  PubMed Central  Google Scholar 

  36. Schwartzman O, Tanay A (2015) Single-cell epigenomics: techniques and emerging applications. Nat Rev Genet 16(12):716–726. https://doi.org/10.1038/nrg3980

    Article  CAS  PubMed  Google Scholar 

  37. Milne TA, Zhao K, Hess JL (2009) Chromatin immunoprecipitation (ChIP) for analysis of histone modifications and chromatin-associated proteins. Methods Mol Biol 538:409–423. https://doi.org/10.1007/978-1-59745-418-6_21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zarnegar MA, Reinitz F, Newman AM, Clarke MF (2017) Targeted chromatin ligation, a robust epigenetic profiling technique for small cell numbers. Nucleic Acids Res 45(17):e153. https://doi.org/10.1093/nar/gkx648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Teste B, Champ J, Londono-Vallejo A, Descroix S, Malaquin L, Viovy JL, Draskovic I, Mottet G (2017) Chromatin immunoprecipitation in microfluidic droplets: towards fast and cheap analyses. Lab Chip 17(3):530–537. https://doi.org/10.1039/c6lc01535b

    Article  CAS  PubMed  Google Scholar 

  40. Rotem A, Ram O, Shoresh N, Sperling RA, Goren A, Weitz DA, Bernstein BE (2015) Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat Biotechnol 33(11):1165–1172. https://doi.org/10.1038/nbt.3383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hansel-Hertsch R, Spiegel J, Marsico G, Tannahill D, Balasubramanian S (2018) Genome-wide mapping of endogenous G-quadruplex DNA structures by chromatin immunoprecipitation and high-throughput sequencing. Nat Protoc 13(3):551–564. https://doi.org/10.1038/nprot.2017.150

    Article  CAS  PubMed  Google Scholar 

  42. Gaasterland T, Oprea M (2001) Whole-genome analysis: annotations and updates. Curr Opin Struct Biol 11(3):377–381

    Article  CAS  Google Scholar 

  43. Behjati S, Tarpey PS (2013) What is next generation sequencing? Arch Dis Child Educ Pract Ed 98(6):236–238. https://doi.org/10.1136/archdischild-2013-304340

    Article  PubMed  PubMed Central  Google Scholar 

  44. Almouzni G, Cedar H (2016) Maintenance of epigenetic information. Cold Spring Harb Perspect Biol 8(5). https://doi.org/10.1101/cshperspect.a019372

  45. Moore LD, Le T, Fan G (2013) DNA methylation and its basic function. Neuropsychopharmacology 38(1):23–38. https://doi.org/10.1038/npp.2012.112

    Article  CAS  PubMed  Google Scholar 

  46. Li E, Zhang Y (2014) DNA methylation in mammals. Cold Spring Harb Perspect Biol 6(5):a019133. https://doi.org/10.1101/cshperspect.a019133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tucker T, Marra M, Friedman JM (2009) Massively parallel sequencing: the next big thing in genetic medicine. Am J Hum Genet 85(2):142–154. https://doi.org/10.1016/j.ajhg.2009.06.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li Q, Hermanson PJ, Springer NM (2018) Detection of DNA methylation by whole-genome bisulfite sequencing. Methods Mol Biol 1676:185–196. https://doi.org/10.1007/978-1-4939-7315-6_11

    Article  CAS  PubMed  Google Scholar 

  49. Lu X, Han D, Zhao BS, Song CX, Zhang LS, Dore LC, He C (2015) Base-resolution maps of 5-formylcytosine and 5-carboxylcytosine reveal genome-wide DNA demethylation dynamics. Cell Res 25(3):386–389. https://doi.org/10.1038/cr.2015.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yu M, Han D, Hon GC, He C (2018) Tet-assisted bisulfite sequencing (TAB-seq). Methods Mol Biol 1708:645–663. https://doi.org/10.1007/978-1-4939-7481-8_33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kawasaki Y, Kuroda Y, Suetake I, Tajima S, Ishino F, Kohda T (2017) A novel method for the simultaneous identification of methylcytosine and hydroxymethylcytosine at a single base resolution. Nucleic Acids Res 45(4):e24. https://doi.org/10.1093/nar/gkw994

    Article  CAS  PubMed  Google Scholar 

  52. Lu X, Song CX, Szulwach K, Wang Z, Weidenbacher P, Jin P, He C (2013) Chemical modification-assisted bisulfite sequencing (CAB-seq) for 5-carboxylcytosine detection in DNA. J Am Chem Soc 135(25):9315–9317. https://doi.org/10.1021/ja4044856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Song CX, Szulwach KE, Dai Q, Fu Y, Mao SQ, Lin L, Street C, Li Y, Poidevin M, Wu H, Gao J, Liu P, Li L, Xu GL, Jin P, He C (2013) Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell 153(3):678–691. https://doi.org/10.1016/j.cell.2013.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Guo H, Zhu P, Guo F, Li X, Wu X, Fan X, Wen L, Tang F (2015) Profiling DNA methylome landscapes of mammalian cells with single-cell reduced-representation bisulfite sequencing. Nat Protoc 10(5):645–659. https://doi.org/10.1038/nprot.2015.039

    Article  CAS  PubMed  Google Scholar 

  55. Smallwood SA, Lee HJ, Angermueller C, Krueger F, Saadeh H, Peat J, Andrews SR, Stegle O, Reik W, Kelsey G (2014) Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods 11(8):817–820. https://doi.org/10.1038/nmeth.3035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Clark SJ, Smallwood SA, Lee HJ, Krueger F, Reik W, Kelsey G (2017) Genome-wide base-resolution mapping of DNA methylation in single cells using single-cell bisulfite sequencing (scBS-seq). Nat Protoc 12(3):534–547. https://doi.org/10.1038/nprot.2016.187

    Article  CAS  PubMed  Google Scholar 

  57. Luo C, Keown CL, Kurihara L, Zhou J, He Y, Li J, Castanon R, Lucero J, Nery JR, Sandoval JP, Bui B, Sejnowski TJ, Harkins TT, Mukamel EA, Behrens MM, Ecker JR (2017) Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex. Science 357(6351):600–604. https://doi.org/10.1126/science.aan3351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Angermueller C, Clark SJ, Lee HJ, Macaulay IC, Teng MJ, Hu TX, Krueger F, Smallwood S, Ponting CP, Voet T, Kelsey G, Stegle O, Reik W (2016) Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat Methods 13(3):229–232. https://doi.org/10.1038/nmeth.3728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Han J, Zhang Z, Wang K (2018) 3C and 3C-based techniques: the powerful tools for spatial genome organization deciphering. Mol Cytogenet 11:21. https://doi.org/10.1186/s13039-018-0368-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li G, Cai L, Chang H, Hong P, Zhou Q, Kulakova EV, Kolchanov NA, Ruan Y (2014) Chromatin interaction analysis with paired-end tag (ChIA-PET) sequencing technology and application. BMC Genomics 15(Suppl 12):S11. https://doi.org/10.1186/1471-2164-15-S12-S11

    Article  PubMed  PubMed Central  Google Scholar 

  61. Mumbach MR, Rubin AJ, Flynn RA, Dai C, Khavari PA, Greenleaf WJ, Chang HY (2016) HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat Methods 13(11):919–922. https://doi.org/10.1038/nmeth.3999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20):e179. https://doi.org/10.1093/nar/gni178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3:12. https://doi.org/10.1186/1746-4811-3-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jacobsen N, Andreasen D, Mouritzen P (2011) Profiling microRNAs by real-time PCR. Methods Mol Biol 732:39–54. https://doi.org/10.1007/978-1-61779-083-6_4

    Article  CAS  PubMed  Google Scholar 

  65. Campomenosi P, Gini E, Noonan DM, Poli A, D'Antona P, Rotolo N, Dominioni L, Imperatori A (2016) A comparison between quantitative PCR and droplet digital PCR technologies for circulating microRNA quantification in human lung cancer. BMC Biotechnol 16(1):60. https://doi.org/10.1186/s12896-016-0292-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hindson BJ, Ness KD, Masquelier DA, Belgrader P, Heredia NJ, Makarewicz AJ, Bright IJ, Lucero MY, Hiddessen AL, Legler TC, Kitano TK, Hodel MR, Petersen JF, Wyatt PW, Steenblock ER, Shah PH, Bousse LJ, Troup CB, Mellen JC, Wittmann DK, Erndt NG, Cauley TH, Koehler RT, So AP, Dube S, Rose KA, Montesclaros L, Wang S, Stumbo DP, Hodges SP, Romine S, Milanovich FP, White HE, Regan JF, Karlin-Neumann GA, Hindson CM, Saxonov S, Colston BW (2011) High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal Chem 83(22):8604–8610. https://doi.org/10.1021/ac202028g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Song Y, Kilburn D, Song JH, Cheng Y, Saeui CT, Cheung DG, Croce CM, Yarema KJ, Meltzer SJ, Liu KJ, Wang TH (2017) Determination of absolute expression profiles using multiplexed miRNA analysis. PLoS One 12(7):e0180988. https://doi.org/10.1371/journal.pone.0180988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Androvic P, Valihrach L, Elling J, Sjoback R, Kubista M (2017) Two-tailed RT-qPCR: a novel method for highly accurate miRNA quantification. Nucleic Acids Res 45(15):e144. https://doi.org/10.1093/nar/gkx588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Moody L, He H, Pan YX, Chen H (2017) Methods and novel technology for microRNA quantification in colorectal cancer screening. Clin Epigenetics 9:119. https://doi.org/10.1186/s13148-017-0420-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sun Z, Evans J, Bhagwate A, Middha S, Bockol M, Yan H, Kocher JP (2014) CAP-miRSeq: a comprehensive analysis pipeline for microRNA sequencing data. BMC Genomics 15:423. https://doi.org/10.1186/1471-2164-15-423

    Article  PubMed  PubMed Central  Google Scholar 

  71. Wu J, Liu Q, Wang X, Zheng J, Wang T, You M, Sheng Sun Z, Shi Q (2013) mirTools 2.0 for non-coding RNA discovery, profiling, and functional annotation based on high-throughput sequencing. RNA Biol 10(7):1087–1092. https://doi.org/10.4161/rna.25193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rueda A, Barturen G, Lebron R, Gomez-Martin C, Alganza A, Oliver JL, Hackenberg M (2015) sRNAtoolbox: an integrated collection of small RNA research tools. Nucleic Acids Res 43(W1):W467–W473. https://doi.org/10.1093/nar/gkv555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Andres-Leon E, Nunez-Torres R, Rojas AM (2016) miARma-seq: a comprehensive tool for miRNA, mRNA and circRNA analysis. Sci Rep 6:25749. https://doi.org/10.1038/srep25749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Garcia-Gimenez JL, Rubio-Belmar PA, Peiro-Chova L, Hervas D, Gonzalez-Rodriguez D, Ibanez-Cabellos JS, Bas-Hermida P, Mena-Molla S, Garcia-Lopez EM, Pallardo FV, Bas T (2018) Circulating miRNAs as diagnostic biomarkers for adolescent idiopathic scoliosis. Sci Rep 8(1):2646. https://doi.org/10.1038/s41598-018-21146-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gustafson D, Tyryshkin K, Renwick N (2016) microRNA-guided diagnostics in clinical samples. Best Pract Res Clin Endocrinol Metab 30(5):563–575. https://doi.org/10.1016/j.beem.2016.07.002

    Article  CAS  PubMed  Google Scholar 

  76. Rodriguez M, Bajo-Santos C, Hessvik NP, Lorenz S, Fromm B, Berge V, Sandvig K, Line A, Llorente A (2017) Identification of non-invasive miRNAs biomarkers for prostate cancer by deep sequencing analysis of urinary exosomes. Mol Cancer 16(1):156. https://doi.org/10.1186/s12943-017-0726-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Buschmann D, Kirchner B, Hermann S, Marte M, Wurmser C, Brandes F, Kotschote S, Bonin M, Steinlein OK, Pfaffl MW, Schelling G, Reithmair M (2018) Evaluation of serum extracellular vesicle isolation methods for profiling miRNAs by next-generation sequencing. J Extracell Vesicles 7(1):1481321. https://doi.org/10.1080/20013078.2018.1481321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Van Ness J, Van Ness LK, Galas DJ (2003) Isothermal reactions for the amplification of oligonucleotides. Proc Natl Acad Sci U S A 100(8):4504–4509. https://doi.org/10.1073/pnas.0730811100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang Y, Zhang CY (2012) Sensitive detection of microRNA with isothermal amplification and a single-quantum-dot-based nanosensor. Anal Chem 84(1):224–231. https://doi.org/10.1021/ac202405q

    Article  CAS  PubMed  Google Scholar 

  80. Liu H, Tian T, Zhang Y, Ding L, Yu J, Yan M (2017) Sensitive and rapid detection of microRNAs using hairpin probes-mediated exponential isothermal amplification. Biosens Bioelectron 89(Pt 2):710–714. https://doi.org/10.1016/j.bios.2016.10.099

    Article  CAS  PubMed  Google Scholar 

  81. Na J, Shin GW, Son HG, Lee SV, Jung GY (2017) Multiplex quantitative analysis of microRNA expression via exponential isothermal amplification and conformation-sensitive DNA separation. Sci Rep 7(1):11396. https://doi.org/10.1038/s41598-017-11895-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Urbanek MO, Nawrocka AU, Krzyzosiak WJ (2015) Small RNA detection by in situ hybridization methods. Int J Mol Sci 16(6):13259–13286. https://doi.org/10.3390/ijms160613259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Thomas M, Lieberman J, Lal A (2010) Desperately seeking microRNA targets. Nat Struct Mol Biol 17(10):1169–1174. https://doi.org/10.1038/nsmb.1921

    Article  CAS  PubMed  Google Scholar 

  84. Elmen J, Lindow M, Silahtaroglu A, Bak M, Christensen M, Lind-Thomsen A, Hedtjarn M, Hansen JB, Hansen HF, Straarup EM, McCullagh K, Kearney P, Kauppinen S (2008) Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res 36(4):1153–1162. https://doi.org/10.1093/nar/gkm1113

    Article  CAS  PubMed  Google Scholar 

  85. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438(7068):685–689. https://doi.org/10.1038/nature04303

    Article  CAS  PubMed  Google Scholar 

  86. Ebert MS, Sharp PA (2010) MicroRNA sponges: progress and possibilities. RNA 16(11):2043–2050. https://doi.org/10.1261/rna.2414110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kuhn DE, Martin MM, Feldman DS, Terry AV Jr, Nuovo GJ, Elton TS (2008) Experimental validation of miRNA targets. Methods 44(1):47–54. https://doi.org/10.1016/j.ymeth.2007.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Beitzinger M, Peters L, Zhu JY, Kremmer E, Meister G (2007) Identification of human microRNA targets from isolated argonaute protein complexes. RNA Biol 4(2):76–84

    Article  CAS  Google Scholar 

  89. Licatalosi DD, Mele A, Fak JJ, Ule J, Kayikci M, Chi SW, Clark TA, Schweitzer AC, Blume JE, Wang X, Darnell JC, Darnell RB (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456(7221):464–469. https://doi.org/10.1038/nature07488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M Jr, Jungkamp AC, Munschauer M, Ulrich A, Wardle GS, Dewell S, Zavolan M, Tuschl T (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141(1):129–141. https://doi.org/10.1016/j.cell.2010.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Danan C, Manickavel S, Hafner M (2016) PAR-CLIP: a method for transcriptome-wide identification of RNA binding protein interaction sites. Methods Mol Biol 1358:153–173. https://doi.org/10.1007/978-1-4939-3067-8_10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ule J, Jensen KB, Ruggiu M, Mele A, Ule A, Darnell RB (2003) CLIP identifies Nova-regulated RNA networks in the brain. Science 302(5648):1212–1215. https://doi.org/10.1126/science.1090095

    Article  CAS  PubMed  Google Scholar 

  93. Favre A, Moreno G, Blondel MO, Kliber J, Vinzens F, Salet C (1986) 4-Thiouridine photosensitized RNA-protein crosslinking in mammalian cells. Biochem Biophys Res Commun 141(2):847–854

    Article  CAS  Google Scholar 

  94. Bezerra R, Favre A (1990) In vivo incorporation of the intrinsic photolabel 4-thiouridine into Escherichia coli RNAs. Biochem Biophys Res Commun 166(1):29–37

    Article  CAS  Google Scholar 

  95. Kishore S, Jaskiewicz L, Burger L, Hausser J, Khorshid M, Zavolan M (2011) A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins. Nat Methods 8(7):559–564. https://doi.org/10.1038/nmeth.1608

    Article  CAS  PubMed  Google Scholar 

  96. Baigude H, Ahsanullah LZ, Zhou Y, Rana TM (2012) miR-TRAP: a benchtop chemical biology strategy to identify microRNA targets. Angew Chem Int Ed Engl 51(24):5880–5883. https://doi.org/10.1002/anie.201201512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cambronne XA, Shen R, Auer PL, Goodman RH (2012) Capturing microRNA targets using an RNA-induced silencing complex (RISC)-trap approach. Proc Natl Acad Sci U S A 109(50):20473–20478. https://doi.org/10.1073/pnas.1218887109

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Altucci .

Editor information

Editors and Affiliations

Ethics declarations

Funding: The authors acknowledge AIRC17217; PON_0101227; VALERE: Vanvitelli per la Ricerca; Regione Campania lotta alle patologie oncologiche: iCURE (CUP B21C17000030007); and Regione Campania FASE2: IDEAL (CUP B53D18000080007). We thank C. Fisher for linguistic editing.

Conflict of Interest: The authors declare no competing interests.

Ethical Statement: This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dell’Aversana, C., Sarno, F., Conte, M., Giorgio, C., Altucci, L. (2019). Advanced Assays in Epigenetics. In: Mai, A. (eds) Chemical Epigenetics. Topics in Medicinal Chemistry, vol 33. Springer, Cham. https://doi.org/10.1007/7355_2019_82

Download citation

Publish with us

Policies and ethics