Skip to main content

Mechanisms of Drug Resistance and Use of Nanoparticle Delivery to Overcome Resistance in Breast Cancers

  • Chapter
  • First Online:
Cell Biology and Translational Medicine, Volume 14

Part of the book series: Advances in Experimental Medicine and Biology ((CBTMED,volume 1347))

Abstract

Breast cancer is the leading cancer type diagnosed among women in the world. Unfortunately, drug resistance to current breast cancer chemotherapeutics remains the main challenge for a higher survival rate. The recent progress in the nanoparticle platforms and distinct features of nanoparticles that enhance the efficacy of therapeutic agents, such as improved delivery efficacy, increased intracellular cytotoxicity, and reduced side effects, hold great promise to overcome the observed drug resistance. Currently, multifaceted investigations are probing the resistance mechanisms associated with clinical drugs, and identifying new breast cancer-associated molecular targets that may lead to improved therapeutic approaches with the nanoparticle platforms. Nanoparticle platforms including siRNA, antibody-specific targeting and the role of nanoparticles in cellular processes and their effect on breast cancer were discussed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABC:

ATP Binding Cassette

AIs:

Aromatase Inhibitors

ALDH:

Aldehyde Dehydrogenase

AuNPs:

Gold Nanoparticles

CA:

Carbonate Apatite

CKAP4:

Cytoskeleton-Associated Protein 4

CSC:

Cancer Stem Cell

DKK1:

Dickkopf-1

DOX:

Doxorubicin

EGFR:

Epidermal Growth Factor Receptor

EMT:

Epithelial-Mesenchymal Transition

EPR:

Enhanced Permeability and Retention Effect

ER:

Estrogen Receptor

ERα and Erβ:

Estrogen Receptors, Alpha and Beta

FZD:

Frizzled Receptor

GLI:

Glioma-Associated Oncogene

HER2:

Human Endothelial Growth Factor Receptor 2

Hh:

Hedgehog

HSA:

Human Serum Albumin

ICG:

Indocyanine Green

IGF1R:

IGF1 Receptor

IGF1R:

Insulin-Like Growth Factor 1 Receptor

LRP5/6:

Low-Density Lipoproteins 5/6

MAPK:

Mitogen-Activated Protein Kinase

MDR1:

Multidrug Resistance 1

MPA:

Medroxyprogesterone Acetate

NIR:

Near-Infrared

NQC:

Quinacrine Nanoparticles

OGEO:

Ocimum gratissimum Plant Essential Oils

PDA:

Polydopamine

PEG:

Polyethylene Glycol

P-gp:

P-Glycoprotein

PHB-CMCh:

Poly(3-hydroxybutyrate)-carboxymethyl Chitosan

PI3K:

Phosphoinositide 3-Kinase

PR:

Progesterone

RNAi:

RNA Interference

SEM:

Selective Estrogen Modulators

SERDs:

Selective Estrogen Receptor Downregulators

siRNA:

Short Interfering RNA

SPRMs:

Selective PR Modulators

SUR:

Surfactin

T-DM1:

Ado-trastuzumab Emtansine

TNBC:

Triple-Negative Breast Cancer

TPA:

Telapristone Acetate

WHO:

World Health Organization

ZnO:

Zinc Oxide

References

  • Abdullah LN, Chow EK-H (2013) Mechanisms of chemoresistance in cancer stem cells. Clin Transl Med 2:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Ajabnoor GMA, Crook T, Coley HM (2012) Paclitaxel resistance is associated with switch from apoptotic to autophagic cell death in MCF-7 breast cancer cells. Cell Death Dis 3:e260–e260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akbal Ö, Erdal E, Vural T, Kavaz D, DenkbaÅŸ EB (2017) Comparison of protein- and polysaccharide-based nanoparticles for cancer therapy: synthesis, characterization, drug release, and interaction with a breast cancer cell line. Artif Cells Nanomed Biotechnol 45:193–203

    Article  CAS  PubMed  Google Scholar 

  • Albrecht MA, Evans CW, Raston CL (2006) Green chemistry and the health implications of nanoparticles. Green Chem 8:417–432

    Article  CAS  Google Scholar 

  • Ali S, Rasool M, Chaoudhry HPNP, Jha P, Hafiz A, Mahfooz M, Abdus Sami G, Azhar Kamal M, Bashir S, Ali A, Sarwar Jamal M (2016) Molecular mechanisms and mode of tamoxifen resistance in breast cancer. Bioinformation 12:135–139

    Article  PubMed  PubMed Central  Google Scholar 

  • Allikmets R, Gerrard B, Hutchinson A, Dean M (1996) Characterization of the human ABC superfamily: isolation and mapping of 21 new genes using the expressed sequence tags database. Hum Mol Genet 5:1649–1655

    Article  CAS  PubMed  Google Scholar 

  • Al-Mahmood S, Sapiezynski J, Garbuzenko OB, Minko T (2018) Metastatic and triple-negative breast cancer: challenges and treatment options. Drug Deliv Transl Res 8:1483–1507

    Article  PubMed  PubMed Central  Google Scholar 

  • Ariazi EA, Ariazi JL, Cordera F, Jordan VC (2006) Estrogen receptors as therapeutic targets in breast cancer. Curr Top Med Chem 6:181–202

    Article  CAS  PubMed  Google Scholar 

  • Bai J-W, Wei M, Li J-W, Zhang G-J (2020) Notch signaling pathway and endocrine resistance in breast cancer. Front Pharmacol 11:924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee K, Resat H (2016) Constitutive activation of STAT3 in breast cancer cells: a review. Int J Cancer 138:2570–2578

    Article  CAS  PubMed  Google Scholar 

  • Bartsch R, Bago-Horvath Z, Berghoff A, Devries C, Pluschnig U, Dubsky P, Rudas M, Mader RM, Rottenfusser A, Fitzal F, Gnant M, Zielinski CC, Steger GG (2012) Ovarian function suppression and fulvestrant as endocrine therapy in premenopausal women with metastatic breast cancer. Eur J Cancer 48:1932–1938

    Article  CAS  PubMed  Google Scholar 

  • Baserga R, Peruzzi F, Reiss K (2003) The IGF-1 receptor in cancer biology. Int J Cancer 107:873–877

    Article  CAS  PubMed  Google Scholar 

  • Bernard-Marty C, Cardoso F, Piccart MJ (2004) Facts and controversies in systemic treatment of metastatic breast cancer. Oncologist 9:617–632

    Article  PubMed  Google Scholar 

  • Bhateja P, Cherian M, Majumder S, Ramaswamy B (2019) The hedgehog signaling pathway: a viable target in breast cancer? Cancers (Basel) 11:1126

    Article  CAS  Google Scholar 

  • Borah A, Pillai SC, Rochani AK, Palaninathan V, Nakajima Y, Maekawa T, Kumar DS (2020) GANT61 and curcumin-loaded PLGA nanoparticles for GLI1 and PI3K/Akt-mediated inhibition in breast adenocarcinoma. Nanotechnology 31:185102

    Article  CAS  PubMed  Google Scholar 

  • Boyle P, Levin B (2008) World cancer report 2008. IARC Press, International Agency for Research on Cancer, Lyon

    Google Scholar 

  • Brasseur K, Gévry N, Asselin E (2017) Chemoresistance and targeted therapies in ovarian and endometrial cancers. Oncotarget 8:4008–4042

    Article  PubMed  Google Scholar 

  • Byrne JD, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60:1615–1626

    Article  CAS  PubMed  Google Scholar 

  • Carnevale RP, Proietti CJ, Salatino M, Urtreger A, Peluffo G, Edwards DP, Boonyaratanakornkit V, Charreau EH, De Kier Joffé EB, Schillaci R, Elizalde PV (2007) Progestin effects on breast Cancer cell proliferation, proteases activation, and in vivo development of metastatic phenotype all depend on progesterone receptor capacity to activate cytoplasmic signaling pathways. Mol Endocrinol 21:1335–1358

    Article  CAS  PubMed  Google Scholar 

  • Chabbert-Buffet N, Kolanska K, Daraï E, Bouchard P (2018) Selective progesterone receptor modulators: current applications and perspectives. Climacteric 21:375–379

    Article  CAS  PubMed  Google Scholar 

  • Chen CJ, Chin JE, Ueda K, Clark DP, Pastan I, Gottesman MM, Roninson IB (1986) Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells. Cell 47:381–389

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Mangala LS, Rodriguez-Aguayo C, Kong X, Lopez-Berestein G, Sood AK (2018) RNA interference-based therapy and its delivery systems. Cancer Metastasis Rev 37:107–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chin KV, Ueda K, Pastan I, Gottesman MM (1992) Modulation of activity of the promoter of the human MDR1 gene by Ras and p53. Science 255:459–462

    Article  CAS  PubMed  Google Scholar 

  • Cho K, Wang X, Nie S, Chen ZG, Shin DM (2008) Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 14:1310–1316

    Article  CAS  PubMed  Google Scholar 

  • Chumsri S, Howes T, Bao T, Sabnis G, Brodie A (2011) Aromatase, aromatase inhibitors, and breast cancer. J Steroid Biochem Mol Biol 125:13–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen B, Shimizu M, Izrailit J, Ng NF, Buchman Y, Pan JG, Dering J, Reedijk M (2010) Cyclin D1 is a direct target of JAG1-mediated Notch signaling in breast cancer. Breast Cancer Res Treat 123:113–124

    Article  CAS  PubMed  Google Scholar 

  • Corkery B, Crown J, Clynes M, O’donovan N (2009) Epidermal growth factor receptor as a potential therapeutic target in triple-negative breast cancer. Ann Oncol 20:862–867

    Article  CAS  PubMed  Google Scholar 

  • Covarrubias G, He F, Raghunathan S, Turan O, Peiris PM, Schiemann WP, Karathanasis E (2019) Effective treatment of cancer metastasis using a dual-ligand nanoparticle. PLoS One 14:e0220474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crown J, O’Shaughnessy J, Gullo G (2012) Emerging targeted therapies in triple-negative breast cancer. Ann Oncol 23:vi56–vi65

    Article  PubMed  Google Scholar 

  • Dana H, Chalbatani GM, Mahmoodzadeh H, Karimloo R, Rezaiean O, Moradzadeh A, Mehmandoost N, Moazzen F, Mazraeh A, Marmari V, Ebrahimi M, Rashno MM, Abadi SJ, Gharagouzlo E (2017) Molecular mechanisms and biological functions of siRNA. Int J Biomed Sci 13:48–57

    PubMed  PubMed Central  Google Scholar 

  • Das M, Mohanty C, Sahoo SK (2009) Ligand-based targeted therapy for cancer tissue. Expert Opin Drug Deliv 6:285–304

    Article  CAS  PubMed  Google Scholar 

  • Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241

    Article  CAS  PubMed  Google Scholar 

  • Dawidczyk CM, Kim C, Park JH, Russell LM, Lee KH, Pomper MG, Searson PC (2014) State-of-the-art in design rules for drug delivery platforms: lessons learned from FDA-approved nanomedicines. J Control Release 187:133–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di C, Yang L, Zhang H, Ma X, Zhang X, Sun C, Li H, Xu S, An L, Li X, Bai Z (2013) Mechanisms, function and clinical applications of DNp73. Cell Cycle (Georgetown, Tex) 12:1861–1867

    Article  CAS  PubMed Central  Google Scholar 

  • Diao Y, Azatyan A, Rahman MF, Zhao C, Zhu J, Dahlman-Wright K, Zaphiropoulos PG (2016) Blockade of the Hedgehog pathway downregulates estrogen receptor alpha signaling in breast cancer cells. Oncotarget 7:71580–71593

    Article  PubMed  PubMed Central  Google Scholar 

  • Digiovanna MP, Stern DF, Edgerton SM, Whalen SG, Moore D 2nd, Thor AD (2005) Relationship of epidermal growth factor receptor expression to ErbB-2 signaling activity and prognosis in breast cancer patients. J Clin Oncol 23:1152–1160

    Article  CAS  PubMed  Google Scholar 

  • Duncan R (2006) Polymer conjugates as anticancer nanomedicines. Nat Rev Cancer 6:688–701

    Article  CAS  PubMed  Google Scholar 

  • Elster N, Collins DM, Toomey S, Crown J, Eustace AJ, Hennessy BT (2015) HER2-family signalling mechanisms, clinical implications and targeting in breast cancer. Breast Cancer Res Treat 149:5–15

    Article  CAS  PubMed  Google Scholar 

  • Endoh T, Ohtsuki T (2009) Cellular siRNA delivery using cell-penetrating peptides modified for endosomal escape. Adv Drug Deliv Rev 61:704–709

    Article  CAS  PubMed  Google Scholar 

  • Fang J, Nakamura H, Maeda H (2011) The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 63:136–151

    Article  CAS  PubMed  Google Scholar 

  • Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161–171

    Article  CAS  PubMed  Google Scholar 

  • Feys L, Descamps B, Vanhove C, Vral A, Veldeman L, Vermeulen S, DE Wagter C, Bracke M, DE Wever O (2015) Radiation-induced lung damage promotes breast cancer lung-metastasis through CXCR4 signaling. Oncotarget 6:26615–26632

    Article  PubMed  PubMed Central  Google Scholar 

  • Fonseca C, Simões S, Gaspar R (2002) Paclitaxel-loaded PLGA nanoparticles: preparation, physicochemical characterization and in vitro anti-tumoral activity. J Control Release 83:273–286

    Article  CAS  PubMed  Google Scholar 

  • Frank NY, Pendse SS, Lapchak PH, Margaryan A, Shlain D, Doeing C, Sayegh MH, Frank MH (2003) Regulation of progenitor cell fusion by ABCB5 P-glycoprotein, a novel human ATP-binding cassette transporter. J Biol Chem 278:47156–47165

    Article  CAS  PubMed  Google Scholar 

  • Gallardo A, Lerma E, Escuin D, Tibau A, Muñoz J, Ojeda B, Barnadas A, Adrover E, Sánchez-Tejada L, Giner D, Ortiz-Martínez F, Peiró G (2012) Increased signalling of EGFR and IGF1R, and deregulation of PTEN/PI3K/Akt pathway are related with trastuzumab resistance in HER2 breast carcinomas. Br J Cancer 106:1367–1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Saenz JA, Bermejo B, Estevez LG, Palomo AG, Gonzalez-Farre X, Margeli M, Pernas S, Servitja S, Rodriguez CA, Ciruelos E (2015) SEOM clinical guidelines in early-stage breast cancer 2015. Clin Transl Oncol 17:939–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelbert LM, Cai S, Lin X, Sanchez-Martinez C, DEL Prado M, Lallena MJ, Torres R, Ajamie RT, Wishart GN, Flack RS, Neubauer BL, Young J, Chan EM, Iversen P, Cronier D, Kreklau E, DE Dios A (2014) Preclinical characterization of the CDK4/6 inhibitor LY2835219: in-vivo cell cycle-dependent/independent anti-tumor activities alone/in combination with gemcitabine. Investig New Drugs 32:825–837

    Article  CAS  Google Scholar 

  • Gelderblom H, Verweij J, Nooter K, Sparreboom A (2001) Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. Eur J Cancer 37:1590–1598

    Article  CAS  PubMed  Google Scholar 

  • Giaccone G, Pinedo HM (1996) Drug resistance. Oncologist 1:82–87

    Article  CAS  PubMed  Google Scholar 

  • Goel S, Decristo MJ, Watt AC, Brinjones H, Sceneay J, Li BB, Khan N, Ubellacker JM, Xie S, Metzger-Filho O, Hoog J, Ellis MJ, Ma CX, Ramm S, Krop IE, Winer EP, Roberts TM, Kim HJ, Mcallister SS, Zhao JJ (2017) CDK4/6 inhibition triggers anti-tumour immunity. Nature 548:471–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goepfert TM, Mccarthy M, Kittrell FS, Stephens C, Ullrich RL, Brinkley BR, Medina D (2000) Progesterone facilitates chromosome instability (aneuploidy) in p53 null normal mammary epithelial cells. FASEB J 14:2221–2229

    Article  CAS  PubMed  Google Scholar 

  • Goldie JH (1983) Drug resistance and cancer chemotherapy strategy in breast cancer. Breast Cancer Res Treat 3:129–136

    Article  CAS  PubMed  Google Scholar 

  • Graus-Porta D, Beerli RR, Daly JM, Hynes NE (1997) ErbB-2, the preferred heterodimerization partner of all ErbB receptors, is a mediator of lateral signaling. EMBO J 16:1647–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greish K (2007) Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. J Drug Target 15:457–464

    Article  CAS  PubMed  Google Scholar 

  • Gu S, Ngamcherdtrakul W, Reda M, Hu Z, Gray JW, Yantasee W (2018) Lack of acquired resistance in HER2-positive breast cancer cells after long-term HER2 siRNA nanoparticle treatment. PLoS One 13:e0198141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, Lander ES (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138:645–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassanpour SH, Dehghani M (2017) Review of cancer from perspective of molecular. J Cancer Res Pract 4:127–129

    Article  Google Scholar 

  • Hertz DL, Henry NL, Rae JM (2017) Germline genetic predictors of aromatase inhibitor concentrations, estrogen suppression and drug efficacy and toxicity in breast cancer patients. Pharmacogenomics 18:481–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hewitt SC, Korach KS (2000) Progesterone action and responses in the alphaERKO mouse. Steroids 65:551–557

    Article  CAS  PubMed  Google Scholar 

  • Houdaihed L, Evans JC, Allen C (2020) Dual-targeted delivery of nanoparticles encapsulating paclitaxel and everolimus: a novel strategy to overcome breast cancer receptor heterogeneity. Pharm Res 37:39

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Warner M, Gustafsson J (2015) Estrogen receptors in breast carcinogenesis and endocrine therapy. Mol Cell Endocrinol 418(Pt 3):240–244

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Cole SPC, Cai T, Cai YU (2016) Applications of nanoparticle drug delivery systems for the reversal of multidrug resistance in cancer. Oncol Lett 12:11–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, Lang Y, Hakeem A, Lei Y, Gan L, Yang X (2018) Surfactin-based nanoparticles loaded with doxorubicin to overcome multidrug resistance in cancers. Int J Nanomedicine 13:1723–1736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain Z, Khan JA, Murtaza S (2018) Nanotechnology: an emerging therapeutic option for breast cancer. Crit Rev Eukaryot Gene Expr 28:163–175

    Article  PubMed  Google Scholar 

  • Isakoff SJ (2010) Triple-negative breast cancer: role of specific chemotherapy agents. Cancer J 16:53–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ismail-Khan R, Bui MM (2010) A review of triple-negative breast cancer. Cancer Control 17:173–176

    Article  PubMed  Google Scholar 

  • Iyer AK, Khaled G, Fang J, Maeda H (2006) Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 11:812–818

    Article  CAS  PubMed  Google Scholar 

  • Jafari R, Majidi Zolbanin N, Majidi J, Atyabi F, Yousefi M, Jadidi-Niaragh F, Aghebati-Maleki L, Shanehbandi D, Soltani Zangbar MS, Rafatpanah H (2019) Anti-Mucin1 aptamer-conjugated chitosan nanoparticles for targeted co-delivery of docetaxel and IGF-1R siRNA to SKBR3 metastatic breast cancer cells. Iran Biomed J 23:21–33

    Article  PubMed  PubMed Central  Google Scholar 

  • Kipp JE (2004) The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int J Pharm 284:109–122

    Article  CAS  PubMed  Google Scholar 

  • Kizilboga T, Baskale EA, Yildiz J, Akcay IM, Zemheri E, Can ND, Ozden C, Demir S, Ezberci F, Dinler-Doganay G (2019) Bag-1 stimulates Bad phosphorylation through activation of Akt and Raf kinases to mediate cell survival in breast cancer. BMC Cancer 19:1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koike Y, Ohta Y, Saitoh W, Yamashita T, Kanomata N, Moriya T, Kurebayashi J (2017) Anti-cell growth and anti-cancer stem cell activities of the non-canonical hedgehog inhibitor GANT61 in triple-negative breast cancer cells. Breast Cancer 24:683–693

    Article  PubMed  Google Scholar 

  • Koziara JM, Lockman PR, Allen DD, Mumper RJ (2004) Paclitaxel nanoparticles for the potential treatment of brain tumors. J Control Release 99:259–269

    Article  CAS  PubMed  Google Scholar 

  • Koziara JM, Whisman TR, Tseng MT, Mumper RJ (2006) In-vivo efficacy of novel paclitaxel nanoparticles in paclitaxel-resistant human colorectal tumors. J Control Release 112:312–319

    Article  CAS  PubMed  Google Scholar 

  • Kubota T, Kuroda S, Kanaya N, Morihiro T, Aoyama K, Kakiuchi Y, Kikuchi S, Nishizaki M, Kagawa S, Tazawa H, Fujiwara T (2018) HER2-targeted gold nanoparticles potentially overcome resistance to trastuzumab in gastric cancer. Nanomedicine 14:1919–1929

    Article  CAS  PubMed  Google Scholar 

  • Kuo MT (2007) Roles of multidrug resistance genes in breast cancer chemoresistance. Adv Exp Med Biol 608:23–30

    Article  CAS  PubMed  Google Scholar 

  • Lange CA, Yee D (2008) Progesterone and breast cancer. Womens Health (Lond) 4:151–162

    Article  CAS  Google Scholar 

  • Leclercq G, Lacroix M, Laïos I, Laurent G (2006) Estrogen receptor alpha: impact of ligands on intracellular shuttling and turnover rate in breast cancer cells. Curr Cancer Drug Targets 6:39–64

    Article  CAS  PubMed  Google Scholar 

  • Lee O, Choi MR, Christov K, Ivancic D, Khan SA (2016) Progesterone receptor antagonism inhibits progestogen-related carcinogenesis and suppresses tumor cell proliferation. Cancer Lett 376:310–317

    Article  CAS  PubMed  Google Scholar 

  • Leong KG, Niessen K, Kulic I, Raouf A, Eaves C, Pollet I, Karsan A (2007) Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin. J Exp Med 204:2935–2948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Xu W, Yuan X, Chen H, Song H, Wang B, Han J (2017) Polymer-lipid hybrid anti-HER2 nanoparticles for targeted salinomycin delivery to HER2-positive breast cancer stem cells and cancer cells. Int J Nanomedicine 12:6909–6921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Xu X, Liu Y, Li S, Zhang D, Meng X, Lu L, Li Y (2018) MMP7 induces T-DM1 resistance and leads to the poor prognosis of gastric adenocarcinoma via a DKK1-dependent manner. Anti Cancer Agents Med Chem 18:2010–2016

    Article  CAS  Google Scholar 

  • Liang Y, Goyette S, Hyder SM (2017) Cholesterol biosynthesis inhibitor RO 48-8071 reduces progesterone receptor expression and inhibits progestin-dependent stem cell-like cell growth in hormone-dependent human breast cancer cells. Breast Cancer (Dove Med Press) 9:487–494

    CAS  Google Scholar 

  • Liao D, Zhang W, Gupta P, Lei Z-N, Wang J-Q, Cai C-Y, Vera AAD, Zhang L, Chen Z-S, Yang D-H (2019) Tetrandrine interaction with ABCB1 reverses multidrug resistance in Cancer cells through competition with anti-Cancer drugs followed by downregulation of ABCB1 expression. Molecules (Basel, Switzerland) 24:4383

    Article  CAS  Google Scholar 

  • Liedtke C, Kolberg HC (2016) Systemic therapy of advanced/metastatic breast cancer – current evidence and future concepts. Breast Care (Basel) 11:275–281

    Article  Google Scholar 

  • Lippert TH, Ruoff HJ, Volm M (2008) Intrinsic and acquired drug resistance in malignant tumors. The main reason for therapeutic failure. Arzneimittelforschung 58:261–264

    CAS  PubMed  Google Scholar 

  • Longley DB, Johnston PG (2005) Molecular mechanisms of drug resistance. J Pathol 205:275–292

    Article  CAS  PubMed  Google Scholar 

  • Lu C, Shervington A (2008) Chemoresistance in gliomas. Mol Cell Biochem 312:71–80

    Article  CAS  PubMed  Google Scholar 

  • Lumachi F, Brunello A, Maruzzo M, Basso U, Basso SM (2013) Treatment of estrogen receptor-positive breast cancer. Curr Med Chem 20:596–604

    Article  CAS  PubMed  Google Scholar 

  • Lumachi F, Santeufemia DA, Basso SM (2015) Current medical treatment of estrogen receptor-positive breast cancer. World J Biol Chem 6:231–239

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo Y, Ellis LZ, Dallaglio K, Takeda M, Robinson WA, Robinson SE, Liu W, Lewis KD, Mccarter MD, Gonzalez R, Norris DA, Roop DR, Spritz RA, Ahn NG, Fujita M (2012) Side population cells from human melanoma tumors reveal diverse mechanisms for chemoresistance. J Invest Dermatol 132:2440–2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magnifico A, Albano L, Campaner S, Delia D, Castiglioni F, Gasparini P, Sozzi G, Fontanella E, Menard S, Tagliabue E (2009) Tumor-initiating cells of HER2-positive carcinoma cell lines express the highest oncoprotein levels and are sensitive to trastuzumab. Clin Cancer Res 15:2010–2021

    Article  CAS  PubMed  Google Scholar 

  • Maki S, Konno T, Maeda H (1985) Image enhancement in computerized tomography for sensitive diagnosis of liver cancer and semiquantitation of tumor selective drug targeting with oily contrast medium. Cancer 56:751–757

    Article  CAS  PubMed  Google Scholar 

  • Mamaeva V, Rosenholm JM, Bate-Eya LT, Bergman L, Peuhu E, Duchanoy A, Fortelius LE, Landor S, Toivola DM, Lindén M, Sahlgren C (2011) Mesoporous silica nanoparticles as drug delivery systems for targeted inhibition of Notch signaling in cancer. Mol Ther 19:1538–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    CAS  PubMed  Google Scholar 

  • Matsunaga S, Shuto T, Sato M (2016) Gamma knife surgery for metastatic brain tumors from gynecologic cancer. World Neurosurg 89:455–463

    Article  PubMed  Google Scholar 

  • Matter M, Dusmet M, Chevalley F (2000) The place of surgery in the treatment of advanced localized, recurrent and metastatic breast cancer. Rev Med Suisse Romande 120:485–490

    CAS  PubMed  Google Scholar 

  • Mcarthur HL, Mahoney KM, Morris PG, Patil S, Jacks LM, Howard J, Norton L, Hudis CA (2011) Adjuvant trastuzumab with chemotherapy is effective in women with small, node-negative, HER2-positive breast cancer. Cancer 117:5461–5468

    Article  CAS  PubMed  Google Scholar 

  • Mcgee S (2010) Understanding metastasis: current paradigms and therapeutic challenges in breast cancer progression. RCSI SMJ Rev 3:56–60

    Google Scholar 

  • Miele L, Golde T, Osborne B (2006) Notch signaling in cancer. Curr Mol Med 6:905–918

    Article  CAS  PubMed  Google Scholar 

  • Moasser MM (2007) The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene 26:6469–6487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohanty C, Das M, Kanwar JR, Sahoo SK (2011) Receptor mediated tumor targeting: an emerging approach for cancer therapy. Curr Drug Deliv 8:45–58

    Article  CAS  PubMed  Google Scholar 

  • Mondal L, Mukherjee B, Das K, Bhattacharya S, Dutta D, Chakraborty S, Pal MM, Gaonkar RH, Debnath MC (2019) CD-340 functionalized doxorubicin-loaded nanoparticle induces apoptosis and reduces tumor volume along with drug-related cardiotoxicity in mice. Int J Nanomedicine 14:8073–8094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muhamad N, Plengsuriyakarn T, Na-Bangchang K (2018) Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: a systematic review. Int J Nanomedicine 13:3921–3935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy CT, Li T, Wang LS, Obeid EI, Bleicher RJ, Eastwick G, Johnson ME, Hayes SB, Weiss SE, Anderson PR (2015) Comparison of adjuvant radiation therapy alone versus radiation therapy and endocrine therapy in elderly women with early-stage, hormone receptor-positive breast cancer treated with breast-conserving surgery. Clin Breast Cancer 15:381–389

    Article  CAS  PubMed  Google Scholar 

  • Murray S, Briasoulis E, Linardou H, Bafaloukos D, Papadimitriou C (2012) Taxane resistance in breast cancer: mechanisms, predictive biomarkers and circumvention strategies. Cancer Treat Rev 38:890–903

    Article  CAS  PubMed  Google Scholar 

  • Nagamitsu A, Greish K, Maeda H (2009) Elevating blood pressure as a strategy to increase tumor-targeted delivery of macromolecular drug SMANCS: cases of advanced solid tumors. Jpn J Clin Oncol 39:756–766

    Article  PubMed  Google Scholar 

  • Naujokat C, Steinhart R (2012) Salinomycin as a drug for targeting human cancer stem cells. J Biomed Biotechnol 2012:950658

    Article  PubMed  PubMed Central  Google Scholar 

  • Nayak A, Satapathy SR, Das D, Siddharth S, Tripathi N, Bharatam PV, Kundu C (2016) Nanoquinacrine induced apoptosis in cervical cancer stem cells through the inhibition of hedgehog-GLI1 cascade: role of GLI-1. Sci Rep 6:20600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neophytou C, Boutsikos P, Papageorgis P (2018) Molecular mechanisms and emerging therapeutic targets of triple-negative breast cancer metastasis. Front Oncol 8:31

    Article  PubMed  PubMed Central  Google Scholar 

  • Nikolaou M, Pavlopoulou A, Georgakilas AG, Kyrodimos E (2018) The challenge of drug resistance in cancer treatment: a current overview. Clin Exp Metastasis 35:309–318

    Article  CAS  PubMed  Google Scholar 

  • Normanno N, DI Maio M, De Maio E, De Luca A, De Matteis A, Giordano A, Perrone F (2005) Mechanisms of endocrine resistance and novel therapeutic strategies in breast cancer. Endocr Relat Cancer 12:721–747

    Article  CAS  PubMed  Google Scholar 

  • O’Shaughnessy J (2005) Extending survival with chemotherapy in metastatic breast cancer. Oncologist 10(Suppl 3):20–29

    Article  PubMed  Google Scholar 

  • O’toole SA, Beith JM, Millar EK, West R, Mclean A, Cazet A, Swarbrick A, Oakes SR (2013) Therapeutic targets in triple negative breast cancer. J Clin Pathol 66:530–542

    Article  PubMed  CAS  Google Scholar 

  • Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA, Bruncko M, Deckwerth TL, Dinges J, Hajduk PJ, Joseph MK, Kitada S, Korsmeyer SJ, Kunzer AR, Letai A, Li C, Mitten MJ, Nettesheim DG, Ng S, Nimmer PM, O’connor JM, Oleksijew A, Petros AM, Reed JC, Shen W, Tahir SK, Thompson CB, Tomaselli KJ, Wang B, Wendt MD, Zhang H, Fesik SW, Rosenberg SH (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435:677–681

    Article  CAS  PubMed  Google Scholar 

  • Onyebuchi C, Kavaz D (2019) Chitosan and N, N, N-Trimethyl chitosan nanoparticle encapsulation of Ocimum Gratissimum essential oil: optimised synthesis, in vitro release and bioactivity. Int J Nanomedicine 14:7707–7727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osborne CK, Wakeling A, Nicholson RI (2004) Fulvestrant: an oestrogen receptor antagonist with a novel mechanism of action. Br J Cancer 90(Suppl 1):S2–S6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ould-Ouali L, Noppe M, Langlois X, Willems B, Te Riele P, Timmerman P, Brewster ME, Ariën A, Préat V (2005) Self-assembling PEG-p(CL-co-TMC) copolymers for oral delivery of poorly water-soluble drugs: a case study with risperidone. J Control Release 102:657–668

    Article  CAS  PubMed  Google Scholar 

  • Palmieri C, Patten DK, Januszewski A, Zucchini G, Howell SJ (2014) Breast cancer: current and future endocrine therapies. Mol Cell Endocrinol 382:695–723

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Gu L, Von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8:331–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parvani JG, Gujrati MD, Mack MA, Schiemann WP, Lu ZR (2015) Silencing β3 integrin by targeted ECO/siRNA nanoparticles inhibits EMT and metastasis of triple-negative breast cancer. Cancer Res 75:2316–2325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R (2007) Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2:751–760

    Article  CAS  PubMed  Google Scholar 

  • Perou CM, Sorlie T, Eisen MB, Van De Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  CAS  PubMed  Google Scholar 

  • Pohl S-G, Brook N, Agostino M, Arfuso F, Kumar AP, Dharmarajan A (2017) Wnt signaling in triple-negative breast cancer. Oncogenesis 6:e310–e310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranganathan P, Weaver KL, Capobianco AJ (2011) Notch signalling in solid tumours: a little bit of everything but not all the time. Nat Rev Cancer 11:338–351

    Article  CAS  PubMed  Google Scholar 

  • Rosenblum D, Peer D (2014) Omics-based nanomedicine: the future of personalized oncology. Cancer Lett 352:126–136

    Article  CAS  PubMed  Google Scholar 

  • Rosenblum D, Joshi N, Tao W, Karp JM, Peer D (2018) Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun 9:1410

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sada R, Kimura H, Fukata Y, Fukata M, Yamamoto H, Kikuchi A (2019) Dynamic palmitoylation controls the microdomain localization of the DKK1 receptors CKAP4 and LRP6. Sci Signal 12:eaat9519

    Article  CAS  PubMed  Google Scholar 

  • Sakil HAM, Stantic M, Wolfsberger J, Brage SE, Hansson J, Wilhelm MT (2017) ΔNp73 regulates the expression of the multidrug-resistance genes ABCB1 and ABCB5 in breast cancer and melanoma cells – a short report. Cell Oncol (Dordr) 40:631–638

    Article  CAS  PubMed Central  Google Scholar 

  • Samadi P, Saki S, Dermani FK, Pourjafar M, Saidijam M (2018) Emerging ways to treat breast cancer: will promises be met? Cell Oncol (Dordr) 41:605–621

    Article  CAS  Google Scholar 

  • Saraswathy M, Gong S (2014) Recent developments in the co-delivery of siRNA and small molecule anticancer drugs for cancer treatment. Mater Today 17:298–306

    Article  CAS  Google Scholar 

  • Schroeder RL, Stevens CL, Sridhar J (2014) Small molecule tyrosine kinase inhibitors of ErbB2/HER2/Neu in the treatment of aggressive breast cancer. Molecules 19:15196–15212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shao S, Zhao X, Zhang X, Luo M, Zuo X, Huang S, Wang Y, Gu S, Zhao X (2015) Notch1 signaling regulates the epithelial-mesenchymal transition and invasion of breast cancer in a Slug-dependent manner. Mol Cancer 14:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma R, Sharma R, Khaket TP, Dutta C, Chakraborty B, Mukherjee TK (2017) Breast cancer metastasis: putative therapeutic role of vascular cell adhesion molecule-1. Cell Oncol (Dordr) 40:199–208

    Article  CAS  Google Scholar 

  • Sharma D, Kumar S, Narasimhan B (2018) Estrogen alpha receptor antagonists for the treatment of breast cancer: a review. Chem Cent J 12:107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi J, Kantoff PW, Wooster R, Farokhzad OC (2017) Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 17:20–37

    Article  CAS  PubMed  Google Scholar 

  • Shimamura H, Terada Y, Okado T, Tanaka H, Inoshita S, Sasaki S (2003) The PI3-kinase-Akt pathway promotes mesangial cell survival and inhibits apoptosis in vitro via NF-kappa B and Bad. J Am Soc Nephrol 14:1427–1434

    Article  CAS  PubMed  Google Scholar 

  • Shioi Y, Kashiwaba M, Inaba T, Komatsu H, Sugai T, Wakabayashi G (2014) Long-term complete remission of metastatic breast cancer, induced by a steroidal aromatase inhibitor after failure of a non-steroidal aromatase inhibitor. Am J Case Rep 15:85–89

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh R, Vyas SP (1996) Topical liposomal system for localized and controlled drug delivery. J Dermatol Sci 13:107–111

    Article  CAS  PubMed  Google Scholar 

  • Skoda AM, Simovic D, Karin V, Kardum V, Vranic S, Serman L (2018) The role of the hedgehog signaling pathway in cancer: a comprehensive review. Bosn J Basic Med Sci 18:8–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sotiriou C, Neo SY, Mcshane LM, Korn EL, Long PM, Jazaeri A, Martiat P, Fox SB, Harris AL, Liu ET (2003) Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci U S A 100:10393–10398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spector NL, Blackwell KL (2009) Understanding the mechanisms behind trastuzumab therapy for human epidermal growth factor receptor 2-positive breast cancer. J Clin Oncol 27:5838–5847

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Shang J, Zhang J, Chen S, Hao M (2019) Correlations of DKK1 with incidence and prognosis of breast cancer. J BUON 24:26–32

    PubMed  Google Scholar 

  • Surapaneni SK, Bashir S, Tikoo K (2018) Gold nanoparticles-induced cytotoxicity in triple negative breast cancer involves different epigenetic alterations depending upon the surface charge. Sci Rep 8:12295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang Y, Wang Y, Kiani MF, Wang B (2016) Classification, treatment strategy, and associated drug resistance in breast cancer. Clin Breast Cancer 16:335–343

    Article  PubMed  Google Scholar 

  • Tang X, Loc WS, Dong C, Matters GL, Butler PJ, Kester M, Meyers C, Jiang Y, Adair JH (2017) The use of nanoparticulates to treat breast cancer. Nanomedicine 12:2367–2388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thottassery JV, Zambetti GP, Arimori K, Schuetz EG, Schuetz JD (1997) p53-dependent regulation of MDR1 gene expression causes selective resistance to chemotherapeutic agents. Proc Natl Acad Sci U S A 94:11037–11042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiash S, Chowdhury EH (2019) siRNAs targeting multidrug transporter genes sensitise breast tumour to doxorubicin in a syngeneic mouse model. J Drug Target 27:325–337

    Article  CAS  PubMed  Google Scholar 

  • Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, Bannerjee SK (2012) Drug delivery systems: an updated review. Int J Pharm Invest 2:2–11

    Article  CAS  Google Scholar 

  • Umar H, Kavaz D, Rizaner N (2018) Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines. Int J Nanomedicine 14:87–100

    Article  PubMed  PubMed Central  Google Scholar 

  • Valcourt DM, Dang MN, Scully MA, Day ES (2020) Nanoparticle-mediated co-delivery of Notch-1 antibodies and ABT-737 as a potent treatment strategy for triple-negative breast cancer. ACS Nano 14:3378–3388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verderio P, Pandolfi L, Mazzucchelli S, Marinozzi MR, Vanna R, Gramatica F, Corsi F, Colombo M, Morasso C, Prosperi D (2014) Antiproliferative effect of ASC-J9 delivered by PLGA nanoparticles against estrogen-dependent breast Cancer cells. Mol Pharm 11:2864–2875

    Article  CAS  PubMed  Google Scholar 

  • Wagenfeld A, Saunders PT, Whitaker L, Critchley HO (2016) Selective progesterone receptor modulators (SPRMs): progesterone receptor action, mode of action on the endometrium and treatment options in gynecological therapies. Expert Opin Ther Targets 20:1045–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Xu B (2019) Targeted therapeutic options and future perspectives for HER2-positive breast cancer. Signal Transduct Target Ther 4:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Xie Y, Kilchrist KV, Li J, Duvall CL, Oupický D (2020) Endosomolytic and tumor-penetrating mesoporous silica nanoparticles for siRNA/miRNA combination cancer therapy. ACS Appl Mater Interfaces 12:4308–4322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weigelt B, Peterse JL, van’t Veer LJ (2005) Breast cancer metastasis: markers and models. Nat Rev Cancer 5:591–602

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm MT, Rufini A, Wetzel MK, Tsuchihara K, Inoue S, Tomasini R, Itie-Youten A, Wakeham A, Arsenian-Henriksson M, Melino G, Kaplan DR, Miller FD, Mak TW (2010) Isoform-specific p73 knockout mice reveal a novel role for delta Np73 in the DNA damage response pathway. Genes Dev 24:549–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao YS, Zeng D, Liang YK, Wu Y, Li MF, Qi YZ, Wei XL, Huang WH, Chen M, Zhang GJ (2019) Major vault protein is a direct target of Notch1 signaling and contributes to chemoresistance in triple-negative breast cancer cells. Cancer Lett 440–441:156–167

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F, Cui H (2020) Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther 5:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yao J, Yao X, Tian T, Fu X, Wang W, Li S, Shi T, Suo A, Ruan Z, Guo H, Nan K, Huo X (2017) ABCB5-ZEB1 Axis promotes invasion and metastasis in breast cancer cells. Oncol Res 25:305–316

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin P, Wang W, Zhang Z, Bai Y, Gao J, Zhao C (2018) Wnt signaling in human and mouse breast cancer: focusing on Wnt ligands, receptors and antagonists. Cancer Sci 109:3368–3375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yousefi M, Nosrati R, Salmaninejad A, Dehghani S, Shahryari A, Saberi A (2018) Organ-specific metastasis of breast cancer: molecular and cellular mechanisms underlying lung metastasis. Cell Oncol (Dordr) 41:123–140

    Article  CAS  Google Scholar 

  • Yu L, Yang Y, Hou J, Zhai C, Song Y, Zhang Z, Qiu L, Jia X (2015) MicroRNA-144 affects radiotherapy sensitivity by promoting proliferation, migration and invasion of breast cancer cells. Oncol Rep 34:1845–1852

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Yin Y, Xu SJ, Chen WS (2008) 5-Fluorouracil: mechanisms of resistance and reversal strategies. Molecules 13:1551–1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Li X, You Q, Zhang X (2017) Prodrug strategy for cancer cell-specific targeting: a recent overview. Eur J Med Chem 139:542–563

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Jiang Z, Xve T, Sun S, Li J, Ren W, Wu A, Huang P (2019) One-pot synthesis of hollow PDA@DOX nanoparticles for ultrasound imaging and chemo-thermal therapy in breast cancer. Nanoscale 11:21759–21766

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Jing D, Jiang N, Rojalin T, Baehr CM, Zhang D, Xiao W, Wu Y, Cong Z, Li JJ, Li Y, Wang L, Lam KS (2020) Transformable peptide nanoparticles arrest HER2 signalling and cause cancer cell death in vivo. Nat Nanotechnol 15:145–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo ZQ, Chen KG, Yu XY, Zhao G, Shen S, Cao ZT, Luo YL, Wang YC, Wang J (2016) Promoting tumor penetration of nanoparticles for cancer stem cell therapy by TGF-β signaling pathway inhibition. Biomaterials 82:48–59

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huseyin Beyaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beyaz, H., Uludag, H., Kavaz, D., Rizaner, N. (2021). Mechanisms of Drug Resistance and Use of Nanoparticle Delivery to Overcome Resistance in Breast Cancers. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 14. Advances in Experimental Medicine and Biology(), vol 1347. Springer, Cham. https://doi.org/10.1007/5584_2021_648

Download citation

Publish with us

Policies and ethics