Skip to main content

Eosinophils as Major Player in Type 2 Inflammation: Autoimmunity and Beyond

  • Chapter
  • First Online:
Cell Biology and Translational Medicine, Volume 14

Part of the book series: Advances in Experimental Medicine and Biology ((CBTMED,volume 1347))

Abstract

Eosinophils are a subset of differentiated granulocytes which circulate in peripheral blood and home in several body tissues. Along with their traditional relevance in helminth immunity and allergy, eosinophils have been progressively attributed important roles in a number of homeostatic and pathologic situations. This review aims at summarizing available evidence about eosinophils functions in homeostasis, infections, allergic and autoimmune disorders, and solid and hematological cancers.

Their structural and biological features have been described, along with their physiological behavior. This includes their chemokines, cytokines, granular contents, and extracellular traps. Besides, pathogenic- and eosinophilic-mediated disorders have also been addressed, with the aim of highlighting their role in Th2-driven inflammation. In allergy, eosinophils are implicated in the pathogenesis of atopic dermatitis, allergic rhinitis, and asthma. They are also fundamentally involved in autoimmune disorders such as eosinophilic esophagitis, eosinophilic gastroenteritis, acute and chronic eosinophilic pneumonia, and eosinophilic granulomatosis with polyangiitis. In infections, eosinophils are involved in protection not only from parasites but also from fungi, viruses, and bacteria. In solid cancers, local eosinophilic infiltration is variably associated with an improved or worsened prognosis, depending on the histotype. In hematologic neoplasms, eosinophilia can be the consequence of a dysregulated cytokine production or the result of mutations affecting the myeloid lineage.

Recent experimental evidence was thoroughly reviewed, with findings which elicit a complex role for eosinophils, in a tight balance between host defense and tissue damage. Eventually, emerging evidence about eosinophils in COVID-19 infection was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CCL17:

C-C motif chemokine ligand 17

CCL22:

C-C motif chemokine ligand 22

CCR3:

C-C chemokine receptor type 3

FGF-2:

fibroblast growth factors 2

GM-CSF:

granulocyte-macrophage colony-stimulating factor

IFNγ:

interferon gamma

IL-10:

interleukin 10

IL-12:

interleukin 12

IL-17:

interleukin 17

IL-23:

interleukin 23

IL-25:

interleukin 25

IL-3:

interleukin 3

IL-4:

interleukin 4

IL-33:

interleukin 33

IL-5:

interleukin 5

IL-6:

interleukin 6

PTX3:

pentraxin 3

TGF-β:

transforming growth factor β

TNF-α:

tumor necrosis factor alpha α

TSLP:

thymic stromal lymphopoietin

Th1:

T helper 1

Th2:

T helper 2

NK cell:

natural killer cell

FcεRI:

high-affinity IgE receptor

FcεRIα:

high-affinity IgE receptor alpha chain

MBP:

major basic protein

ECP:

eosinophilic cationic protein

EPO:

eosinophil peroxidase

ROS:

reactive oxygen species

EDN:

eosinophil-derived neurotoxin

PMD:

piecemeal degranulation

EoSVs:

eosinophil sombrero vesicles

EET:

eosinophil extracellular traps

ILC2:

innate lymphoid cell type 2

PRRs:

pattern recognition receptors

PAMPs:

pathogen-associated molecular patterns

LPS:

lipopolysaccharide

DAMPs:

damage-associated molecular patterns

TLRs:

toll-like receptors

APCs:

antigen-presenting cells

MHC-II:

major histocompatibility complex class II

DCs:

dendritic cells

GI tract:

gastrointestinal tract

RVS:

respiratory syncytial virus

HIV:

human immunodeficiency virus

AIDS:

acquired immunodeficiency syndrome

SARS-CoV-2:

SARS-2 coronavirus

COVID-19:

coronavirus disease 19

BAL:

bronchoalveolar lavage

ADCC:

antibody-dependent cellular cytotoxicity

AD:

atopic dermatitis

AR:

allergic rhinitis

HES:

hypereosinophilic syndrome

AEP:

acute eosinophilic pneumonia

CEP:

chronic eosinophilic pneumonia

EGPA:

eosinophilic granulomatosis with polyangiitis

ANCA:

antineutrophil cytoplasmic antibodies

TME:

tumor microenvironment

TATE:

tumor-associated tissue eosinophilia

CTLs:

cytotoxic T-lymphocytes

OSCC:

oral squamous cell carcinoma

DFS:

disease-free survival

MN-eos:

eosinophilia-associated myeloid neoplasms

FGFR1:

fibroblast growth factor receptor 1

PDGFRα:

platelet-derived growth factor receptor a

PDGFRβ:

platelet-derived growth factor receptor b

MPN:

myeloproliferative neoplasms

CEL-NOS:

chronic eosinophilic leukemia-not otherwise specified

CML:

chronic myeloid leukemia

Eos-CML:

hypereosinophilic variant

HL:

Hodgkin’s lymphoma

References

  • Abidi K et al (2008) Eosinopenia is a reliable marker of sepsis on admission to medical intensive care units. Crit Care 12

    Google Scholar 

  • Alkhabuli JO, High AS (2006) Significance of eosinophil counting in tumor associated tissue eosinophilia (TATE). Oral Oncol 42:849–850

    Article  CAS  PubMed  Google Scholar 

  • ARCHER GT, HIRSCH JG (1963) Motion picture studies on degranulation of horse eosinophils during phagocytosis. J Exp Med 118:287–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aupperlee MD et al (2014) Epidermal growth factor receptor (EGFR) signaling is a key mediator of hormone-induced leukocyte infiltration in the pubertal female mammary gland. Endocrinology 155:2301–2313

    Article  PubMed  PubMed Central  Google Scholar 

  • Bachert C, Patou J, Van Cauwenberge P (2006) The role of sinus disease in asthma. Curr Opin Allergy Clin Immunol 6:29–36

    Article  PubMed  Google Scholar 

  • Barker E, Mackewicz CE, Levy JA (1995) Effects of TH1 and TH2 cytokines on CD8+ cell response against human immunodeficiency virus: implications for long-term survival. Proc Natl Acad Sci U S A 92:11135–11139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bass DA (1975) Behavior of eosinophil leukocytes in acute inflammation. II Eosinophil dynamics during acute inflammation. J Clin Invest 56:870–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertheloot D, Latz E (2017) HMGB1, IL-1α, IL-33 and S100 proteins: dual-function alarmins. Cell Mol Immunol

    Google Scholar 

  • Birring SS et al (2005) Sputum eosinophilia in idiopathic pulmonary fibrosis. Inflamm Res 54:51–56

    Article  CAS  PubMed  Google Scholar 

  • Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nat Immunol

    Google Scholar 

  • Brinkmann V et al (2004) Neutrophil extracellular traps kill bacteria. Science 303(80):1532–1535

    Article  CAS  PubMed  Google Scholar 

  • Brunetta E et al (2020) Macrophage expression and prognostic significance of the long pentraxin PTX3 in COVID-19. Nat Immunol 22

    Google Scholar 

  • Butterworth AE (1985) Cell-mediated damage to helminths. Adv Parasitol 23:143–235

    Article  Google Scholar 

  • Bystrom J, Amin K, Bishop-Bailey D (2011) Analysing the eosinophil cationic protein – a clue to the function of the eosinophil granulocyte. Respir Res 12

    Google Scholar 

  • Cambier J, Morrison D (1991) Modeling of T cell contact-dependent B cell activation. IL-4 and antigen receptor ligation primes quiescent B cells to mobilize calcium in response to Ia cross-linking. J Immunol:2075–2082

    Google Scholar 

  • Capron Loiseau M et al (2016) Human eosinophils exert TNF- human eosinophils exert TNF-a and granzyme A-mediated tumoricidal activity toward colon carcinoma cells. J Immunol

    Google Scholar 

  • Carretero R et al (2015) Eosinophils orchestrate cancer rejection by normalizing tumor vessels and enhancing infiltration of CD8 + T cells. Nat Immunol

    Google Scholar 

  • Chou A, Serpa JA (2015) Eosinophilia in patients infected with human immunodeficiency virus. Curr HIV/AIDS Rep 12:313–316

    Article  PubMed  PubMed Central  Google Scholar 

  • Chu DK et al (2014) Indigenous enteric eosinophils control DCs to initiate a primary Th2 immune response in vivo. J Exp Med 211:1657–1672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cline MJ, Lehrer RI (1968) Phagocytosis by human monocytes. Blood 32:423–435

    Article  CAS  PubMed  Google Scholar 

  • Conroy DM, Williams TJ (2001) Eotaxin and the attraction of eosinophils to the asthmatic lung. Respir Res 2:150–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costain DJ, Guha AK, Liwski RS, Lee TDG (2001) Murine hypodense eosinophils induce tumour cell apoptosis by a granzyme B-dependent mechanism. Cancer Immunol Immunother

    Google Scholar 

  • Costello RW et al (1999) Antigen-induced hyperreactivity to histamine: Role of the vagus nerves and eosinophils. Am J Physiol 276

    Google Scholar 

  • Curtis C, Ogbogu P (2016) Hypereosinophilic syndrome. Clin Rev Allergy Immunol 50:240–251

    Article  CAS  PubMed  Google Scholar 

  • Cuschieri A et al (2002) Influence of pathological tumour variables on long-term survival in resectable gastric cancer. Br J Cancer

    Google Scholar 

  • Cyriac S, Sagar TG, Rajendranath R, Rathnam K (2008) Hypereosinophilia in hodgkin lymphoma. Indian J Hematol Blood Transfus

    Google Scholar 

  • Davido B et al (2017) Changes in eosinophil count during bacterial infection: revisiting an old marker to assess the efficacy of antimicrobial therapy. Int J Infect Dis 61:62–66

    Article  CAS  PubMed  Google Scholar 

  • Davoine F, Lacy P (2014) Eosinophil cytokines, chemokines, and growth factors: emerging roles in immunity. Front Immunol 5

    Google Scholar 

  • Decot V et al (2005) Heterogeneity of expression of IgA receptors by human, mouse, and rat eosinophils. J Immunol 174:628–635

    Article  CAS  PubMed  Google Scholar 

  • Del Pozo V et al (1992) Eosinophil as antigen-presenting cell: activation of T cell clones and T cell hybridoma by eosinophils after antigen processing. Eur J Immunol 22:1919–1925

    Article  PubMed  Google Scholar 

  • Domachowske JB, Dyer KD, Adams AG, Leto TL, Rosenberg HF (1998) Eosinophil cationic protein/RNase 3 is another RNase A-family ribonuclease with direct antiviral activity. Nucleic Acids Res 26

    Google Scholar 

  • Du Y et al (2020) Clinical features of 85 fatal cases of COVID-19 from Wuhan. A retrospective observational study. Am J Respir Crit Care Med 201:1372–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durack DT, Sumi SM, Klebanoff SJ (1979) Neurotoxicity of human eosinophils. Proc Natl Acad Sci U S A 76:1443–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dworski R, Simon HU, Hoskins A, Yousefi S (2011) Eosinophil and neutrophil extracellular DNA traps in human allergic asthmatic airways. J Allergy Clin Immunol 127:1260–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elbon CL, Jacoby DB, Fryer AD (1995) Pretreatment with an antibody to interleukin-5 prevents loss of pulmonary M2 muscarinic receptor function in antigen-challenged Guinea pigs. Am J Respir Cell Mol Biol 12:320–328

    Article  CAS  PubMed  Google Scholar 

  • Elishmereni M et al (2011) Physical interactions between mast cells and eosinophils: a novel mechanism enhancing eosinophil survival in vitro. Allergy Eur J Allergy Clin Immunol 66:376–385

    Article  CAS  Google Scholar 

  • Esposito I et al (2004) Inflammatory cells contribute to the generation of an angiogenic phenotype in pancreatic ductal adenocarcinoma. J Clin Pathol

    Google Scholar 

  • Falchi L, Verstovsek S (2015) Eosinophilia in hematologic disorders. Immunol Allergy Clin N Am 35:439–452

    Article  Google Scholar 

  • Fischer E, Capron M, Prin L, Kusnierz JP, Kazatchkine MD (1986) Human eosinophils express CR1 and CR3 complement receptors for cleavage fragments of C3. Cell Immunol 97:297–306

    Article  CAS  PubMed  Google Scholar 

  • Fryer AD et al (2006) Neuronal eotaxin and the effects of CCR3 antagonist on airway hyperreactivity and M2 receptor dysfunction. J Clin Invest 116:228–236

    Article  CAS  PubMed  Google Scholar 

  • Fulkerson PC, Rothenberg ME (2013) Targeting eosinophils in allergy, inflammation and beyond. Nat Rev Drug Discov 12:117–129

    Article  CAS  PubMed  Google Scholar 

  • Fulkerson PC, Rothenberg ME (2018) Eosinophil development, disease involvement, and therapeutic suppression. Adv Immunol 138:1–34

    Article  CAS  PubMed  Google Scholar 

  • Furue M et al (2017) Atopic dermatitis: immune deviation, barrier dysfunction, IgE autoreactivity and new therapies. Allergol Int 66:398–403

    Article  CAS  PubMed  Google Scholar 

  • Furuta GT, Katzka DA (2015) Eosinophilic esophagitis. N Engl J Med 373:1640–1648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gajewski TF, Schreiber H, Fu YX (2013) Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol

    Google Scholar 

  • Garro AP, Chiapello LS, Baronetti JL, Masih DT (2011) Rat eosinophils stimulate the expansion of Cryptococcus neoformans-specific CD4+ and CD8+ T cells with a T-helper 1 profile. Immunology 132:174–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gatault S, Legrand F, Delbeke M, Loiseau S, Capron M (2012) Involvement of eosinophils in the anti-tumor response. Cancer Immunol Immunother 61:1527–1534

    Article  PubMed  Google Scholar 

  • Gleich GJ (2000) Mechanisms of eosinophil-associated inflammation. J Allergy Clin Immunol 105:651–663

    Article  CAS  PubMed  Google Scholar 

  • Gleich GJ, Adolphson CR (1986) The eosinophilic leukocyte: structure and function. Adv Immunol 39:177–253

    Article  CAS  PubMed  Google Scholar 

  • Gleich GJ, Adolphson C (1993) Bronchial hyperreactivivity and eosinophil granule proteins. Agents Actions 43:223–230

    CAS  PubMed  Google Scholar 

  • Glimelius I et al (2011) Effect of eosinophil cationic protein (ECP) on Hodgkin lymphoma cell lines. Exp Hematol

    Google Scholar 

  • Goh YPS et al (2013) Eosinophils secrete IL-4 to facilitate liver regeneration. Proc Natl Acad Sci U S A 110:9914–9919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gounni AS et al (1994) High-affinity IgE receptor on eosinophils is involved in defence against parasites. Nature 367:183–186

    Article  CAS  PubMed  Google Scholar 

  • Gouon-Evans V, Rothenberg ME, Pollard JW (2000) Postnatal mammary gland development requires macrophages and eosinophils. Development 127:2269–2282

    Article  CAS  PubMed  Google Scholar 

  • Gouon-Evans V, Lin EY, Pollard JW (2002) Requirement of macrophages and eosinophils and their cytokines/chemokines for mammary gland development. Breast Cancer Res 4:155–164

    Article  PubMed  PubMed Central  Google Scholar 

  • Grangette C et al (1989) IgE receptor on human eosinophils (FcERII). Comparison with B cell CD23 and association with an adhesion molecule. J Immunol 143

    Google Scholar 

  • Greco A et al (2015) Churg-Strauss syndrome. Autoimmun Rev 14:341–348

    Article  CAS  PubMed  Google Scholar 

  • Guerra ES et al (2017) Central role of IL-23 and IL-17 producing eosinophils as immunomodulatory effector cells in acute pulmonary aspergillosis and allergic asthma. PLoS Pathog 13

    Google Scholar 

  • Hallam C, Pritchard DI, Trigg S, Eady RP (1982) Rat eosinophil-mediated antibody-dependent cellular cytotoxicity: investigations of the mechanisms of target cell lysis and inhibition by glucocorticoids. Clin Exp Immunol 48:641–648

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hartnell A, Kay AB, Wardlaw AJ (1992) IFN-gamma induces expression of Fc gamma RIII (CD16) on human eosinophils. J Immunol 148

    Google Scholar 

  • Hasford J et al (1998) A new prognostic score for survival of patients with chronic myeloid leukemia treated with Interferon Alfa Writing Committee for the Collaborative CML Prognostic Factors Project Group. JNCI J Natl Cancer Inst

    Google Scholar 

  • Hassani M et al (2020) Differentiation and activation of eosinophils in the human bone marrow during experimental human endotoxemia. J Leukoc Biol

    Google Scholar 

  • Hogan SP et al (2001) A pathological function for eotaxin and eosinophils in eosinophilic gastrointestinal inflammation. Nat Immunol 2:353–360

    Article  CAS  PubMed  Google Scholar 

  • Hogan SP et al (2008a) Eosinophils: biological properties and role in health and disease. Clin Exp Allergy 38:709–750

    Article  CAS  PubMed  Google Scholar 

  • Hogan SP et al (2008b) Eosinophils: biological properties and role in health and disease. Clin Exp Allergy 38:709–750

    Article  CAS  PubMed  Google Scholar 

  • Hotez PJ, Bottazzi ME, Corry DB (2020) The potential role of Th17 immune responses in coronavirus immunopathology and vaccine-induced immune enhancement. Microb Infect 22

    Google Scholar 

  • Hu G et al (2020) Tumor-associated tissue eosinophilia predicts favorable clinical outcome in solid tumors: a meta-analysis. BMC Cancer 20:1–9

    Article  Google Scholar 

  • Huang L, Appleton JA (2016) Eosinophils in helminth infection: defenders and dupes. Trends Parasitol 32:798–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L et al (2014) Eosinophil-derived IL-10 supports chronic nematode infection. J Immunol 193:4178–4187

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen EA et al (2008) Allergic pulmonary inflammation in mice is dependent on eosinophil-induced recruitment of effector T cells. J Exp Med 205:699–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jesenak M, Banovcin P, Diamant Z (2020) COVID-19, chronic inflammatory respiratory diseases and eosinophils – observations from reported clinical case series. Allergy

    Google Scholar 

  • Jin JJ, Butterfield JH, Weiler CR (2015) Hematologic malignancies identified in patients with hypereosinophilia and hypereosinophilic syndromes. J Allergy Clin Immunol Pract 3:920–925

    Article  PubMed  Google Scholar 

  • Johnson RC, George TI (2013) The differential diagnosis of eosinophilia in neoplastic hematopathology. Surg Pathol Clin 6:767–794

    Article  PubMed  Google Scholar 

  • Jordan MB, Mills DM, Kappler J, Marrack P, Cambier JC (2004) Promotion of B cell immune responses via an alum-induced myeloid cell population. Science 304(80):1808–1810

    Article  CAS  PubMed  Google Scholar 

  • Kephart GM et al (2010) Marked deposition of eosinophil-derived neurotoxin in adult patients with eosinophilic esophagitis. Am J Gastroenterol 105:298–307

    Article  CAS  PubMed  Google Scholar 

  • Khandpur R et al (2013) NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med 5:178ra40-178ra40

    Article  Google Scholar 

  • Kiziltaş Ş, Ramadan SS, Topuzoǧlu A, Küllü S (2008) Does the severity of tissue eosinophilia of colonic neoplasms reflect their malignancy potential? Turkish J Gastroenterol

    Google Scholar 

  • Klion AD, Nutman TB (2004) The role of eosinophils in host defense against helminth parasites. J Allergy Clin Immunol 113:30–37

    Article  CAS  PubMed  Google Scholar 

  • Kojima K, Sasaki T (1995) Veno-occlusive disease in Hypereosinophilic syndrome. Intern Med 34:1194–1197

    Article  CAS  PubMed  Google Scholar 

  • Kopf M et al (1996) IL-5-deficient mice have a developmental defect in CD5+ B-1 cells and lack eosinophilia but have normal antibody and cytotoxic T cell responses. Immunity 4:15–24

    Article  CAS  PubMed  Google Scholar 

  • Kurose N et al (2019) Adenosquamous carcinoma of the uterine cervix displaying tumor-associated tissue eosinophilia. SAGE Open Med Case Rep 7:2050313X1982823

    Article  Google Scholar 

  • Legrand F et al (2010) Human eosinophils exert TNF-α and granzyme A-mediated tumoricidal activity toward colon carcinoma cells. J Immunol 185:7443–7451

    Article  CAS  PubMed  Google Scholar 

  • Leigh R et al (2000) Eosinophil cationic protein relates to sputum neutrophil counts in healthy subjects. J Allergy Clin Immunol 106:593–594

    Article  CAS  PubMed  Google Scholar 

  • Liao M et al (2020) Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med 26:842–844

    Article  CAS  PubMed  Google Scholar 

  • Lorena SCM, Oliveira DT, Dorta RG, Landman G, Kowalski LP (2003) Eotaxin expression in oral squamous cell carcinomas with and without tumour associated tissue eosinophilia. Oral Dis

    Google Scholar 

  • Louie JK et al (2009) Factors associated with death or hospitalization due to pandemic 2009 influenza A(H1N1) infection in California. JAMA – J Am Med Assoc 302:1896–1902

    Article  CAS  Google Scholar 

  • Mantis NJ, Rol N, Corthésy B (2011) Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol 4:603–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsushima T et al (2003) Prevalence and clinical characteristics of myelodysplastic syndrome with bone marrow eosinophilia or basophilia. Blood

    Google Scholar 

  • Mawhorter SD, Pearlman E, Kazura JW, Henry Boom W (1993) Class II major histocompatibility complex molecule expression on murine eosinophils activated In Vivo by Brugia Malayi. Infect Immun 61

    Google Scholar 

  • McBrien CN, Menzies-Gow A (2017) The biology of eosinophils and their role in asthma. Front Med 4:93

    Article  Google Scholar 

  • McBrien CN, Menzies-Gow A (2018) Mepolizumab for the treatment of eosinophilic granulomatosis with polyangiitis. Drugs Today 54:93

    Article  CAS  Google Scholar 

  • McKinney EF, Willcocks LC, Broecker V, Smith KGC (2014) The immunopathology of ANCA-associated vasculitis. Semin Immunopathol 36:461–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melo RCN, Weller PF (2010) Piecemeal degranulation in human eosinophils: a distinct secretion mechanism underlying inflammatory responses. Histol Histopathol 25:1341–1354

    PubMed  PubMed Central  Google Scholar 

  • Melo RCN, Perez SAC, Spencer LA, Dvorak AM, Weller PF (2005a) Intragranular vesiculotubular compartments are involved in piecemeal degranulation by activated human eosinophils. Traffic 6:866–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melo RCN et al (2005b) Human eosinophils secrete preformed, granule-stored interleukin-4 through distinct vesicular compartments. Traffic 6:1047–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minshall EM et al (1997) Eosinophil-associated TGF-β1 mRNA expression and airways fibrosis in bronchial asthma. Am J Respir Cell Mol Biol 17:326–333

    Article  CAS  PubMed  Google Scholar 

  • Moore WC et al (2010) Identification of asthma phenotypes using cluster analysis in the severe asthma research program. Am J Respir Crit Care Med 181:315–323

    Article  PubMed  Google Scholar 

  • Mukherjee M, Lacy P, Ueki S (2018) Eosinophil extracellular traps and inflammatory pathologies-untangling the web! Front Immunol 9

    Google Scholar 

  • Murdoch C, Muthana M, Coffelt SB, Lewis CE (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer

    Google Scholar 

  • Noel P (2012) Eosinophilic myeloid disorders. Semin Hematol 49:120–127

    Article  CAS  PubMed  Google Scholar 

  • Odemuyiwa SO et al (2004) Cutting edge: human eosinophils regulate T cell subset selection through Indoleamine 2,3-dioxygenase. J Immunol 173:5909–5913

    Article  CAS  PubMed  Google Scholar 

  • Ohno I et al (1996) Transforming growth factor β1 (TGFβ1) gene expression by eosinophils in asthmatic airway inflammation. Am J Respir Cell Mol Biol 15:404–409

    Article  CAS  PubMed  Google Scholar 

  • Ortega HG et al (2014) Mepolizumab treatment in patients with severe eosinophilic asthma. N Engl J Med 371:1198–1207

    Article  PubMed  Google Scholar 

  • Ownby HE, Roi LD, Isenberg RR, Brennan MJ (1983) Peripheral lymphocyte and eosinophil counts as indicators of prognosis in primary breast cancer. Cancer

    Google Scholar 

  • Padigel UM et al (2007) Eosinophils act as antigen-presenting cells to induce immunity to Strongyloides stercoralis in mice. J Infect Dis 196:1844–1851

    Article  CAS  PubMed  Google Scholar 

  • Pégorier S, Wagner LA, Gleich GJ, Pretolani M (2006) Eosinophil-derived cationic proteins activate the synthesis of remodeling factors by airway epithelial cells. J Immunol 177:4861–4869

    Article  PubMed  Google Scholar 

  • Pereira MC, Oliveira DT, Kowalski LP (2011) The role of eosinophils and eosinophil cationic protein in oral cancer: a review. Arch Oral Biol 56:353–358

    Article  CAS  PubMed  Google Scholar 

  • Persson T et al (2001) Bactericidal activity of human eosinophilic granulocytes against Escherichia coli. Infect Immun 69:3591–3596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phipps S et al (2007) Eosinophils contribute to innate antiviral immunity and promote clearance of respiratory syncytial virus. Blood 110:1578–1586

    Article  CAS  PubMed  Google Scholar 

  • Piehler D et al (2011) Eosinophils contribute to IL-4 production and shape the T-helper cytokine profile and inflammatory response in pulmonary cryptococcosis. Am J Pathol 179:733–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Platt EJ, Wehrly K, Kuhmann SE, Chesebro B, Kabat D (1998) Effects of CCR5 and CD4 cell surface concentrations on infections by Macrophagetropic isolates of human immunodeficiency virus type 1. J Virol 72:2855–2864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponikau JU et al (2005) Striking deposition of toxic eosinophil major basic protein in mucus: implications for chronic rhinosinusitis. J Allergy Clin Immunol 116:362–369

    Article  CAS  PubMed  Google Scholar 

  • Prizment AE, Anderson KE, Visvanathan K, Folsom AR (2011) Inverse association of eosinophil count with colorectal cancer incidence: atherosclerosis risk in communities study. Cancer Epidemiol Biomark Prev

    Google Scholar 

  • Provost V et al (2013) CCL26/eotaxin-3 is more effective to induce the migration of eosinophils of asthmatics than CCL11/eotaxin-1 and CCL24/eotaxin-2. J Leukoc Biol 94:213–222

    Article  CAS  PubMed  Google Scholar 

  • Puxeddu I et al (2010) Osteopontin is expressed and functional in human eosinophils. Allergy Eur J Allergy Clin Immunol

    Google Scholar 

  • Rached AA, Hajj WE (2016) Eosinophilic gastroenteritis: approach to diagnosis and management. World J Gastrointest Pharmacol Ther 7:513

    Article  PubMed  PubMed Central  Google Scholar 

  • Rakesh N, Devi Y, Majumdar K, Reddy SS, Agarwal K (2015) Tumour associated tissue eosinophilia as a predictor of locoregional recurrence in oral squamous cell carcinoma. J Clin Exp Dent

    Google Scholar 

  • Ramirez GA et al (2018) Eosinophils from physiology to disease: a comprehensive review. Biomed Res Int 2018

    Google Scholar 

  • Ravin KA, Loy M (2015) The eosinophil in infection. Clin Rev Allergy Immunol 50:214–227

    Article  Google Scholar 

  • Reichman H et al (2019) Activated eosinophils exert antitumorigenic activities in colorectal cancer. Cancer Immunol Res 7:388–400

    Article  CAS  PubMed  Google Scholar 

  • Reiter A, Gotlib J (2017) Myeloid neoplasms with eosinophilia. Ann Intern Med 129:704–714

    CAS  Google Scholar 

  • Rosenberg HF, Dyer KD, Foster PS (2013) Eosinophils: changing perspectives in health and disease. Nat Rev Immunol 13:9–22

    Article  CAS  PubMed  Google Scholar 

  • Rothenberg ME, Hogan SP (2006) The Eosinophil. Annu Rev Immunol 24:147–174

    Article  CAS  PubMed  Google Scholar 

  • Roufosse F, Cogan E, Goldman M (2007) Lymphocytic variant hypereosinophilic syndromes. Immunol Allergy Clin N Am

    Google Scholar 

  • Roufosse F, Garaud S, De Leval L (2012) Lymphoproliferative disorders associated with hypereosinophilia. Semin Hematol

    Google Scholar 

  • Sablé-Fourtassou R et al (2005) Antineutrophil cytoplasmic antibodies and the Churg-Strauss syndrome. Ann Intern Med 143:632–638

    Article  PubMed  Google Scholar 

  • Sakkal S, Miller S, Apostolopoulos V, Nurgali K (2016) Eosinophils in cancer: favourable or unfavourable? Curr Med Chem

    Google Scholar 

  • Samarasinghe AE et al (2017) Eosinophils promote antiviral immunity in mice infected with influenza a virus. J Immunol 198:3214–3226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samoszuk M (1997) Eosinophils and human cancer. Histol Histopathol

    Google Scholar 

  • Saraiva AL, Carneiro F (2018) New insights into the role of tissue eosinophils in the progression of colorectal cancer: a literature review. Acta Med Portuguesa 31:329–337

    Article  CAS  Google Scholar 

  • Schrezenmeier H, Thome SD, Tewald F, Fleischer B, Raghavachar A (1993) Interleukin-5 is the predominant eosinophilopoietin produced by cloned T lymphocytes in hypereosinophilic syndrome. Exp Hematol

    Google Scholar 

  • Schroeder JW et al (2019) Anti-neutrophil cytoplasmic antibodies positivity and anti-leukotrienes in eosinophilic granulomatosis with polyangiitis: a retrospective monocentric study on 134 Italian patients. Int Arch Allergy Immunol 180:64–71

    Article  CAS  PubMed  Google Scholar 

  • Shakoory B, Fitzgerald SM, Lee SA, Chi DS, Krishnaswamy G (2004) The role of human mast cell-derived cytokines in eosinophil biology. J Interferon Cytokine Res 24:271–281

    Article  CAS  PubMed  Google Scholar 

  • Shamri R, Xenakis JJ, Spencer LA (2011) Eosinophils in innate immunity: an evolving story. Cell Tissue Res 343:57–83

    Article  PubMed  Google Scholar 

  • Shomali W, Gotlib J (2019) World Health Organization-defined eosinophilic disorders: 2019 update on diagnosis, risk stratification, and management. Am J Hematol 94:1149–1167

    Article  PubMed  Google Scholar 

  • Silveira JS et al (2019) Respiratory syncytial virus increases eosinophil extracellular traps in a murine model of asthma. Asia Pac Allergy 9

    Google Scholar 

  • Simon HU et al (1996) Expansion of cytokine-producing CD4-CD8- T cells associated with abnormal Fas expression and hypereosinophilia. J Exp Med

    Google Scholar 

  • Simon HU, Plötz SG, Dummer R, Blaser K (1999) Abnormal clones of T cells producing interleukin-5 in idiopathic eosinophilia. N Engl J Med

    Google Scholar 

  • Simon HU et al (2010) Refining the definition of hypereosinophilic syndrome. J Allergy Clin Immunol 126:45–49

    Article  PubMed  PubMed Central  Google Scholar 

  • Simon D et al (2011) Eosinophil extracellular DNA traps in skin diseases. J Allergy Clin Immunol 127:194–199

    Article  CAS  PubMed  Google Scholar 

  • Siracusa MC et al (2011) TSLP promotes interleukin-3-independent basophil haematopoiesis and type 2 inflammation. Nature 477:229–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smyth CM et al (2013) Activated eosinophils in association with enteric nerves in inflammatory bowel disease. PLoS One 8:e64216

    Article  PubMed  PubMed Central  Google Scholar 

  • Spencer LA et al (2006) Cytokine receptor-mediated trafficking of preformed IL-4 in eosinophils identifies an innate immune mechanism of cytokine secretion. Proc Natl Acad Sci U S A 103:3333–3338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer LA, Bonjour K, Melo RCN, Weller PF (2014) Eosinophil secretion of granule-derived cytokines. Front Immunol 5

    Google Scholar 

  • Stenfeldt AL, Wennerås C (2004) Danger signals derived from stressed and necrotic epithelial cells activate human eosinophils. Immunology 112:605–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Straumann A et al (2010) Anti-interleukin-5 antibody treatment (mepolizumab) in active eosinophilic oesophagitis: a randomised, placebo-controlled, double-blind trial. Gut 59:21–30

    Article  CAS  PubMed  Google Scholar 

  • Su Y-C et al (2015) Dual Proinflammatory and antiviral properties of pulmonary eosinophils in respiratory syncytial virus vaccine-enhanced disease. J Virol 89:1564–1578

    Article  PubMed  Google Scholar 

  • Subeikshanan V et al (2016) A prospective comparative clinical study of peripheral blood counts and indices in patients with primary brain tumors. J Postgrad Med

    Google Scholar 

  • Suchin KR et al (2001) Increased interleukin 5 production in eosinophilic Sézary syndrome: regulation by interferon alfa and interleukin 12. J Am Acad Dermatol

    Google Scholar 

  • Suzuki Y, Suda T (2019) Eosinophilic pneumonia: a review of the previous literature, causes, diagnosis, and management. Allergol Int 68:413–419

    Article  CAS  PubMed  Google Scholar 

  • Svensson L, Wennerås C (2005) Human eosinophils selectively recognize and become activated by bacteria belonging to different taxonomic groups. Microbes Infect 7:720–728

    Article  CAS  PubMed  Google Scholar 

  • Taylor RJ, Schols D, Wooley DP (2004) Restricted entry of R5 HIV type 1 strains into eosinophilic cells. AIDS Res Hum Retrovir 20:1244–1253

    Article  CAS  PubMed  Google Scholar 

  • Terai M et al (2011) Early induction of interleukin-5 and peripheral eosinophilia in acute pneumonia in Japanese children infected by pandemic 2009 influenza a in the Tokyo area. Microbiol Immunol 55:341–346

    Article  CAS  PubMed  Google Scholar 

  • Teruya-Feldstein J et al (1999) Differential chemokine expression in tissues involved by Hodgkin’s disease: direct correlation of eotaxin expression and tissue eosinophilia. Blood

    Google Scholar 

  • Thielen C et al (2008) TARC and IL-5 expression correlates with tissue eosinophilia in peripheral T-cell lymphomas. Leuk Res

    Google Scholar 

  • Thorne KJI, Glauert AM, Svvennsen RJ, Franks D (1979) Phaġocytosis and killinġ of Trypanosoma dionisii by human neutrophils, eosinophils and monocytes. Parasitology 79:367–379

    Article  CAS  PubMed  Google Scholar 

  • Throsby M, Herbelin A, Pléau J-M, Dardenne M (2000) CD11c + eosinophils in the murine thymus: developmental regulation and recruitment upon MHC class I-restricted thymocyte deletion. J Immunol 165:1965–1975

    Article  CAS  PubMed  Google Scholar 

  • Torrent M, Navarro S, Moussaoui M, Nogués MV, Boix E (2008) Eosinophil cationic protein high-affinity binding to bacteria-wall lipopolysaccharides and peptidoglycans. Biochemistry 47:3544–3555

    Article  CAS  PubMed  Google Scholar 

  • Vaillant L, La Ruche G, Tarantola A, Barboza P (2009) Epidemiology of fatal cases associated with pandemic H1N1 influenza 2009. Euro Surveill 14

    Google Scholar 

  • Valent P, Sperr WR, Schwartz LB, Horny HP (2004) Diagnosis and classification of mast cell proliferative disorders: delineation from immunologic diseases and non-mast cell hematopoietic neoplasms. J Allergy Clin Immunol

    Google Scholar 

  • van Kerkhove MD et al (2011) Risk factors for severe outcomes following 2009 influenza a (H1N1) infection: a global pooled analysis. PLoS Med 8

    Google Scholar 

  • Varricchi G et al (2018) Eosinophils: the unsung heroes in cancer? OncoImmunology

    Google Scholar 

  • Von Köckritz-Blickwede M, Nizet V (2009) Innate immunity turned inside-out: antimicrobial defense by phagocyte extracellular traps. J Mol Med 87:775–783

    Article  Google Scholar 

  • Vrtis, W. M. et al. Virus-specific T cells eosinophils bind rhinovirus and activate. (2020)

    Google Scholar 

  • Wang YH et al (2007) IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC-activated Th2 memory cells. J Exp Med 204:1837–1847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wardlaw AL (1999) Molecular basis for selective eosinophil trafficking in asthma: a multistep paradigm. J Allergy Clin Immunol 104:917–926

    Article  CAS  PubMed  Google Scholar 

  • Wechsler ME et al (2017) Mepolizumab or placebo for eosinophilic granulomatosis with Polyangiitis. N Engl J Med 376:1921–1932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weller PF, Goetzl EJ (1980) The human eosinophil: roles in host defense and tissue injury. Am J Pathol 100:791–820

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weller PF, Spencer LA (2017) Functions of tissue-resident eosinophils. Nat Rev Immunol 17:746–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen T, Rothenberg ME (2016) The regulatory function of eosinophils. In: Myeloid cells in health and disease, vol 4. American Society of Microbiology, pp 257–269

    Google Scholar 

  • Werfel T et al (2016) Cellular and molecular immunologic mechanisms in patients with atopic dermatitis. J Allergy Clin Immunol 138:336–349

    Article  CAS  PubMed  Google Scholar 

  • White JR et al (1997) Cloning and functional characterization of a novel human CC chemokine that binds to the CCR3 receptor and activates human eosinophils. J Leukoc Biol 62:667–675

    Article  CAS  PubMed  Google Scholar 

  • Williams KW et al (2016) Hypereosinophilia in children and adults: a retrospective comparison. J Allergy Clin Immunol. Pract 4:941–947.e1

    Article  PubMed  PubMed Central  Google Scholar 

  • Wimazal F et al (2010) Evaluation of the prognostic significance of eosinophilia and basophilia in a larger cohort of patients with myelodysplastic syndromes. Cancer

    Google Scholar 

  • Wong CK, Cheung PFY, Ip WK, Lam CWK (2007) Intracellular signaling mechanisms regulating toll-like receptor-mediated activation of eosinophils. Am J Respir Cell Mol Biol 37:85–96

    Article  CAS  PubMed  Google Scholar 

  • Wong CK, Ng SSM, Lun SWM, Cao J, Lam CWK (2009) Signalling mechanisms regulating the activation of human eosinophils by mast-cell-derived chymase: implications for mast cell-eosinophil interaction in allergic inflammation. Immunology 126:579–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong CK, Hu S, Cheung PFY, Lam CWK (2010) Thymic stromal lymphopoietin induces chemotactic and prosurvival effects in eosinophils: implications in allergic inflammation. Am J Respir Cell Mol Biol 43:305–315

    Article  CAS  PubMed  Google Scholar 

  • Wong TW, Doyle AD, Lee JJ, Jelinek DF (2014) Eosinophils regulate peripheral B cell numbers in both mice and humans. J Immunol 192:3548–3558

    Article  CAS  PubMed  Google Scholar 

  • Yancey SW et al (2017) Biomarkers for severe eosinophilic asthma. J Allergy Clin Immunol 140:1509–1518

    Article  CAS  PubMed  Google Scholar 

  • Yang D et al (2003) Eosinophil-derived neurotoxin (EDN), an antimicrobial protein with chemotactic activities for dendritic cells. Blood 102:3396–3403

    Article  CAS  PubMed  Google Scholar 

  • Yang D et al (2004) Human ribonuclease a superfamily members, eosinophil-derived neurotoxin and pancreatic ribonuclease, induce dendritic cell maturation and activation. J Immunol 173:6134–6142

    Article  CAS  PubMed  Google Scholar 

  • Yellapurkar S et al (2016) Tumour-associated tissue eosinophilia in oral squamous cell carcinoma- a boon or a bane? J Clin Diagnos Res

    Google Scholar 

  • Yousefi S et al (2008) Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med 14:949–953

    Article  CAS  PubMed  Google Scholar 

  • Yousefi S et al (2018) Oxidative damage of SP-D abolishes control of eosinophil extracellular DNA trap formation. J Leukoc Biol 104:205–214

    Article  CAS  PubMed  Google Scholar 

  • Zeck-Kapp G, Kroegel C, Riede UN, Kapp A (1995) Mechanisms of human eosinophil activation by complement protein C5a and platelet-activating factor: similar functional responses are accompanied by different morphologic alterations. Allergy 50:34–47

    Article  CAS  PubMed  Google Scholar 

  • Zhang MM, Li YQ (2017) Eosinophilic gastroenteritis: a state-of-the-art review. J Gastroenterol Hepatol (Australia) 32:64–72

    Article  Google Scholar 

  • Zhang J et al (2012) Pentraxin 3 (PTX3) expression in allergic asthmatic airways: role in airway smooth muscle migration and chemokine production. PLoS One 7

    Google Scholar 

  • Zhang Y et al (2014) Clinical impact of tumor-infiltrating inflammatory cells in primary small cell esophageal carcinoma. Int J Mol Sci

    Google Scholar 

  • Zhang JJ et al (2020) Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy Eur J Allergy Clin Immunol

    Google Scholar 

  • Ziegler SF et al (2013) The biology of thymic stromal lymphopoietin (TSLP). In: Advances in pharmacology, vol 66. Academic, pp 129–155

    Google Scholar 

Download references

Acknowledgments

Figures 1 and 3, created with BioRender.com

Figure 2 created with MindGraph.

Conflict of Interest

All authors declare they have no conflict of interest and they have not received any financial support for this work.

Ethical Approval

The authors declare that this article does not contain any studies with human participants or animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Folci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Folci, M., Ramponi, G., Arcari, I., Zumbo, A., Brunetta, E. (2021). Eosinophils as Major Player in Type 2 Inflammation: Autoimmunity and Beyond. In: Turksen, K. (eds) Cell Biology and Translational Medicine, Volume 14. Advances in Experimental Medicine and Biology(), vol 1347. Springer, Cham. https://doi.org/10.1007/5584_2021_640

Download citation

Publish with us

Policies and ethics