Skip to main content

Recent Advances in the Generation of β-Cells from Induced Pluripotent Stem Cells as a Potential Cure for Diabetes Mellitus

  • Chapter
  • First Online:
Cell Biology and Translational Medicine, Volume 14

Abstract

Diabetes mellitus (DM) is a group of metabolic disorders characterized by high blood glucose levels due to insufficient insulin secretion, insulin action, or both. The present-day solution to diabetes mellitus includes regular administration of insulin, which brings about many medical complications in diabetic patients. Although islet transplantation from cadaveric subjects was proposed to be a permanent cure, the increased risk of infections, the need for immunosuppressive drugs, and their unavailability had restricted its use. To overcome this, the generation of renewable and transplantable β-cells derived from autologous induced pluripotent stem cells (iPSCs) has gained enormous interest as a potential therapeutic strategy to treat diabetes mellitus permanently. To date, extensive research has been undertaken to derive transplantable insulin-producing β-cells (iβ-cells) from iPSCs in vitro by recapitulating the in vivo developmental process of the pancreas. This in vivo developmental process relies on transcription factors, signaling molecules, growth factors, and culture microenvironment. This review highlights the various factors facilitating the generation of mature β-cells from iPSCs. Moreover, this review also describes the generation of pancreatic progenitors and β-cells from diabetic patient–specific iPSCs, exploring the potential of the diabetes disease model and drug discovery. In addition, the applications of genome editing strategies have also been discussed to achieve patient-specific diabetes cell therapy. Last, we have discussed the current challenges and prospects of iPSC-derived β-cells to improve the relative efficacy of the available treatment of diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

4PBA:

4-phenyl butyric acid

ALK:

Activin receptor-like kinase

BMP:

Bone morphogenetic protein

CYC:

KAAD-cyclopamine

DM:

Diabetes mellitus

EGF:

Epidermal growth factor

ER:

Endoplasmic reticulum

FGF:

Fibroblast growth factor

GLP1:

Glucagon-like peptide-1

GLUT2:

Glucose transporter 2

GSIS:

Glucose-stimulated insulin secretion

GSK3β:

Glycogen synthase kinase 3β

HDAC:

Histone deacetylase

HGF:

Hepatocyte growth factor

HIF:

Hypoxia-inducible factor

IBMX:

3-isobutyl-1-methylxanthine

IGF-II:

Insulin-like growth factor II

ILV:

Indolactam V

iPSCs:

Induced pluripotent stem cells

iβ-cells:

Insulin-producing β-cells

KGF:

Keratinocyte growth factor

MAPK:

Mitogen-activated protein kinase

miR:

MicroRNA

MODY:

Maturity-onset diabetes of the young

OSK:

Oct4, Sox2, and Klf4

OSKM:

Oct4, Sox2, Klf4, and c-Myc

PdBU:

Phorbol 12,13-dibutyrate

PI3K:

Phosphoinositide 3-kinase

PLLA/PVA:

Poly-L-lactic acid/polyvinyl alcohol

RA:

Retinoic acid

ROCK:

Rho-associated protein kinase

SHH:

Sonic hedgehog

T1DM:

Type 1 Diabetes mellitus

T2DM:

Type 2 Diabetes mellitus

T3:

Triiodothyronine

TGF-β:

Transforming growth factor-β

WFS:

Wolfram syndrome

WNT3a:

Wingless-related integration site-3a

References

  • Aamodt KI, Powers AC (2017) Signals in the pancreatic islet microenvironment influence β-cell proliferation. Diabetes Obes Metab 19:124–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguayo-Mazzucato C, Bonner-Weir S (2010) Stem cell therapy for type 1 diabetes mellitus. Nat Rev Endocrinol 6(3):139–148

    Article  PubMed  Google Scholar 

  • Alipio Z, Liao W, Roemer EJ, Waner M, Fink LM, Ward DC, Ma Y (2010) Reversal of hyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derived pancreatic β-like cells. Proc Natl Acad Sci U S A 107(30):2–7. https://doi.org/10.1073/pnas.1007884107

    Article  Google Scholar 

  • Amer LD, Mahoney MJ, Bryant SJ (2014) Tissue engineering approaches to cell-based type 1 diabetes therapy. Tissue Eng Part B Rev 20(5):455–467. https://doi.org/10.1089/ten.teb.2013.0462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ameri J, Ståhlberg A, Pedersen J, Johansson JK, Johannesson MM, Artner I, Semb H (2010) FGF2 specifies hESC-derived definitive endoderm into foregut/midgut cell lineages in a concentration-dependent manner. Stem Cells 28(1):45–56

    Article  CAS  PubMed  Google Scholar 

  • Amour KAD, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE (2006) Production of pancreatic hormone – expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24(11):1392–1401. https://doi.org/10.1038/nbt1259

    Article  CAS  PubMed  Google Scholar 

  • Balhara B, Burkart A, Topcu V, Lee YK, Cowan C, Kahn CR, Patti ME (2015) Severe insulin resistance alters metabolism in mesenchymal progenitor cells. Endocrinology 156(6):2039–2048. https://doi.org/10.1210/en.2014-1403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borgohain MP, Haridhasapavalan KK, Dey C, Adhikari P, Thummer RP (2019) An insight into DNA-free reprogramming approaches to generate integration-free induced pluripotent stem cells for prospective biomedical applications. Stem Cell Rev Rep 15(2):286–313. https://doi.org/10.1007/s12015-018-9861-6

    Article  CAS  PubMed  Google Scholar 

  • Burkart AM, Tan K, Warren L, Iovino S, Hughes KJ, Kahn CR, Patti ME (2016) Insulin resistance in human iPS cells reduces mitochondrial size and function. Sci Rep 6:1–12. https://doi.org/10.1038/srep22788

    Article  CAS  Google Scholar 

  • Carmines PK (2010) The renal vascular response to diabetes. Curr Opin Nephrol Hypertens 19(1):85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpentier A, Nimgaonkar I, Chu V, Xia Y, Hu Z, Liang TJ (2016) Hepatic differentiation of human pluripotent stem cells in miniaturized format suitable for high-throughput screen. Stem Cell Res 16(3):640–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cichosz SL, Frystyk J, Tarnow L, Fleischer J (2017) Are changes in heart rate variability during hypoglycemia confounded by the presence of cardiovascular autonomic neuropathy in patients with diabetes? Diabetes Technol Ther 19(2):91–95

    Article  CAS  PubMed  Google Scholar 

  • Dey C, Narayan G, Krishna Kumar H, Borgohain MP, Lenka N, Thummer RP (2016) Cell-penetrating peptides as a tool to deliver biologically active recombinant proteins to generate transgene-Free induced pluripotent stem cells. Stud Stem Cells Res Ther 3(1):6–15

    Google Scholar 

  • Dey C, Raina K, Haridhasapavalan KK, Thool M, Sundaravadivelu PK, Adhikari P, Gogoi R, Thummer RP (2021) An overview of reprogramming approaches to derive integration-free induced pluripotent stem cells for prospective biomedical applications. In: Recent advances in IPSC technology. Academic, Amsterdam, pp 231–287

    Chapter  Google Scholar 

  • Ebrahimi B (2015) Reprogramming barriers and enhancers: strategies to enhance the efficiency and kinetics of induced pluripotency. Cell Regeneration 4(1):1–12

    Article  Google Scholar 

  • Eliasson L (2017) The small RNA miR-375 – a pancreatic islet abundant miRNA with multiple roles in endocrine beta cell function. Mol Cell Endocrinol 456:95–101

    Article  CAS  PubMed  Google Scholar 

  • Elsayed AK, Vimalraj S, Nandakumar M, Abdelalim EM (2021) Insulin resistance in diabetes: the promise of using induced pluripotent stem cell technology. World J Stem Cells 13(3):221

    Article  PubMed  PubMed Central  Google Scholar 

  • Enderami SE, Kehtari M, Abazari MF, Ghoraeian P, Nouri Aleagha M, Soleimanifar F, Soleimani M, Mortazavi Y, Nadri S, Mostafavi H, Askari H (2018) Generation of insulin-producing cells from human induced pluripotent stem cells on PLLA/PVA nanofiber scaffold. Artifi Cells Nanomed Biotechnol 46(sup1):1062–1069. https://doi.org/10.1080/21691401.2018.1443466

    Article  CAS  Google Scholar 

  • Ferreira LMR, Mostajo-Radji MA (2013) How induced pluripotent stem cells are redefining personalized medicine. Gene 520(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Fong DS, Aiello L, Gardner TW, King GL, Blankenship G, Cavallerano JD, Ferris FL, Klein R (2004) Retinopathy in diabetes. Diabetes Care 27(suppl 1):s84–s87

    Article  PubMed  Google Scholar 

  • Fujikura J, Nakao K, Sone M, Noguchi M, Mori E, Naito M, Taura D, Harada-Shiba M, Kishimoto I, Watanabe A, Asaka I, Hosoda K, Nakao K (2012) Induced pluripotent stem cells generated from diabetic patients with mitochondrial DNA A3243G mutation. Diabetologia 55(6):1689–1698. https://doi.org/10.1007/s00125-012-2508-2

    Article  CAS  PubMed  Google Scholar 

  • Galli A, Algerta M, Marciani P, Schulte C, Lenardi C, Milani P, Maffioli E, Tedeschi G, Perego C (2020) Shaping pancreatic β-cell differentiation and functioning: the influence of mechanotransduction. Cell 9(2). https://doi.org/10.3390/cells9020413

  • Gheibi S, Samsonov AP, Gheibi S, Vazquez AB, Kashfi K (2020a) Regulation of carbohydrate metabolism by nitric oxide and hydrogen sulfide: implications in diabetes. Biochem Pharmacol 176:113819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gheibi S, Singh T, da Cunha JPMCM, Fex M, Mulder H (2020b) Insulin/glucose-responsive cells derived from induced pluripotent stem cells: disease modeling and treatment of diabetes. Cell 9(11):2465

    Article  CAS  Google Scholar 

  • Hakim F, Kaitsuka T, Raeed JM, Wei FY, Shiraki N, Akagi T, Yokota T, Kume S, Tomizawa K (2014) High oxygen condition facilitates the differentiation of mouse and human pluripotent stem cells into pancreatic progenitors and insulin-producing cells. J Biol Chem 289(14):9623–9638. https://doi.org/10.1074/jbc.M113.524363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haller C, Piccand J, De Franceschi F, Ohi Y, Bhoumik A, Boss C, De Marchi U, Jacot G, Metairon S, Descombes P, Wiederkehr A, Palini A, Bouche N, Steiner P, Kelly OG, Kraus R-C, M. (2019) Macroencapsulated human iPSC-derived pancreatic progenitors protect against STZ-induced hyperglycemia in mice. Stem Cell Rep 12(4):787–800. https://doi.org/10.1016/j.stemcr.2019.02.002

    Article  CAS  Google Scholar 

  • Haridhasapavalan KK, Borgohain MP, Dey C, Saha B, Narayan G, Kumar S, Thummer RP (2019) An insight into non-integrative gene delivery approaches to generate transgene-free induced pluripotent stem cells. Gene 686:146–159. https://doi.org/10.1016/j.gene.2018.11.069

    Article  CAS  PubMed  Google Scholar 

  • Haridhasapavalan KK, Raina K, Dey C, Adhikari P, Thummer RP (2020) An insight into reprogramming barriers to iPSC generation. Stem Cell Rev Rep 16(1):56–81

    Article  PubMed  Google Scholar 

  • Herrera B, Inman GJ (2009) A rapid and sensitive bioassay for the simultaneous measurement of multiple bone morphogenetic proteins. Identification and quantification of BMP4, BMP6 and BMP9 in bovine and human serum. BMC Cell Biol 10(1):1–11

    Article  Google Scholar 

  • Holman RR, Sourij H, Califf RM (2014) Cardiovascular outcome trials of glucose-lowering drugs or strategies in type 2 diabetes. Lancet 383(9933):2008–2017

    Article  CAS  PubMed  Google Scholar 

  • Hosokawa Y, Toyoda T, Fukui K, Baden MY, Funato M, Kondo Y, Sudo T, Iwahashi H, Kishida M, Okada C, Watanabe A, Asaka I, Osafune K, Imagawa A, Shimomura I (2018) Insulin-producing cells derived from ‘induced pluripotent stem cells’ of patients with fulminant type 1 diabetes: vulnerability to cytokine insults and increased expression of apoptosis-related genes. J Diabetes Invest 9(3):481–493. https://doi.org/10.1111/jdi.12727

    Article  CAS  Google Scholar 

  • Hossain MK, Dayem AA, Han J, Saha SK, Yang GM, Choi HY, Cho SG (2016) Recent advances in disease modeling and drug discovery for diabetes mellitus using induced pluripotent stem cells. Int J Mol Sci 17(2):1–17. https://doi.org/10.3390/ijms17020256

    Article  CAS  Google Scholar 

  • Hu K (2014) All roads lead to induced pluripotent stem cells: the technologies of iPSC generation. Stem Cells Dev 23(12):1285–1300. https://doi.org/10.1089/scd.2013.0620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue H, Tanizawa Y, Wasson J, Behn P, Kalidas K, Bernal-Mizrachi E, Mueckler M, Marshall H, Donis-Keller H, Crock P, others (1998) A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat Genet 20(2):143–148

    Article  CAS  PubMed  Google Scholar 

  • Iovino S, Burkart AM, Kriauciunas K, Warren L, Hughes KJ, Molla M, Lee YK, Patti ME, Kahn CR (2014) Genetic insulin resistance is a potent regulator of gene expression and proliferation in human iPS cells. Diabetes 63(12):4130–4142. https://doi.org/10.2337/db14-0109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iovino S, Burkart AM, Warren L, Patti ME, Kahn CR (2016) Myotubes derived from human-induced pluripotent stem cells mirror in vivo insulin resistance. Proc Natl Acad Sci U S A 113(7):1889–1894. https://doi.org/10.1073/pnas.1525665113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jennings RE, Berry AA, Kirkwood-Wilson R, Roberts NA, Hearn T, Salisbury RJ, Blaylock J, Hanley KP, Hanley NA (2013) Development of the human pancreas from foregut to endocrine commitment. Diabetes 62(10):3514–3522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon K, Lim H, Kim J, Van Thuan N, Park SH, Lim Y, Choi H, Lee E, Kim J, Lee M, Cho S (2012) Differentiation and transplantation of functional pancreatic beta cells generated from induced pluripotent stem cells derived from a type 1 diabetes mouse model. Stem Cells Dev 21(14):2642–2655. https://doi.org/10.1089/scd.2011.0665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang L (2011) γ-secretase inhibitor, DAPT inhibits self-renewal and stemness maintenance of ovarian cancer stem-like cells in vitro. Chin J Cancer Res 23(2):140–146. https://doi.org/10.1007/s11670-011-0140-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johannesson M, Ståhlberg A, Ameri J, Sand FW, Norrman K, Semb H (2009) FGF4 and retinoic acid direct differentiation of hESCs into PDX1-expressing foregut endoderm in a time- and concentration-dependent manner. PLoS One 4(3):e4794

    Article  PubMed  PubMed Central  Google Scholar 

  • Johannesson B, Sui L, Freytes DO, Creusot RJ, Egli D (2015) Toward beta cell replacement for diabetes. EMBO J 34(7):841–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahn R (2003) Follow-up report on the diagnosis of diabetes mellitus: the expert committee on the diagnosis and classifications of diabetes mellitus. Diabetes Care 26(11):3160

    Article  PubMed  Google Scholar 

  • Kaitsuka T, Noguchi H, Shiraki N, Kubo T, Wei F-Y, Hakim F, Kume S, Tomizawa K (2014) Generation of functional insulin-producing cells from mouse embryonic stem cells through 804G cell-derived extracellular matrix and protein transduction of transcription factors. Stem Cells Transl Med 3(1):114–127

    Article  CAS  PubMed  Google Scholar 

  • Kajiwara M, Aoi T, Okita K, Takahashi R, Inoue H, Takayama N, Endo H, Eto K, Toguchida J, Uemoto S, others (2012) Donor-dependent variations in hepatic differentiation from human-induced pluripotent stem cells. Proc Natl Acad Sci 109(31):12538–12543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kakleas K, Soldatou A, Karachaliou F, Karavanaki K (2015) Associated autoimmune diseases in children and adolescents with type 1 diabetes mellitus (T1DM). Autoimmun Rev 14(9):781–797. https://doi.org/10.1016/j.autrev.2015.05.002

    Article  CAS  PubMed  Google Scholar 

  • Katsarou A, Gudbjörnsdottir S, Rawshani A, Dabelea D, Bonifacio E, Anderson BJ, Jacobsen LM, Schatz DA, Lernmark Å (2017) Type 1 diabetes mellitus. Nat Rev Dis Primers 3(1):1–17

    Article  Google Scholar 

  • Kim MJ, Lee EY, You YH, Yang HK, Yoon KH, Kim JW (2020) Generation of iPSC-derived insulin-producing cells from patients with type 1 and type 2 diabetes compared with healthy control. Stem Cell Res 48(July):101958. https://doi.org/10.1016/j.scr.2020.101958

    Article  CAS  PubMed  Google Scholar 

  • Kondo Y, Toyoda T, Inagaki N, Osafune K (2018) iPSC technology-based regenerative therapy for diabetes. J Diabetes Invest 9(2):234–243. https://doi.org/10.1111/jdi.12702

    Article  Google Scholar 

  • Kudva YC, Ohmine S, Greder LV, Dutton JR, Armstrong A, De Lamo JG, Khan YK, Thatava T, Hasegawa M, Fusaki N, others (2012) Transgene-free disease-specific induced pluripotent stem cells from patients with type 1 and type 2 diabetes. Stem Cells Transl Med 1(6):451–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunisada Y, Tsubooka-Yamazoe N, Shoji M, Hosoya M (2011) Small molecules induce efficient differentiation into insulin-producing cells from human induced pluripotent stem cells. Stem Cell Res. https://doi.org/10.1016/j.scr.2011.10.002

  • Lahmy R, Soleimani M, Sanati MH, Behmanesh M, Kouhkan F, Mobarra N (2014) MiRNA-375 promotes beta pancreatic differentiation in human induced pluripotent stem (hiPS) cells. Mol Biol Rep 41(4):2055–2066. https://doi.org/10.1007/s11033-014-3054-4

    Article  CAS  PubMed  Google Scholar 

  • Leite NC, Sintov E, Meissner TB, Brehm MA, Greiner DL, Harlan DM, Melton DA (2020) Modeling type 1 diabetes in vitro using human pluripotent stem cells. Cell Rep 32(2):107894. https://doi.org/10.1016/j.celrep.2020.107894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leon BM, Maddox TM (2015) Diabetes and cardiovascular disease: epidemiology, biological mechanisms, treatment recommendations and future research. World J Diabetes 6(13):1246

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu H, Wang J, He T, Becker S, Zhang G, Li D, Ma X (2018) Butyrate: a double-edged sword for health? Adv Nutr 16:21–29. https://doi.org/10.1093/advances/nmx009

    Article  Google Scholar 

  • Lorenzo PI, Juárez-Vicente F, Cobo-Vuilleumier N, García-Domínguez M, Gauthier BR (2017) The diabetes-linked transcription factor PAX4: from gene to functional consequences. Genes 8(3):101

    Article  PubMed Central  Google Scholar 

  • Loskill P, Huebsch N (2019) Engineering tissues from induced pluripotent stem cells. Tissue Eng A 25(9–10):707–710

    Article  Google Scholar 

  • Ma S, Viola R, Sui L, Cherubini V, Barbetti F, Egli D (2018) β cell replacement after gene editing of a neonatal diabetes-causing mutation at the insulin locus. Stem Cell Rep 11(6):1407–1415

    Article  CAS  Google Scholar 

  • Maehr R, Chen S, Snitow M, Ludwig T, Yagasaki L, Goland R, Leibel RL, Melton DA (2009) Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci 106(37):15768–15773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manzar GS, Kim EM, Zavazava N (2017) Demethylation of induced pluripotent stem cells from type 1 diabetic patients enhances differentiation into functional pancreatic β cells. J Biol Chem 292(34):14066–14079. https://doi.org/10.1074/jbc.M117.784280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maxwell KG, Augsornworawat P, Velazco-Cruz L, Kim MH, Asada R, Hogrebe NJ, Morikawa S, Urano F, Millman JR (2020) Gene-edited human stem cell–derived β cells from a patient with monogenic diabetes reverse preexisting diabetes in mice. Sci Transl Med 12(540). https://doi.org/10.1126/scitranslmed.aax9106

  • Merani S, Shapiro AMJ (2006) Current status of pancreatic islet transplantation. Clin Sci 110(6):611–625

    Article  CAS  Google Scholar 

  • Millman JR, Xie C, Van Dervort A, Gürtler M, Pagliuca FW, Melton DA (2016) Generation of stem cell-derived β-cells from patients with type 1 diabetes. Nat Commun 7. https://doi.org/10.1038/ncomms11463

  • Modi H, Jacovetti C, Tarussio D, Metref S, Madsen OD, Zhang F, Rantakari P, Poutanen M, Nef S, Gorman T (2015) Autocrine action of IGF2 regulates adult β-cell mass and function. Diabetes 64(August):4148–4157. https://doi.org/10.2337/db14-1735

    Article  CAS  PubMed  Google Scholar 

  • Molitch ME, DeFronzo RA, Franz MJ, Keane WF, others (2004) Nephropathy in diabetes. Diabetes Care 27:S79

    Article  PubMed  Google Scholar 

  • Murphy R, Ellard S, Hattersley AT (2008) Clinical implications of a molecular genetic classification of monogenic β-cell diabetes. Nat Clin Pract Endocrinol Metab 4(4):200–213

    Article  CAS  PubMed  Google Scholar 

  • Noguchi M, Hosoda K, Nakane M, Mori E, Nakao K, Taura D, Yamamoto Y, Kusakabe T, Sone M, Sakurai H, others (2013) In vitro characterization and engraftment of adipocytes derived from human induced pluripotent stem cells and embryonic stem cells. Stem Cells Dev 22(21):2895–2905

    Article  CAS  PubMed  Google Scholar 

  • Nyitray CE, Chavez MG, Desai TA (2014) Mechanosensing and β-catenin signaling. Tissue Eng Part A 20:1888–1895. https://doi.org/10.1089/ten.tea.2013.0692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohmine S, Squillace KA, Hartjes KA, Deeds MC, Armstrong AS, Thatava T, Sakuma T, Terzic A, Kudva Y, Ikeda Y (2012) Reprogrammed keratinocytes from elderly type 2 diabetes patients suppress senescence genes to acquire induced pluripotency. Aging 4(1):60–73. https://doi.org/10.18632/aging.100428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317

    Article  CAS  PubMed  Google Scholar 

  • Pagliuca FW, Millman JR, Gürtler M, Segel M, Van Dervort A, Ryu JH, Peterson QP, Greiner D, Melton DA (2014) Generation of functional human pancreatic β cells in vitro. Cell 159(2):428–439. https://doi.org/10.1016/j.cell.2014.09.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan FC, Wright C (2011) Pancreas organogenesis: from bud to plexus to gland. Dev Dyn 240(3):530–565

    Article  CAS  PubMed  Google Scholar 

  • Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C, Hochedlinger K, Daley GQ (2008) Disease-specific induced pluripotent stem cells. Cell 134(5):877–886. https://doi.org/10.1016/j.cell.2008.07.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pellegrini S, Ungaro F, Mercalli A, Melzi R, Sebastiani G, Dotta F, Broccoli V, Piemonti L, Sordi V (2015) Human induced pluripotent stem cells differentiate into insulin-producing cells able to engraft in vivo. Acta Diabetol 52(6):1025–1035. https://doi.org/10.1007/s00592-015-0726-z

    Article  CAS  PubMed  Google Scholar 

  • Pellegrini S, Cantarelli E, Sordi V, Nano R, Piemonti L (2016) The state of the art of islet transplantation and cell therapy in type 1 diabetes. Acta Diabetol 53(5):683–691

    Article  CAS  PubMed  Google Scholar 

  • Pellegrini S, Manenti F, Chimienti R, Nano R, Ottoboni L, Ruffini F, Martino G, Ravassard P, Piemonti L, Sordi V (2018) Differentiation of Sendai virus-reprogrammed iPSC into β cells, compared with human pancreatic islets and immortalized β cell line. Cell Transplant 27(10):1548–1560. https://doi.org/10.1177/0963689718798564

    Article  PubMed  PubMed Central  Google Scholar 

  • Pop-Busui R, Boulton AJM, Feldman EL, Bril V, Freeman R, Malik RA, Sosenko JM, Ziegler D (2017) Diabetic neuropathy: a position statement by the American Diabetes Association. Diabetes Care 40(1):136–154

    Article  CAS  PubMed  Google Scholar 

  • Powis G, Berggren MM, Gallegos A, Abraham R, Ashendel C, Zalkow L, Matter WF, Dodge J, Grindey G, Vlahos CJ (1994) Wortmannin, a potent and selective inhibitor of Phosphatidylinositol-3-kinase. Cancer Res 54:2419–2424

    CAS  PubMed  Google Scholar 

  • Prentki M, Nolan CJ (2006) Islet β cell failure in type 2 diabetes. J Clin Invest 116(7):1802–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinn TJ, Dawson J, Walters MR (2011) Sugar and stroke: cerebrovascular disease and blood glucose control. Cardiovasc Ther 29(6):e31–e42

    Article  CAS  PubMed  Google Scholar 

  • Russ HA, Parent AV, Ringler JJ, Hennings TG, Nair GG, Shveygert M, Guo T, Puri S, Haataja L, Cirulli V, Blelloch R, Szot GL, Arvan P, Hebrok M (2015) Controlled induction of human pancreatic progenitors produces functional beta-like cells in vitro. EMBO J 34(13):1759–1772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, Shaw JE, Bright D, Williams R (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the international diabetes federation diabetes atlas, 9th edition. Diabetes Res Clin Pract 157:107843. https://doi.org/10.1016/j.diabres.2019.107843

    Article  PubMed  Google Scholar 

  • Saeedi M, Cao Y, Fadl H, Gustafson H, Simmons D (2021) Increasing prevalence of gestational diabetes mellitus when implementing the IADPSG criteria: a systematic review and meta-analysis. Diabetes Res Clin Pract 172:108642

    Article  PubMed  Google Scholar 

  • Saha B, Borgohain M, Dey C, Thummer RP (2018) iPS cell generation: current and future challenges. Ann Stem Cell Res Ther 1(2):1–4

    Google Scholar 

  • Saxena P, Heng BC, Bai P, Folcher M, Zulewski H, Fussenegger M (2016) A programmable synthetic lineage-control network that differentiates human IPSCs into glucose-sensitive insulin-secreting beta-like cells. Nat Commun 7:1–14. https://doi.org/10.1038/ncomms11247

    Article  CAS  Google Scholar 

  • Shaer A, Azarpira N, Vahdati A, Karimi MH, Shariati M (2015) Differentiation of human-induced pluripotent stem cells into insulin-producing clusters. Exp Clin Transplant 13(1):68–75. https://doi.org/10.6002/ect.2013.0131

    Article  PubMed  Google Scholar 

  • Shahjalal HM, Shiraki N, Sakano D, Kikawa K, Ogaki S, Baba H, Kume K, Kume S (2014) Generation of insulin-producing β-like cells from human iPS cells in a defined and completely xeno-free culture system. J Mol Cell Biol 6(5):394–408. https://doi.org/10.1093/jmcb/mju029

    Article  CAS  PubMed  Google Scholar 

  • Shang L, Hua H, Foo K, Martinez H, Watanabe K, Zimmer M, Kahler DJ, Freeby M, Chung W, LeDuc C, Goland R, Leibel RL, Egli D (2014) β-cell dysfunction due to increased ER stress in a stem cell model of wolfram syndrome. Diabetes 63(3):923–933. https://doi.org/10.2337/db13-0717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh VK, Kalsan M, Kumar N, Saini A, Chandra R (2015) Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Front Cell Dev Biol 3:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Soejitno A, Prayudi PKA (2011) The prospect of induced pluripotent stem cells for diabetes mellitus treatment. Ther Adv Endocrinol Metab 2(5):197–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  PubMed  Google Scholar 

  • Tateishi K, He J, Taranova O, Liang G, D’Alessio AC, Zhang Y (2008) Generation of insulin-secreting islet-like clusters from human skin fibroblasts. J Biol Chem 283(46):31601–31607

    Article  CAS  PubMed  Google Scholar 

  • Teo AKK, Lau HH, Valdez IA, Dirice E, Tjora E, Raeder H, Kulkarni RN (2016) Early developmental perturbations in a human stem cell model of MODY5/HNF1B pancreatic hypoplasia. Stem Cell Rep 6(3):357–367. https://doi.org/10.1016/j.stemcr.2016.01.007

    Article  CAS  Google Scholar 

  • Thatava T, Nelson TJ, Edukulla R, Sakuma T, Ohmine S, Tonne JM, Yamada S, Kudva Y, Terzic A, Ikeda Y (2010) Indolactam V/GLP-1-mediated differentiation of human iPS cells into glucose-responsive insulin-secreting progeny. Gene Ther 18(3):283–293. https://doi.org/10.1038/gt.2010.145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thatava T, Kudva YC, Edukulla R, Squillace K, De Lamo JG, Khan YK, Sakuma T, Ohmine S, Terzic A, Ikeda Y (2013) Intrapatient variations in type 1 diabetes-specific iPS cell differentiation into insulin-producing cells. Mol Ther 21(1):228–239. https://doi.org/10.1038/mt.2012.245

    Article  CAS  PubMed  Google Scholar 

  • Tzoulaki I, Molokhia M, Curcin V, Little MP, Millett CJ, Ng A, Hughes RI, Khunti K, Wilkins MR, Majeed A, others (2009) Risk of cardiovascular disease and all cause mortality among patients with type 2 diabetes prescribed oral antidiabetes drugs: retrospective cohort study using UK general practice research database. BMJ 339:b4731

    Article  PubMed  PubMed Central  Google Scholar 

  • Velho G, Froguel P, Clement K, Pueyo ME, Zouali H, Cohen D, Passa P, Rakotoambinina B, Robert J-J (1992) Primary pancreatic beta-cell secretory defect caused by mutations in glucokinase gene in kindreds of maturity onset diabetes of the young. Lancet 340(8817):444–448

    Article  CAS  PubMed  Google Scholar 

  • Velho G, Petersen KF, Perseghin G, Hwang J-H, Rothman DL, Pueyo ME, Cline GW, Froguel P, Shulman GI, others (1996) Impaired hepatic glycogen synthesis in glucokinase-deficient (MODY-2) subjects. J Clin Invest 98(8):1755–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vethe H, Bjørlykke Y, Ghila LM, Paulo JA, Scholz H, Gygi SP, Chera S, Ræder H (2017) Probing the missing mature β-cell proteomic landscape in differentiating patient iPSC-derived cells. Sci Rep 7(1):1–14. https://doi.org/10.1038/s41598-017-04979-w

    Article  CAS  Google Scholar 

  • Walczak MP, Drozd AM, Stoczynska-Fidelus E, Rieske P, Grzela DP (2016) Directed differentiation of human iPSC into insulin producing cells is improved by induced expression of PDX1 and NKX6.1 factors in IPC progenitors. J Transl Med 14(1):1–16. https://doi.org/10.1186/s12967-016-1097-0

    Article  CAS  Google Scholar 

  • Wan J, Huang Y, Zhou P, Guo Y, Wu C, Zhu S, Wang Y, Wang L, Lu Y, Wang Z (2017) Culture of iPSCs derived pancreatic β-like cells in vitro using decellularized pancreatic scaffolds: a preliminary trial. Biomed Res Int 2017. https://doi.org/10.1155/2017/4276928

  • Wang L, Huang Y, Guo Q, Fan X, Lu Y, Zhu S, Wang Y, Bo X, Chang X, Zhu M, Wang Z (2014) Differentiation of iPSCs into insulin-producing cells via adenoviral transfection of PDX-1, NeuroD1 and MafA. Diabetes Res Clin Pract 104(3):383–392. https://doi.org/10.1016/j.diabres.2014.03.017

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Donelan W, Ye H, Jin Y, Lin Y, Wu X, Wang Y, Xi Y (2019) Real-time observation of pancreatic beta cell differentiation from human induced pluripotent stem cells. Am J Transl Res 11(6):3490–3504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yabe SG, Fukuda S, Nishida J, Takeda F, Nashiro K, Okochi H (2019) Induction of functional islet-like cells from human iPS cells by suspension culture. Regen Ther 10:69–76. https://doi.org/10.1016/j.reth.2018.11.003

    Article  PubMed  PubMed Central  Google Scholar 

  • Young W (2012) Patient-specific induced pluripotent stem cells as a platform for disease modeling, drug discovery and precision personalized medicine. J Stem Cell Res Ther 01(S10). https://doi.org/10.4172/2157-7633.s10-010

  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, others (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Jiang W, Liu M, Sui X, Yin X, Chen S, Shi Y, Deng H (2009) Highly efficient differentiation of human ES cells and iPS cells into mature pancreatic insulin-producing cells. Cell Res 19:429–438. https://doi.org/10.1038/cr.2009.28

    Article  CAS  PubMed  Google Scholar 

  • Zhu FF, Zhang PB, Zhang DH, Sui X, Yin M (2011) Generation of pancreatic insulin-producing cells from rhesus monkey induced pluripotent stem cells. Diabetologia 54:2325–2336. https://doi.org/10.1007/s00125-011-2246-x

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Li QV, Lee K, Rosen BP, González F, Soh CL, Huangfu D (2016) Genome editing of lineage determinants in human pluripotent stem cells reveals mechanisms of pancreatic development and diabetes. Cell Stem Cell 18(6):755–768. https://doi.org/10.1016/j.stem.2016.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank all the members of the Laboratory for Stem Cell Engineering and Regenerative Medicine (SCERM) for their critical reading and excellent support. This work was financially supported by the Ministry of Science and Technology, Govt. of India (Ref. No.: BT/COE/34/SP28408/2018) under the North East Center for Biological Sciences and Healthcare Engineering (NECBH) outreach program hosted by Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, sponsored by the Department of Biotechnology (DBT), Govt. of India (NECBH/2019-20/136). This work was partially funded by IIT Guwahati Institutional Top-Up on Start-Up Grant.

Declarations Conflict of Interest

The authors declare that they have no potential conflict of interest.

Ethics Approval

Not applicable

Informed Consent

Not applicable

Research Involving Human Participants and/or Animals

None

Availability of Data and Material

Not applicable

Author Contribution

Akriti Agrawal and Gloria Narayan were responsible for conception and design, collection and assembly of data, data analysis and interpretation, manuscript writing, and final approval of the manuscript. Ranadeep Gogoi was responsible for data analysis and interpretation, manuscript writing, and final approval of the manuscript, and Rajkumar P Thummer was responsible for conception and design, collection and assembly of data, data analysis and interpretation, manuscript writing, final approval of the manuscript, and financial support. All the authors gave consent for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajkumar P. Thummer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agrawal, A., Narayan, G., Gogoi, R., Thummer, R.P. (2021). Recent Advances in the Generation of β-Cells from Induced Pluripotent Stem Cells as a Potential Cure for Diabetes Mellitus. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 14. Advances in Experimental Medicine and Biology(), vol 1347. Springer, Cham. https://doi.org/10.1007/5584_2021_653

Download citation

Publish with us

Policies and ethics