Skip to main content

Diabetes and Genetics: A Relationship Between Genetic Risk Alleles, Clinical Phenotypes and Therapeutic Approaches

  • Chapter
  • First Online:
Diabetes: from Research to Clinical Practice

Part of the book series: Advances in Experimental Medicine and Biology ((AIM,volume 1307))

Abstract

Unveiling human genome through successful completion of Human Genome Project and International HapMap Projects with the advent of state of art technologies has shed light on diseases associated genetic determinants. Identification of mutational landscapes such as copy number variation, single nucleotide polymorphisms or variants in different genes and loci have revealed not only genetic risk factors responsible for diseases but also region(s) playing protective roles. Diabetes is a global health concern with two major types – type 1 diabetes (T1D) and type 2 diabetes (T2D). Great progress in understanding the underlying genetic predisposition to T1D and T2D have been made by candidate gene studies, genetic linkage studies, genome wide association studies with substantial number of samples. Genetic information has importance in predicting clinical outcomes. In this review, we focus on recent advancement regarding candidate gene(s) associated with these two traits along with their clinical parameters as well as therapeutic approaches perceived. Understanding genetic architecture of these disease traits relating clinical phenotypes would certainly facilitate population stratification in diagnosing and treating T1D/T2D considering the doses and toxicity of specific drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abderrahmani A, Yengo L, Caiazzo R, Canouil M, Cauchi S, Raverdy V et al (2018) Increased hepatic PDGF-AA signaling mediates liver insulin resistance in obesity-associated type 2 diabetes. Diabetes 67:1310–1321

    Article  CAS  PubMed  Google Scholar 

  • Abu-Bakare A, Taylor R, Gill GV, Alberti KG (1986) Tropical or malnutrition-related diabetes: a real syndrome. Lancet 1:1135–1138

    Article  CAS  PubMed  Google Scholar 

  • Aly TA, Baschal EE, Jahromi MM, Fernando MS, Babu SR, Fingerlin TE et al (2008) Analysis of single nucleotide polymorphisms identifies major type 1A diabetes locus telomeric of the major histocompatibility complex. Diabetes 57(3):770–776

    Article  CAS  PubMed  Google Scholar 

  • American Diabetes Association (2009) Diagnosis and classification of diabetes mellitus. Diabetes Care 32(Suppl 1):S62–S67

    Article  PubMed Central  Google Scholar 

  • American Diabetes Association (2016) 2. Classification and diagnosis of diabetes. Diabetes Care 39(Suppl 1):S13–S22

    Article  CAS  Google Scholar 

  • Asad S, Nikamo P, Gyllenberg A, Bennet H, Hansson O, Wierup N et al (2012) HTR1A a novel type 1 diabetes susceptibility gene on chromosome 5p13-q13. PLoS One 7(5):e35439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakay M, Pandey R, Hakonarson H (2013) Genes involved in type 1 diabetes: an update. Genes (Basel) 4(3):499–521

    Article  CAS  Google Scholar 

  • Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper JD, Erlich HA, Julier C, Morahan G, Nerup J, Nierras C et al (2009) Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 41:703–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barroso I, Gurnell M, Crowley VEF, Agostini M (1999) Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 402(6764):880–883

    Article  CAS  PubMed  Google Scholar 

  • Barroso I, Luan J, Middelberg RP, Harding AH, Franks PW, Jakes RW et al (2003) Candidate gene association study in type 2 diabetes indicates a role for genes involved in beta-cell function as well as insulin action. PLoS Biol 1:E20

    Article  PubMed  PubMed Central  Google Scholar 

  • Becker ML, Visser LE, Trienekens PH, Hofman A, Van Schaik RHN, Stricker B (2008) Cytochrome P 450 2C9 ∗ 2 and ∗ 3 polymorphisms and the dose and effect of sulfonylurea in type II diabetes mellitus. Clin Pharmacol Ther 83(2):288–292

    Article  CAS  PubMed  Google Scholar 

  • Bell GI, Horita S, Karam JH (1984) A polymorphic locus near the human insulin gene is associated with insulin-dependent diabetes mellitus. Diabetes 33(2):176–183

    Article  CAS  PubMed  Google Scholar 

  • Beltrand J, Elie C, Busiah K, Fournier E, Boddaert N, Bahi-Buisson N et al (2015) Sulfonylurea therapy benefits neurological and psychomotor functions in patients with neonatal diabetes owing to potassium channel mutations. Diabetes Care 38(11):2033–2041

    Article  CAS  PubMed  Google Scholar 

  • Bergen SE, Sullivan PF, Carolina N (2018) National-scale precision medicine for psychiatric disorders in Sweden. Am J Med Genet B Neuropsychiatr Genet 177(7):630–634

    Article  PubMed  Google Scholar 

  • Bidstrup TB, Bjørnsdottir I, Sidelmann UG, Thomsen MS, Hansen KT (2003) CYP2C8 and CYP3A4 are the principal enzymes involved in the human in vitro biotransformation of the insulin secretagogue repaglinide. Br J Clin Pharmacol 56(3):305–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Billings LK, Florez JC (2010) The genetics of type 2 diabetes: what have we learned from GWAS? Ann N Y Acad Sci 1212:59–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bottini N, Musumeci L, Alonso A, Rahmouni S, Nika K, Rostamkhani M et al (2004) A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 36(4):337–338

    Article  CAS  PubMed  Google Scholar 

  • Bouatia-Naji N et al (2008) A polymorphism within the G6PC2 gene is associated with fasting plasma glucose levels. Science 320(5879):1085–1088

    Article  CAS  PubMed  Google Scholar 

  • Bouhaha R, Meyre D, Kamoun HA, Ennafaa H, Vaillant E, Sassi R et al (2008) Effect of ENPP1/PC-1-K121Q and PPARgamma-Pro12Ala polymorphisms on the genetic susceptibility to T2D in the Tunisian population. Diabetes Res Clin Pract 81(3):278–283

    Article  CAS  PubMed  Google Scholar 

  • Bozkurt O, De Boer A, Grobbee DE, Heerdink ER, Burger H, Klungel OH (2007) Pharmacogenetics of glucose-lowering drug treatment: a systematic review. Mol Diagn Ther 11(5):291–302

    Article  CAS  PubMed  Google Scholar 

  • Bradfield JP, Qu H-Q, Wang K, Zhang H, Sleiman PM, Kim CE et al (2011) A genome-wide Meta-analysis of six type 1 diabetes cohorts identifies multiple associated loci. PLoS Genet 7(9):e1002293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brorsson CA, Nielsen LB, Andersen ML, Kaur S, Bergholdt R, Hansen L et al (2016) Genetic risk score modelling for disease progression in new-onset type 1 diabetes patients: increased genetic load of islet-expressed and cytokine-regulated candidate genes predicts poorer glycemic control. J Diabetes Res 2016:9570424–9570428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown JH, Jardetzky TS, Gorga JC et al (1993) Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364:33–39

    Article  CAS  PubMed  Google Scholar 

  • Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone C et al (2019) The NHGRI-EBIGWAS catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res 47(D1):D1005–D1D12

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Yi J, Ma Y, Fu D (2011) Meta-analysis of the effect of HHEX gene polymorphism on the risk of type 2 diabetes. Mutagenesis 26(2):309–314

    Article  CAS  PubMed  Google Scholar 

  • Calmettes G, Ribalet B, John S, Korge P, Ping P, Weiss JN (2015) Hexokinases and cardioprotection. J Mol Cell Cardiol 78:107–115

    Article  CAS  PubMed  Google Scholar 

  • Cauchi S, Meyre D, Choquet H et al (2006) TCF7L2 variation predicts hyperglycemia incidence in a French general population: the data from an epidemiological study on the insulin resistance syndrome (DESIR) study. Diabetes 55:3189–3192

    Article  CAS  PubMed  Google Scholar 

  • Celis-morales CA, Lyall DM, Gray SR, Steell L, Anderson J, Iliodromiti S et al (2017 Dec) Dietary fat and total energy intake modifies the association of genetic profile risk score on obesity: evidence from 48 170 UK Biobank participants. Int J Obes 41(12):1761–1768

    Article  CAS  Google Scholar 

  • Chen WM, Erdos MR, Jackson AU, Saxena R, Sanna S, Silver KD, Timpson NJ et al (2008) Variations in the G6PC2/ABCB11 genomic region are associated with fasting glucose levels. J Clin Invest 118(7):2620–2628

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Wang G, Zhang W, Fan L, Chen Y, Zhou HH (2013a) Effect of CYP2C9 and SLCO1B1 polymorphisms on the pharmacokinetics and pharmacodynamics of nateglinide in healthy Chinese male volunteers. Eur J Clin Pharmacol 69(3):407–413

    Article  CAS  PubMed  Google Scholar 

  • Cheng S, Wu Y, Wu W, Zhang D (2013b) Association of rs734312 and rs10010131 polymorphisms in WFS1 gene with type 2 diabetes mellitus: a meta-analysis. Endocr J 60(4):441–447

    Article  CAS  PubMed  Google Scholar 

  • Chistiakov DA, Nikitin AG, Smetanina SA, Bel LN, Suplotova LA, Shestakova MV et al (2012) The rs11705701 G > a polymorphism of IGF2BP2 is associated with IGF2BP2 mRNA and protein levels in the visceral adipose tissue – a link to type 2 diabetes susceptibility. Rev Diabet Stud 9(2–3):112–122

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho YS, Chen CH, Hu C, Long J, Ong RT, Sim X, Takeuchi F, Wu Y, Go MJ, Yamauchi T et al (2011) Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat Genet 44:67–72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi J, Yee S, Ramirez A, Morrissey K, Jang G, Joski P et al (2011) A common 5′-UTR variant in MATE2-K is associated with poor response to metformin. Clin Pharmacol Ther 90(5):674–684

    Article  CAS  PubMed  Google Scholar 

  • Choi JW, Moon S, Jang EJ, Lee CH, Park J-S (2017) Association of prediabetes-associated single nucleotide polymorphisms with microalbuminuria. PLoS One 12(2):e0171367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Colli ML, Moore F, Gurzov EN, Ortis F, Eizirik DL (2010) MDA5 and PTPN2, two candidate genes for type 1 diabetes, modify pancreatic beta-cell responses to the viral by-product double-stranded RNA. Hum Mol Genet 19:135–146. 66

    Article  CAS  PubMed  Google Scholar 

  • Concannon P, Onengut-Gumuscu S, Todd JA, Smyth DJ, Pociot F, Bergholdt R et al (2008) A human type 1 diabetes susceptibility locus maps to chromosome 21q22.3. Diabetes 57:2858–2861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper JD, Smyth DJ, Smiles AM, Plagnol V, Walker NM, Allen JE et al (2008) Meta-analysis of genome-wide association study data identifies additional type 1 diabetes loci. Nat Genet 40(12):1399–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crane RK (1983) The road to ion-coupled membrane processes. In: Neuberger A, Van Deenen LLM, Semenza G (eds) Comprehensive biochemistry. Elsevier Science, New York, pp 43–69

    Google Scholar 

  • Cruz TD, Valdes AM, Santiago A, Frazer de Llado T, Raffel LJ, Zeidler A et al (2004) DPB1 alleles are associated with type 1 diabetes susceptibility in multiple ethnic groups. Diabetes 53:2158–2163

    Article  CAS  PubMed  Google Scholar 

  • Cyranoski D (2016) The sequencing superpower. Nature 534:462–463

    Article  PubMed  Google Scholar 

  • Dai X, Huang Q, Yin J, Guo Y, Gong Z, Lei MX et al (2012) KCNQ1 gene polymorphisms are associated with the therapeutic efficacy of repaglinide in Chinese type 2 diabetic patients. Clin Exp Pharmacol Physiol 39(5):462–468

    Article  CAS  PubMed  Google Scholar 

  • Daimon M, Ji G, Saitoh T, Oizumi T, Tominaga M, Nakamura T et al (2003) Large-scale search of SNPs for type 2 DM susceptibility genes in a Japanese population. Biochem Biophys Res Commun 302:751–758

    Article  CAS  PubMed  Google Scholar 

  • Das SK, Elbein SC (2006) The genetic basis of type 2 diabetes. Cell 2:100–131

    Google Scholar 

  • De Franco E, Flanagan SE, Houghton JAL, Allen HL, Mackay DJG, Temple IK et al (2015) The effect of early, comprehensive genomic testing on clinical care in neonatal diabetes: an international cohort study. Lancet 386(9997):957–963

    Article  PubMed  PubMed Central  Google Scholar 

  • de Jong PE, Hillege HL, Pinto-Sietsma SJ, de Zeeuw D (2003) Screening for microalbuminuria in the general population: a tool to detect subjects at risk for progressive renal failure in an early phase? Nephrol Dial Transplant 18(1):10–13. PMID: 12480951

    Article  PubMed  Google Scholar 

  • Defronzo RA, Banting Lecture (2009) From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 58:773–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douroudis K, Kisand K, Nemvalts V, Rajasalu T, Uibo R (2010) Allelic variants in the PHTF1-PTPN22, C12orf30 and CD226 regions as candidate susceptibility factors for the type 1 diabetes in the Estonian population. BMC Med Genet 11:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Downes K, Pekalski M, Angus KL, Hardy M, Nutland S, Smyth DJ, Walker NM, Wallace C, Todd JA (2010) Reduced expression of IFIH1 is protective for type 1 diabetes. PLoS One 5:e12646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU et al (2010) New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet 42(2):105–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egefjord L, Jensen JL, Bang-Berthelsen CH, Petersen AB, Smidt K, Schmitz O et al (2009) Zinc transporter gene expression is regulated by pro-inflammatory cytokines: a potential role for zinc transporters in beta-cell apoptosis? BMC Endocr Disord 9:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eizirik DL, Sammeth M, Bouckenooghe T, Bottu G, Sisino G, Igoillo-Esteve M et al (2012) The human pancreatic islet transcriptome: expression of candidate genes for type 1 diabetes and the impact of pro-inflammatory cytokines. PLoS Genet 8(3):e1002552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elboudwarej E, Cole M, Briggs FB, Fouts A, Fain PR, Quach H et al (2016) Hypomethylation within gene promoter regions and type 1 diabetes in discordant monozygotic twins. J Autoimmun 68:23–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-ella SSA, Khattab ESAEH, El-mekkawy MS, El-shamy AA (2018) CD226 gene polymorphism (rs763361 C > T ) is associated with susceptibility to type 1 diabetes mellitus among Egyptian children. Arch Pédiatr 25(6):378–382. 763

    Article  PubMed  Google Scholar 

  • El-Mir M-Y, Nogueira V, Fontaine E, Averet N, Rigoulet M, Leverve X (2000) Dimethyl biguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem 275(1):223–228

    Article  CAS  PubMed  Google Scholar 

  • Emanuelli B, Eberle D, Suzuki R, Kahn R (2008) Overexpression of the dual specificity phosphatase MKP-4/DUSP-9 protects against stress-indused insulin resistance. Proc Natl Acad Sci U S A 105:3545–3550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engwa GA, Nwalo FN, Chikezie CC, Onyia CO, Ojo OO, Mbacham WF et al (2018) Possible association between ABCC8 C49620T polymorphism and type 2 diabetes in a Nigerian population. BMC Med Genet 19:78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Enigk U, Breitfeld J, Schleinitz D et al (2011) Role of genetic variation in the human sodium-glucose cotransporter 2 gene (SGLT2) in glucose homeostasis. Pharmacogenomics 12:1119–1126. 64

    Article  CAS  PubMed  Google Scholar 

  • Erlich H, Valdes AM, Noble J, Carlson JA, Varney M, Concannon P et al (2008) HLA DR-DQ haplotypes and genotypes and type 1 diabetes risk: analysis of the type 1 diabetes genetics consortium families. Diabetes 57(4):1084–1092

    Article  CAS  PubMed  Google Scholar 

  • Espino-paisan L, De Calle H, Fernández-arquero M, Figueredo MÁ, De Concha EG, Urcelay E et al (2011) A polymorphism in PTPN2 gene is associated with an earlier onset of type 1 diabetes. Immunogenetics 63(4):255–258

    Article  CAS  PubMed  Google Scholar 

  • Fisher E, Nitz I, Lindner I, Rubin D, Boeing H, Mohlig M et al (2007) Candidate gene association study of type 2 diabetes in a nested case-control study of the EPIC-Potsdam cohort - role of fat assimilation. Mol Nutr Food Res 51:185–191

    Article  CAS  PubMed  Google Scholar 

  • Fitipaldi H, Mccarthy MI, Florez JC, Franks PW (2018) A global overview of precision medicine in type 2 diabetes. Diabetes 67(10):1911–1922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flanagan SE, Clauin S, Bellanne-Chantelot C, de Lonay P, Harries LW, Gloyn AL et al (2009) Update of mutations in the genes encoding the pancreatic beta-cell K ATP channel subunits Kir6.2 diabetes mellitus and Hyperinsulinism human mutation. Hum Mutat 30(2):170–585 80

    Article  CAS  PubMed  Google Scholar 

  • Flannick J, Thorleifsson G, Beer NL, Jacobs SB, Grarup N, Burtt NP et al (2014) Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat Genet 46(4):357–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flannick J, Mercader JM, Fuchsberger C, Udler MS, Mahajan A, Wessel J et al (2019) Exome sequencing of 20,791 cases of type 2 diabetes and 24,440 controls. Nature 570(7759):71–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Florez JC, Jablonski KA, Bayley N et al (2006) TCF7L2 polymorphisms and progression to diabetes in the diabetes prevention program. N Engl J Med 355:241–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Floyel T, Brorsson C, Nielsen LB, Miani M, Bang-Berthelsen CH, Friedrichsen M et al (2014) CTSH regulates beta-cell function and disease progression in newly diagnosed type 1 diabetes patients. Proc Natl Acad Sci U S A 111:10305–10310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Forouhi NG, Luan J, Hennings S, Wareham NJ (2007) Incidence of type 2 diabetes in England and its association with baseline impaired fasting glucose: the Ely study 1990–2000. Diabet Med 24(2):200–207

    Article  CAS  PubMed  Google Scholar 

  • Fu D, Cong X, Ma Y, Cai H, Cai M, Li D et al (2013) Genetic polymorphism of Glucokinase on the risk of type 2 diabetes and impaired glucose regulation: evidence based on 298,468 subjects. PLoS One 8(2):e55727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuhlendorff J, Rorsman P, Kofod H, Brand CL, Rolin B, Mackay P et al (1998) Stimulation of insulin release by Repaglinide and Glibenclamide involves both common and distinct processes. Diabetes 47(3):345–351

    Article  CAS  PubMed  Google Scholar 

  • Fukaya M, Brorsson CA, Meyerovich K, Catrysse L, Delaroche D, Vanzela EC, Ortis F, Beyaert R, Nielsen LB, Andersen ML et al (2016) A20 inhibits beta-cell apoptosis by multiple mechanisms and predicts residual beta-cell function in type 1 diabetes. Mol Endocrinol 30:48–61

    Article  CAS  PubMed  Google Scholar 

  • Fukuda H, Imamura M, Tanaka Y, Iwata M, Hirose H, Kaku K et al (2012) A single nucleotide polymorphism within DUSP9 is associated with susceptibility to type 2 diabetes in a Japanese population. PLoS One 7(9):e46263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fung E, Smyth DJ, Howson JM, Cooper JD, Walker NM, Stevens H et al (2009) Analysis of 17 autoimmune disease-associated variants in type 1 diabetes identifies 6q23 / TNFAIP3 as a susceptibility locus. Genes Immun 10(2):188–191

    Article  CAS  PubMed  Google Scholar 

  • Gabriel SB, Schaffner SF, Nguyen H et al (2002) The structure of haplotype blocks in the human genome. Science 296(5576):2225–2229

    Article  CAS  PubMed  Google Scholar 

  • George AM, Jacob AG, Fogelfeld L (2015) Lean diabetes mellitus: an emerging entity in the era of obesity. World J Diabetes 6(4):613–620

    Article  PubMed  PubMed Central  Google Scholar 

  • Giza S, Goulas A, Gbandi E, Effraimidou S, Papadopoulou-Alataki E, Eboriadou M et al (2013) The role of PTPN22 C1858T gene polymorphism in diabetes mellitus type 1: first evaluation in Greek children and adolescents. Biomed Res Int 2013:721604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gloyn AL, Weedon MN, Owen KR, Turner MJ, Knight BA, Hitman G et al (2003) Large-scale association studies of variants in genes encoding the pancreatic β-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes 52(2):568–572

    Article  CAS  PubMed  Google Scholar 

  • Gloyn AL, Pearson ER, Antcliff JF, Proks P, Bruining GJ, Slingerland AS et al (2004) Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 350(18):1838–1849

    Article  CAS  PubMed  Google Scholar 

  • Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J et al (2006) Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 38(3):320–323

    Article  CAS  PubMed  Google Scholar 

  • Grant SFA, Qu H, Bradfield JP, Marchand L, Kim CE, Glessner JT et al (2009) Follow-up analysis of genome-wide association data identifies novel loci for type 1 diabetes. Diabetes 58(1):290–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greeley SA, John PM, Winn AN, Ornelas J, Lipton RB, Philipson LH et al (2011) The cost-effectiveness of personalized genetic medicine. Diabetes Care 34(3):622–627

    Article  PubMed  PubMed Central  Google Scholar 

  • GTEx Portal. Available online: https://gtexportal.org. Accessed on 1st Nov 2016

  • Hakonarson H, Grant SF, Bradfield JP, Marchand L, Kim CE, Glessner J et al (2007) A genome-wide association study identifies kiaa0350 as a type 1 diabetes gene. Nature 448:591–594

    Article  CAS  PubMed  Google Scholar 

  • Hakonarson H, Qu HQ, Bradfield JP, Marchand L, Kim CE, Glessner JT et al (2008) A novel susceptibility locus for type 1 diabetes on chr12q13 identified by a genome-wide association study. Diabetes 57:1143–1146

    Article  CAS  PubMed  Google Scholar 

  • Hamet P, Haloui M, Sylvestre M, Tahir M, Simon PHG, Sonja B et al (2017) PROX1gene CC genotype as a major determinant of early onset of type 2 diabetes in slavic study participants from action in diabetes and vascular disease: preterax and diamicron MR controlled evaluation study. J Hypertens 35(Suppl 1):S24–S32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hindy G, Mollet IG, Rukh G, Ericson U, Orho-melander M (2016) Several type 2 diabetes-associated variants in genes annotated to WNT signaling interact with dietary fiber in relation to incidence of type 2 diabetes. Genes Nutr 11:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hodson DJ, Mitchell RK, Marselli L, Pullen TJ, Brias SG, Semplici F et al (2014) ADCY5 couples glucose to insulin secretion in human islets. Diabetes 63(9):3009–3021

    Article  PubMed  PubMed Central  Google Scholar 

  • Holstein JD, Kovacs P, Patzer O, Stumvoll M, Holstein A (2012) The Ser1369Ala variant of ABCC8 and the risk for severe sulfonylurea-induced hypoglycemia in German patients with type 2 diabetes. Pharmacogenomics 13(1):5–7

    Article  CAS  PubMed  Google Scholar 

  • Holt GI (2004) Diagnosis, epidemiology and pathogenesis of diabetes mellitus an update for psychiatrists. Br J Psychiatry 184:s55–s63

    Article  Google Scholar 

  • Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by transcriptional factor foxp3. Science 299:1057–1061

    Article  CAS  PubMed  Google Scholar 

  • Huang Q, Yin J, Dai X, Wu J, Chen X, Deng CS et al (2010) Association analysis of SLC30A8 rs13266634 and rs16889462 polymorphisms with type 2 diabetes mellitus and repaglinide response in Chinese patients. Eur J Clin Pharmacol 66(12):1207–1215

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Ellinghaus D, Franke A, Howie B, Li Y (2012) 1000 Genomes-based imputation identifies novel and refined associations for the Wellcome Trust Case Control Consortium phase Data. Eur J Hum Genet 20(7):801–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huda N, Hosen I, Yasmin T, Sarkar PK, Hasan M, Nabi AHMN (2018) Genetic variation of the transcription factor GATA3, not STAT4, is associated with the risk of type 2 diabetes in the Bangladeshi population. PLoS One 13(7):e0198507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huh KB, Lee HC, Kim HM, Cho YW, Kim YL, Lee KW et al (1992) Immunogenetic and nutritional profile in insulin-using youth-onset diabetics in Korea. Diabetes Res Clin Pract 16:63–70

    Article  CAS  PubMed  Google Scholar 

  • Hunt KJ, Lehman DM, Arya R, Fowler S, Leach RJ, Goring HH et al (2005) Genome-wide linkage analyses of type 2 diabetes in Mexican Americans: the San Antonio Family Diabetes/Gallbladder Study. Diabetes 54:2655–2662

    Article  CAS  PubMed  Google Scholar 

  • Ingelsson E, Langenberg C, Hivert MF, Prokopenko I, Lyssenko V, Dupuis J et al (2010) Detailed physiologic characterization reveals diverse mechanisms for novel genetic loci regulating glucose and insulin metabolism in humans. Diabetes 59(5):1266–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • International Diabetes Federation (IDF) [Internet] (2012) Country estimates table 2011. IDF diabetes atlas, 6th edn. International Diabetes Federation, Brussels

    Google Scholar 

  • International HapMap Consortium, Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL et al (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851–861

    Article  CAS  Google Scholar 

  • Iwase K, Shimada A, Kawai T, Okubo Y, Kanazawa Y, Irie J et al (2009) FOXP3/Scurfin gene polymorphism is associated with adult onset type 1 diabetes in Japanese, especially in women and slowly progressive-type patients. Autoimmunity 42(2):159–167

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen L, Schatz D (2016) Current and future efforts toward the prevention of type 1 diabetes. Pediatr Diabetes 17(Suppl. 22):78–86

    Article  PubMed  Google Scholar 

  • Jerram S, Leslie RD (2017) The genetic architecture of type 1 diabetes. Genes 8(8):pii: E209

    Article  CAS  Google Scholar 

  • Juan-Mateu J, Alvelos MI, Turatsinze JV et al (2018) SRp55 regulates a splicing network that controls human pancreatic beta-cell function and survival. Diabetes 67:423–436

    Article  CAS  PubMed  Google Scholar 

  • Kahn SE, Haffner SM, Heise MA, Herman WH, Holman RR, Jones NP et al (2006) Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 659(355):2427–2443

    Article  Google Scholar 

  • Kaiser AB, Zhang N, der Pluijm WVAN (2018) Global prevalence of type 2 diabetes over the next ten years (2018–2028). Diabetes 67(Supplement 1):202

    Article  Google Scholar 

  • Kaku K (2010) Pathophysiology of type 2 diabetes and its treatment policy. JMAJ 53(1):41–46

    Google Scholar 

  • Kalliokoski A, Neuvonen M, Neuvonen PJ, Niemi M (2008) The effect of SLCO1B1 polymorphism on repaglinide pharmacokinetics persists over a wide dose range. Br J Clin Pharmacol 66(6):818–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamura Y, Iwata M, Maeda S, Shinmura S, Koshimizu Y, Honoki H et al (2016) FTO gene polymorphism is associated with type 2 diabetes through its effect on increasing the maximum BMI in Japanese men. PLoS One 11(11):e0165523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kang ES, Park SY, Kim HJ, Kim CS (2005) Effects of Pro12Ala polymorphism of peroxisome proliferator– activated receptor gamma2 gene on rosiglitazone response in type 2 diabetes. Clin Pharmacol Ther 78(2):202–208

    Article  CAS  PubMed  Google Scholar 

  • Kang HS, Kim YS, ZeRuth G, Beak JY, Gerrish K, Kilic G, Sosa-Pineda B, Jensen J, Pierreux CE, Lemaigre FP et al (2009) Transcription factor glis3, a novel critical player in the regulation of pancreatic beta-cell development and insulin gene expression. Mol Cell Biol 29:6366–6379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karalliedde J, Buckingham RE (2007) Thiazolidinediones and their fluid-related adverse effects facts, fiction and putative management strategies. Drug Saf 30(9):741–753

    Article  CAS  PubMed  Google Scholar 

  • Kathy H, Rick L, Bray P-L, Josh D (2015) The precision medicine initiative cohort program building a research foundation for 21st century Medicine. Precision Medicine Initiative (PMI) Working Group Report to the Advisory Committee to the Director, NIH

    Google Scholar 

  • Kavvoura FK, Ioannidis JP (2005) Ala45Thr polymorphism of the NEUROD1 gene and diabetes susceptibility: a meta-analysis. Hum Genet 116(3):192–199

    Article  CAS  PubMed  Google Scholar 

  • Kilpelainen TO, Lakka TA, Laaksonen DE, Lindstrom J, Eriksson JG, Valle TT et al (2008) SNPs in PPARG associate with type 2 diabetes and interact with physical activity. Med Sci Sports Exerc 40(1):25–33

    Article  CAS  PubMed  Google Scholar 

  • Kirchheiner J, Roots I, Goldammer M, Rosenkranz B, Brockmöller J (2005) Effect of genetic polymorphisms in cytochrome P450 (CYP) 2C9 and CYP2C8 on the pharmacokinetics of Oral antidiabetic drugs clinical relevance. Clin Pharmacokinet 44(12):1209–1225

    Article  CAS  PubMed  Google Scholar 

  • Kirchheiner J, Thomas S, Bauer S, Jetter A, Stehle S, Tsahuridu M (2006) Pharmacokinetics and pharmacodynamics of rosiglitazone in relation to CYP2C8 genotype. Clin Pharmacol Ther 80(6):657–667

    Article  CAS  PubMed  Google Scholar 

  • Kirchner H, Sinha I, Gao H, Ruby MA, Schönke M, Lindvall JM, Barrès R et al (2016) Altered DNA methylation of glycolytic and lipogenic genes in liver from obese and type 2 diabetic patients. Mol Metab 5:171–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirpichnikov D, Mcfarlane SI, Sowers JR (2002) Metformin: an update. Ann Intern Med 137(1):25–33

    Article  CAS  PubMed  Google Scholar 

  • Klein TE, Chang JT, Cho MK, Easton KL, Fergerson R, Hewett M et al (2001) Integrating genotype and phenotype information: an overview of the PharmGKB project. Pharmacogenomics J 1(3):167–170

    Article  CAS  PubMed  Google Scholar 

  • Klonoff DC (2008) Personalized medicine for diabetes. J Diabetes Sci Technol 2(3):335–341

    Article  PubMed  PubMed Central  Google Scholar 

  • Koivula RW, Heggie A, Barnett A, Cederberg H, Hansen TH, Siloaho M et al (2014) Discovery of biomarkers for glycaemic deterioration before and after the onset of type 2 diabetes: rationale and design of the epidemiological studies within the IMI DIRECT consortium. Diabetologia 57(6):1132–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koo BK, Cho YM, Park BL, Cheong HS, Shin HD, Jang HC et al (2007) Polymorphisms of KCNJ11 (Kir6.2 gene) are associated with type 2 diabetes and hypertension in the Korean population. Diabet Med 24(2):178–186

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  PubMed  Google Scholar 

  • Langberg KA, Sharma NK, Hanis CL, Elbein SC, Hasstedt SJ, Das SK et al (2012) Single nucleotide polymorphisms in JAZF1 and BCL11A gene are nominally associated with type 2 diabetes in African American Families from the GENNID Study. J Hum Genet 57(1):57–61

    Article  CAS  PubMed  Google Scholar 

  • Lara-riegos JC, Ortiz-lópez MG, Peña-espinoza BI, Montúfar-robles I, Peña-rico MA (2015) Diabetes susceptibility in Mayas: evidence for the involvement of polymorphisms in HHEX, HNF4α, KCNJ11, PPARγ, CDKN2A/2B, SLC30A8, CDC123/CAMK1D, TCF7L2, ABCA1 and SLC16A11 genes. Gene 565(1):68–75

    Article  CAS  PubMed  Google Scholar 

  • Laukkanen O, Lindstro J, Eriksson J, Valle TT, Ha H, Ilanne-parikka P et al (2005) Polymorphisms in the SLC2A2 (GLUT2) gene are associated with the conversion from impaired glucose tolerance to type 2 diabetes the Finnish Diabetes Prevention Study. Diabetes 54(7):2256–2260

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Park H, Yang S, Kim D, Park Y (2008) STAT4 polymorphism is associated with early- onset type 1 diabetes, but not with late-onset type 1 diabetes. Ann N Y Acad Sci 1150:93–98

    Article  CAS  PubMed  Google Scholar 

  • Leete P, Willcox A, Krogvold L, Dahl-Jørgensen K, Foulis AK, Richardson SJ et al (2016) Differential insulitic profiles determine the extent of β-cell destruction and the age at onset of type 1 diabetes. Diabetes 65:1362–1369

    Article  CAS  PubMed  Google Scholar 

  • Letourneau LR, Carmody D, Wroblewski K, Denson AM, Sanyoura M, Naylor RN et al (2017) Diabetes presentation in infancy: high risk of diabetic ketoacidosis. Diabetes Care 40(10):e147–e148

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y (2013) The KCNJ11 E23K gene polymorphism and type 2 diabetes mellitus in the Chinese Han population: a meta-analysis. Mol Biol Rep 40(1):141–146

    Article  PubMed  CAS  Google Scholar 

  • Lie BA, Thorsby E (2005) Several genes in the extended human MHC contribute to predisposition to autoimmune diseases. Curr Opin Immunol 17:526–531

    Article  CAS  PubMed  Google Scholar 

  • Lie BA, Sollid LM, Ascher H, Ek J, Akselsen HE, Ronningen KS et al (1999) A gene telomeric of the HLA class I region is involved in predisposition to both type 1 diabetes and coeliac disease. Tissue Antigens 54:162–168

    Article  CAS  PubMed  Google Scholar 

  • Ling C, Rönn T (2019) Epigenetics in human obesity and type 2 diabetes. Cell Metab 29(5):1028–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Wang H, Jin Y, Podolsky R, Reddy MV, Pedersen J et al (2009) IFIH1 polymorphisms are significantly associated with type 1 diabetes and IFIH1 gene expression in peripheral blood mononuclear cells. Hum Mol Genet 18(2):358–365

    Article  CAS  PubMed  Google Scholar 

  • Liu HW, Xu RY, Sun RP, Wang Q, Liu JL, Ge W et al (2015) Association of PTPN22 gene polymorphism with type 1 diabetes mellitus in Chinese children and adolescents. Genet Mol Res 14(1):63–68

    Article  CAS  PubMed  Google Scholar 

  • Lyssenko V, Nagorny CLF, Erdos MR, Wierup N, Jonsson A, Spégel P et al (2009a) A common variant in the melatonin receptor gene (MTNR1B) is associated with increased risk of future type 2 diabetes and impaired early insulin secretion. Nat Genet 41(1):82–88

    Article  CAS  PubMed  Google Scholar 

  • Lyssenko V, Nagorny CL, Erdos MR, Wierup N, Jonsson A, Spégel P et al (2009b) Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat Genet 41(1):82–88

    Article  CAS  PubMed  Google Scholar 

  • Magzoub MM, Stephens HA, Sachs JA, Biro PA, Cutbush S, Wu Z et al (1992) HLA-DP polymorphism in Sudanese controls and patients with insulin-dependent diabetes mellitus. Tissue Antigens 40(2):64–68

    Article  CAS  PubMed  Google Scholar 

  • Malandrino N, Smith RJ (2011) Personalized medicine in diabetes. Clin Chem 57(2):231–240

    Article  PubMed  Google Scholar 

  • Malhotra A, Igo RP Jr, Thameem F, Kao WH, Abboud HE, Adler SG et al (2009) Genome-wide linkage scans for type 2 diabetes mellitus in four ethnically diverse populations-significant evidence for linkage on chromosome 4q in African Americans: the Family Investigation of Nephropathy and Diabetes Research Group. Diabetes Metab Res Rev 25:740–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mark M, Andrew TH (2008) Novel insights arising from the definition of genes for monogenic and type 2 diabetes. Diabetes 57:2889–2898

    Article  CAS  Google Scholar 

  • Mathur AN et al (2007) Stat3 and Stat4 direct development of IL-17-secreting Th cells. J Immunol 178:4901–4907

    Article  CAS  PubMed  Google Scholar 

  • Mattana TC, Santos AS, Fukui RT, Mainardi-novo DTO, Costa VS, Santos RF et al (2014) CD226 rs763361 is associated with the susceptibility to type 1 diabetes and greater frequency of GAD65 autoantibody in a Brazilian cohort. Mediat Inflamm 2014:694948

    Article  CAS  Google Scholar 

  • Mayans S, Lackovic K, Lindgren P, Ruikka K, Holmberg D (2007) TCF7L2 polymorphisms are associated with type 2 diabetes in northern Sweden. Eur J Hum Genet 15(3):342–346

    Article  CAS  PubMed  Google Scholar 

  • Mctaggart JS, Clark RH, Ashcroft FM (2010) The role of the KATP channel in glucose homeostasis in health and disease: more than meets the islet. J Physiol 588(Pt 17):3201–3209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao F, Chen Z, Zhang L, Liu Z, Wu X, Yuan YC et al (2012) Profiles of epigenetic histone post-translational modifications at type 1 diabetes susceptible genes. J Biol Chem 287:16335–16345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moltke I, Grarup N, Jørgensen ME, Bjerregaard P, Treebak JT, Fumagalli M et al (2014) A common Greenlandic TBC1D4 variant confers muscle insulin resistance and type 2 diabetes. Nature 512(7513):190–193

    Article  CAS  PubMed  Google Scholar 

  • Moore F, Colli ML, Cnop M, Esteve MI, Cardozo AK, Cunha DA, Bugliani M, Marchetti P, Eizirik DL (2009) PTPN2, a candidate gene for type 1 diabetes, modulates interferon-gamma-induced pancreatic beta-cell apoptosis. Diabetes 58:1283–1291. [CrossRef] [PubMed]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morran MP, Andrew Vonberg A, Khadra A, Pietropaolo M (2015) Immunogenetics of type 1 diabetes mellitus. Mol Asp Med 42:42–60

    Article  CAS  Google Scholar 

  • Naylor RN, John PM, Winn AN, Carmody D, Greeley SAW, Philipson LH et al (2014) Cost effectiveness of MODY genetic testing: translating genomic advances into practical health applications. Diabetes Care 37(1):202–209

    Article  PubMed  Google Scholar 

  • Nejentsev S, Howson JM, Walker NM et al (2007) Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature 450:887–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nejentsev S, Walker N, Riches D, Egholm M, Todd JA (2009) Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 324:387–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen EM, Hansen L, Carstensen B, Echwald SM, Drivsholm T et al (2003) The E23K variant of Kir6.2 associates with impaired post-OGTT serum insulin response and increased risk of type 2 diabetes. Diabetes 52:573–577. 6

    Article  CAS  PubMed  Google Scholar 

  • Nikitin AG, Lavrikova EY, Seregin YA, Zilberman LI, Tzitlidze NM, Kuraeva TL et al (2010) Association of the Polymorphisms of the ERBB3 and SH2B3 genes with type 1 diabetes. Mol Biol (Mosk) 44(2):257–262

    Article  CAS  Google Scholar 

  • Nikolac N, Simundic A, Katalinic D, Topic E, Cipak A (2009) Metabolic control in type 2 diabetes is associated with sulfonylurea Receptor-1 (SUR-1) but not with KCNJ11 polymorphisms. Arch Med Res 40(5):387–392

    Article  CAS  PubMed  Google Scholar 

  • Nilsson E, Jansson PA, Perfilyev A, Volkov P, Pedersen M, Svensson MK et al (2014) Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes 63:2962–2976

    Article  PubMed  Google Scholar 

  • Nilsson E, Matte A, Perfilyev A, de Mello VD, Kakela P, Pihlajamaki J, Ling C (2015) Epigenetic alterations in human liver from subjects with type 2 diabetes in parallel with reduced folate levels. J Clin Endocrinol Metab 100:E1491–E1501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nitert MD, Dayeh T, Volkov P, Elgzyri T, Hall E, Nilsson E, Yang BT, Lang S, Parikh H, Wessman Y et al (2012) Impact of an exercise intervention on DNA methylation in skeletal muscle from first-degree relatives of patients with type 2 diabetes. Diabetes 61:3322–3332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noble JA, Valdes AM (2011) Genetics of the HLA region in the prediction of type 1 diabetes. Curr Diab Rep 11(6):533–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noble JA, Valdes AM, Cook M, Klitz W, Thomson G, Erlich HA (1996) The role of HLA class II genes in insulin-dependent diabetes mellitus: molecular analysis of 180 Caucasian, multiplex families. Am J Hum Genet 59(5):1134–1148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noble JA, Valdes AM, Bugawan TL, Apple RJ, Thomson G, Erlich HA (2002) The HLA class I A locus affects susceptibility to type 1 diabetes. Hum Immunol 63:657–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noble JA, Valdes AM, Varney DM, Carlson AJ, Moonsamy P, Fear AL et al (2010) HLA class I and genetic susceptibility to type 1 diabetes: results from the type 1 diabetes genetics consortium. Diabetes 59(11):2972–2979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nogueira TC, Paula FM, Villate O et al (2013) GLIS3, a susceptibility gene for type 1 and type 2 diabetes, modulates pancreatic beta cell apoptosis via regulation of a splice variant of the BH3-only protein Bim. PLoS Genet 9:e1003532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nyaga DM, Vickers MH, Jefferies C, Perry JK, O'Sullivan JM (2018) The genetic architecture of type 1 diabetes mellitus. Mol Cell Endocrinol 477:70–80

    Article  CAS  PubMed  Google Scholar 

  • O’Garra A, Vieira P (2004) Regulatory T cells and mechanisms of immune system control. Nat Med 10:801–805

    Article  PubMed  CAS  Google Scholar 

  • Onkamo P, Vaananen S, Karvonen M, Tuomilehto J (1999) Worldwide increase in incidence of type І diabetes—the analysis of the data on published incidence trends. Diabetologia 42:1395–1403

    Article  CAS  PubMed  Google Scholar 

  • Owen MR, Doran E, Halestrap AP (2000) Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 348(Pt 653 3):607–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pe’er I, de Bakker PI, Maller J et al (2006) Evaluating and improving power in whole-genome association studies using fixed marker sets. Nat Genet 38(6):663–667

    Article  PubMed  CAS  Google Scholar 

  • Pearson ER, Liddell WG, Shepherd M, Hattersley AT (2000) Sensitivity to sulphonylureas in patients with hepatocyte nuclear factor-1 a gene mutations: evidence for pharmacogenetics in diabetes. Diabet Med 17(7):543–545

    Article  CAS  PubMed  Google Scholar 

  • Pearson ER, Starkey BJ, Powell RJ, Gribble FM, Clark PM, Hattersley AT (2003) Mechanisms of disease genetic cause of hyperglycaemia and response to treatment in diabetes. Lancet 362(9392):1275–1281

    Article  CAS  PubMed  Google Scholar 

  • Pearson ER, Flechtner I, Njølstad PR, Malecki MT, Flanagan SE, Larkin B et al (2006) Switching from insulin to Oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. N Engl J Med 355(5):467–477

    Article  CAS  PubMed  Google Scholar 

  • Plourde G, Matte M-E (2017) Personalised medicine for the treatment of T2DM. Endocrinol Diab Metab J S1(107):1–7

    Google Scholar 

  • Poulsen SB, Fenton RA, Rieg T (2015) Sodium-glucose cotransport. Curr Opin Nephrol Hypertens 24:463–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad MV, Reddy L, Wang H, Liu S, Bode B, Reed JC et al (2011) Association between type 1 diabetes and GWAS SNPs in the southeast US Caucasian population. Genes Immun 12(3):208–212

    Article  CAS  Google Scholar 

  • Project Team SG (2015) The Saudi human genome program: an oasis in the desert of Arab medicine is providing clues to genetic disease. IEEE Pulse 6(6):22–26

    Article  PubMed  Google Scholar 

  • Prokopenko I, Langenberg C, Florez JC, Saxena R, Soranzo N, Thorleifsson G et al (2009) Variants in MTNR1B influence fasting glucose levels. Nat Genet 41(1):77–81

    Article  CAS  PubMed  Google Scholar 

  • Prudente S, Morini E, Lucchesi D, Lamacchia O, Bailetti D, Mercuri L et al (2014) IRS1 G972R missense polymorphism is associated with failure to oral antidiabetes drugs in white patients with type 2 diabetes from Italy. Diabetes 63(9):3135–3140

    Article  PubMed  Google Scholar 

  • Qi Q, Hu FB (2012) Genetics of type 2 diabetes in European populations. J Diabetes 4(3):203–212. 250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian Y, Dong M, Lu F, Li H, Jin G, Hu Z (2015) Molecular and cellular endocrinology joint effect of CENTD2 and KCNQ1 polymorphisms on the risk of type 2 diabetes mellitus among Chinese Han population. Mol Cell Endocrinol 407:46–51

    Article  CAS  PubMed  Google Scholar 

  • Qu H-Q, Bradfield JP, Grant SF, Hakonarson H, Polychronakos C (2009) Remapping the type diabetes association of the CTLA4 locus. Genes Immun 10:S27–S32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ragia G, Petridis I, Tavridou A, Christakidis D (2009) Presence of CYP2C9∗3 allele increases risk of hypoglycemia in Type 2 diabetic patients treated with sulfonylureas 2009;1781–7. Hypoglycemia in Type 2 diabetic patients treated with sulfonylureas. Pharmacogenomics 10(11):1781–1787

    Article  CAS  PubMed  Google Scholar 

  • Raha O, Sarkar B, Lakkakula BV, Pasumarthy V, Godi S, Chowdhury S et al (2013) HLA class II SNP interactions and the association with type 1 diabetes mellitus in Bengali speaking patients of Eastern India. J Biomed Sci 20(1):12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajalingam R, Ge P, Reed EF (2004) A sequencing-based typing method for HLA-DQA1 alleles. Hum Immunol 65(4):373–379

    Article  CAS  PubMed  Google Scholar 

  • Ramesh R, Munish M, Quang TN, Irma L, Bernhard OB, Flemming P et al (2016) Systematic evaluation of genes and genetic variants associated with type 1 diabetes susceptibility. J Immunol 196(7):3043–3053

    Article  CAS  Google Scholar 

  • Ramos-Rodríguez M, Raurell-Villa H, Colli ML et al (2019) The impact of pro-inflammatory cytokines on the β-cell regulatory landscape provides new insights into the genetics of type 1 diabetes. BioRxiv 560193

    Google Scholar 

  • Rask-Andersen M, Karlsson T, Ek WE, Johansson Å (2017) Gene-environment interaction study for BMI reveals interactions between genetic factors and physical activity, alcohol consumption and socioeconomic status. PLoS Genet 13(9):e1006977

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Redondo MJ, Jeffrey J, Fain PR, Eisenbarth GS, Orban T (2008) Concordance for islet autoimmunity among monozygotic twins. N Engl J Med 359(26):2849–2850

    Article  CAS  PubMed  Google Scholar 

  • Rees SD, Hydrie MZ, Shera AS, Kumar S, O’Hare JP et al (2011) Replication of 13 genome-wide association (GWA)-validated risk variants for type 2 diabetes in Pakistani populations. Diabetologia 54:1368–1374. 40

    Article  CAS  PubMed  Google Scholar 

  • Ribel-Madsen R, Fraga MF, Jacobsen S, Bork-Jensen J, Lara E, Calvanese V et al (2012) Genome-wide analysis of DNA methylation differences in muscle and fat from monozygotic twins discordant for type 2 diabetes. PLoS One 7(12):e.51302

    Article  CAS  Google Scholar 

  • Roglic G (2016) WHO global report on diabetes: a summary. Int J NonCommun Dis 1:3–8

    Article  Google Scholar 

  • Salem SD, Saif-ali R, Ismail IS, Al-hamodi Z, Muniandy S (2014) Contribution of SLC30A8 variants to the risk of type 2 diabetes in a multi-ethnic population: a case control study. BMC Endocr Disord 14:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Santiago JL, Martínez A, De Calle H, Fernández-arquero M, Figueredo MÁ, De Concha EG et al (2007) Susceptibility to type 1 diabetes conferred by the PTPN22 C1858T polymorphism in the Spanish population. BMC Med Genet 8(1):54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santiago JL, Alizadeh BZ, Espino L, Figueredo MA, Roep BO, Koeleman BPC et al (2008) Study of the association between the CAPSL-IL7R locus and type 1 diabetes. Diabetologia 51(9):1653–1658

    Article  CAS  PubMed  Google Scholar 

  • Santin I, Moore F, Colli ML, Gurzov EN, Marselli L, Marchetti P et al (2011) PTPN2, a candidate gene for type 1 diabetes, modulates pancreatic beta-cell apoptosis via regulation of the BH3-only protein bim. Diabetes 60:3279–3288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato R, Watanabe H, Genma R, Takeuchi M, Maekawa M, Nakamura H (2010) ABCC8 polymorphism (Ser1369Ala): influence on severe hypoglycemia due to sulfonylureas. Pharmacogenomics 11(12):1743–1750

    Article  CAS  PubMed  Google Scholar 

  • Saxena R, Hivert MF, Langenberg C, Tanaka T, Pankow JS, Vollenweider P et al (2010) Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nat Genet 42(2):142–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheen AJ (2015) Pharmacodynamics, efficacy and safety of sodium-glucose cotransporter type 2 (SGLT2) inhibitors for the treatment of type 2 diabetes mellitus. Drugs 75:33–59

    Article  CAS  PubMed  Google Scholar 

  • Schernthaner G, Grimaldi A, Di Mario U, Drzewoski J, Kempler P, Kvapil M et al (2004) GUIDE study: double-blind comparison of once-daily gliclazide MR and glimepiride in type 2 diabetic patients. Eur J Clin Investig 34(8):535–542

    Article  CAS  Google Scholar 

  • Schroner Z, Javorsky M, Tkacova R, Klimcakova L, Dobrikova M, Habalova V et al (2011) Effect of sulphonylurea treatment on glycaemic control is related to TCF7L2 genotype in patients with type 2 diabetes. Diabetes Obes Metab 13(1):89–91

    Article  CAS  PubMed  Google Scholar 

  • Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL et al (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316(5829):1341–1345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semiz S, Dujic T, Ostanek B, Prnjavorac B, Bego T, Malenica M et al (2010) Analysis of CYP2C9∗2, CYP2C19∗2, and CYP2D6∗4 polymorphisms in patients with type 2 diabetes mellitus. Bosn J Basic Med Sci 10(4):287–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senee V, Chelala C, Duchatelet S, Feng D, Blanc H, Cossec JC, Charon C, Nicolino M, Boileau P, Cavener DR et al (2006) Mutations in glis3 are responsible for a rare syndrome with neonatal diabetes mellitus and congenital hypothyroidism. Nat Genet 38:682–687

    Article  CAS  PubMed  Google Scholar 

  • Sharif FA, Shubair ME, Zaharna MM, Ashour MJ, Altalalgah IO, Najjar M et al (2018) Genetic polymorphism and risk of having type 2 diabetes in a Palestinian population: a study of 16 gene polymorphisms. Adv Diab Endocrinol 3(1):6

    Google Scholar 

  • Sharma NK, Langberg KA, Mondal AK, Elbein SC, Das SK (2011) Type 2 diabetes (T2D) associated polymorphisms regulate expression of adjacent transcripts in transformed lymphocytes, adipose, and muscle from Caucasian and African-American subjects. J Clin Endocrinol Metab 96(2):E394–E403

    Article  CAS  PubMed  Google Scholar 

  • Sharp RC, Abdulrahim M, Naser ES, Naser SA (2015) Genetic variations of PTPN2 and PTPN22: role in the pathogenesis of type 1 diabetes and Crohn’s disease. Front Cell Infect Microbiol 5:95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shaw JE, Sicree RA (2010) Zimmet PZ global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87:4–14

    Article  CAS  PubMed  Google Scholar 

  • Shaw RJ, Lamia KA, Vasquez D, Koo S, Depinho RA, Montminy M et al (2005) The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310(5754):1642–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shepherd M, Shields B, Ellard S, Hattersley AT (2009) Short report a genetic diagnosis of HNF1A diabetes alters treatment and improves glycaemic control in the majority of insulin-treated patients. Diabet Med 26(4):437–441

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Li Y, Wang J, Wang C, Fan J, Zhao J et al (2017) Meta-analyses of the association of G6PC2 allele variants with elevated fasting glucose and type 2 diabetes. PLoS One 12(7):e0181232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shields BM, Hicks S, Shepherd MH (2010) Maturity-onset diabetes of the young (MODY): how many cases are we missing ? Diabetologia 53(12):2504–2508

    Article  CAS  PubMed  Google Scholar 

  • Shu Y, Sheardown SA, Brown C, Owen RP, Zhang S, Castro RA et al (2007) Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J Clin Invest 117(5):1422–1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D et al (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445:881–885

    Article  CAS  PubMed  Google Scholar 

  • Smyth DJ, Plagnol V, Walker NM, Cooper JD, Downes K, Yang JHM et al (2008) Shared and distinct genetic variants in type 1 diabetes and celiac disease. N Engl J Med 359(26):2767–2777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinthorsdottir V, Thorleifsson G, Reynisdottir I, Benediktsson R, Jonsdottir T, Walters GB et al (2007) A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet 39:770–775

    Article  CAS  PubMed  Google Scholar 

  • Stumvoll M, Haring H (2002) The peroxisome proliferator-activated receptor-gamma2 Pro12Ala polymorphism. Diabetes 51(8):2341–2347

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Song K, Shen X, Cai Y (2012) The association between KCNQ1 gene polymorphism and type 2 diabetes risk: a meta-analysis. PLoS One 7(11):e48578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun C, Wei H, Chen X, Zhao Z, Du H, Song W et al (2016) ERBB3 -rs2292239 as primary type 1 diabetes association locus among non- HLA genes in Chinese. Meta Genet 9:120–123

    Article  Google Scholar 

  • Tang W, Cui D, Jiang L, Zhao L, Qian W, Long SA et al (2015) Association of common polymorphisms in the IL2RA gene with type 1 diabetes: evidence of 32,646 individuals from 10 independent studies characteristics of study. J Cell Mol Med 19(10):2481–2488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taniyama M, Maruyama T, Tozaki T, Nakano Y, Ban Y (2010) Association of PTPN22 haplotypes with type 1 diabetes in the Japanese population. Hum Immunol 71(8):795–798

    Article  CAS  PubMed  Google Scholar 

  • Tarasova L, Kalnina I, Geldnere K, Bumbure A, Ritenberga R, Nikitina-zake L et al (2012) Association of genetic variation in the organic cation transporters OCT1, OCT2 and multidrug and toxin extrusion 1 transporter protein genes with the gastrointestinal side effects and lower BMI in metformin-treated type 2 diabetes patients. Pharmacogenet Genomics 22(9):659–667 66

    Article  CAS  PubMed  Google Scholar 

  • Teo YY, Inouye M, Small KS, Gwilliam R, Kwiatkowski DP, Clark TG (2007) A genotype calling algorithm for the Illumina BeadArray platform. Bioinformatics 23(20):2741–2746

    Article  CAS  PubMed  Google Scholar 

  • The International HapMap Consortium (2003) The international HapMap project. Nature 426:789–796

    Article  CAS  Google Scholar 

  • Tian Y, Xu J, Huang T, Cui J, Zhang W, Song W et al (2019) A novel polymorphism (rs35612982 ) in CDKAL1 is a risk factor of type 2 diabetes: a case-control study. Kidney Blood Press Res 44:1313–1326

    Article  CAS  PubMed  Google Scholar 

  • Todd JA, Walker NM, Cooper JD, Smyth DJ, Downes K, Plagnol V et al (2007) Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 39:857–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Törn C, Hadley D, Lee H, Hagopian W, Lernmark Å, Simell O et al (2015) Role of type 1 diabetes–associated SNPs on risk of autoantibody positivity in the TEDDY study. Diabetes 64(5):1818–1829

    Article  PubMed  CAS  Google Scholar 

  • Valdes AM, Erlich HA, Noble JA (2005) Human leukocyte antigen class I B and C loci contribute to type 1 diabetes (T1D) susceptibility and age at T1D onset. Hum Immunol 66:301–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vassy JL, Meigs JB (2012) Is genetic testing useful to predict type 2 diabetes? Best Pract Res Clin Endocrinol Metab 26(2):189–201

    Article  PubMed  PubMed Central  Google Scholar 

  • Vella A, Cooper JD, Lowe CE, Walker N, Nutland S, Widmer B et al (2005) Localization of a type 1 diabetes locus in the IL2RA/CD25 region by use of tag single-nucleotide polymorphisms. Am J Hum Genet 76(5):773–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  CAS  PubMed  Google Scholar 

  • Voight BF, Scott LJ, Steinthorsdottir V, Andrew P, Aulchenko YS, Thorleifsson G et al (2010) Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 42(7):579–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Von Mering J (1885) Uber Kunstliche diabetes. Centralbl Med Wiss 23:531–532. 5

    Google Scholar 

  • Wallace C, Smyth DJ, Maisuria-armer M, Walker NM, Todd JA (2010) The imprinted DLK1-MEG3 gene region on chromosome 14q32. 2 alters susceptibility to type 1 diabetes. Nat Genet 42(1):68–71

    Article  CAS  PubMed  Google Scholar 

  • Wallet MA, Santostefano KE, Terada N, Brusko TM (2017) Isogenic cellular systems model the impact of genetic risk variants in the pathogenesis of type 1 diabetes. Front Endocrinol (Lausanne) 8:276

    Article  Google Scholar 

  • Wang K, Baldassano R, Zhang H, Qu H, Imielinski M, Kugathasan S et al (2010) Comparative genetic analysis of inflammatory bowel disease and type 1 diabetes implicates multiple loci with opposite effects. Hum Mol Genet 19(10):2059–2067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K, Owusu D, Pan Y, Xu C (2014a) Common genetic variants in the HNF 1 B gene contribute to diabetes and multiple cancers. Austin Biomark Diagn 1(1):5

    Google Scholar 

  • Wang J, Zhang J, Shen J, Hu D, Yan G, Liu X et al (2014b) Association of KCNQ1 and KLF14 polymorphisms and risk of type 2 diabetes mellitus: a global meta-analysis. Hum Immunol 75(4):342–347

    Article  CAS  PubMed  Google Scholar 

  • Weedon MN, Clark VJ, Qian Y, Ben-Shlomo Y, Timpson N, Ebrahim S et al (2006) A common haplotype of the glucokinase gene alters fasting glucose and birth weight: association in six studies and population-genetics analyses. Am J Hum Genet 79(6):991–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678

    Article  CAS  Google Scholar 

  • Welter M, Frigeri HR, Rea RR, De Souza M, Alberton D, Picheth G et al (2015) The rs10885122 polymorphism of the adrenoceptor alpha 2A (ADRA2A) gene in Euro-Brazilians with type 2 diabetes mellitus. Arch Endocrinol Metab 59(1):29–33

    Article  PubMed  Google Scholar 

  • Xia Q, Chen Z, Wang Y, Ma Y, Zhang F, Che W et al (2012) Association between the melatonin receptor 1B gene polymorphism on the risk of type 2 diabetes, impaired glucose regulation: a Meta-analysis. PLoS One 7(11):e50107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamagata K, Hanafusa T, Nakajima H, Sada M, Amemiya H, Tomita K et al (1991) HLA-DP and susceptibility to insulin-dependent diabetes mellitus in Japanese. Tissue Antigens 38(3):107–110

    Article  CAS  PubMed  Google Scholar 

  • Yan F, Casey J, Shyng S (2006) Sulfonylureas correct trafficking defects of disease-causing ATP-sensitive potassium channels by binding to the channel complex. J Biol Chem 281(44):33403–33413

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Chang BH, Samson SL, Li MV, Chan L (2009) The kruppel-like zinc finger protein GLIS3 directly and indirectly activates insulin gene transcription. Nucleic Acids Res 37:2529–2538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Chang BH, Chan L (2013) Sustained expression of the transcription factor GLIS3 is required for normal beta cell function in adults. EMBO Mol Med 5:92–104

    Article  CAS  PubMed  Google Scholar 

  • Yasuda K, Miyake K, Horikawa Y, Hara K, Osawa H, Furuta H et al (2008) Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet 40(9):1092–1097

    Article  CAS  PubMed  Google Scholar 

  • Yokoi N, Kanamori M, Horikawa Y, Takeda J, Sanke T et al (2006) Association studies of variants in the genes involved in pancreatic beta-cell function in type 2 diabetes in Japanese subjects. Diabetes 55:2379–2386

    Article  CAS  PubMed  Google Scholar 

  • Yu M, Xu X, Yin J, Wu J, Chen X, Gong Z et al (2010) KCNJ11 Lys23Glu and TCF7L2 rs290487 (C/T) polymorphisms affect therapeutic efficacy of repaglinide in Chinese patients with type 2 diabetes. Clin Pharmacol Ther 87(3):330–335

    Article  CAS  PubMed  Google Scholar 

  • Zavatari P, Deidda E, Pitzalis M, Zoa B, Moi L, Lampis R et al (2004) No association between variation of FOXP3 gene and common type 1 diabetes in Sardinian population. Diabetes 53:1911–1914

    Article  Google Scholar 

  • Zavattari P, Lampis R, Motzo C, Loddo M, Mulargia A, Whalen M et al (2001) Conditional linkage disequilibrium analysis of a complex disease super locus, IDDM1 in the HLA region, reveals the presence of independent modifying gene effects influencing the type 1 diabetes risk encoded by the major HLA-DQB1, -DRB1 disease loci. Hum Mol Genet 10:881–889

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Huang Q, Dai X, Yin J, Zhang W, Zhou G et al (2010) Effects of the peroxisome proliferator activated receptor-γ coactivator-1α (PGC-1α) Thr394Thr and Gly482Ser polymorphisms on rosiglitazone response in Chinese patients with type 2 diabetes mellitus. J Clin Pharmacol 50(9):1022–1030

    Article  CAS  PubMed  Google Scholar 

  • Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-melody J et al (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108(8):1167–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou D, Zhang D, Liu Y, Zhao T, Chen Z, Liu Z et al (2009a) The E23K variation in the KCNJ11 gene is associated with type 2 diabetes in Chinese and east Asian population. J Hum Genet 54(7):433–435

    Article  CAS  PubMed  Google Scholar 

  • Zhou K, Donnelly L, Burch L, Tavendale R, Doney ASF, Leese G et al (2009b) Loss-of-Function CYP2C9 variants improve therapeutic response to sulfonylureas in type 2 diabetes: a Go- DARTS study. Clin Pharmacol Ther 87(1):52–56

    Article  PubMed  CAS  Google Scholar 

  • Zoledziewska M, Costa G, Pitzalis M, Cocco E, Melis C, Moi L (2009) Variation within the CLEC16A gene shows consistent disease association with both multiple sclerosis and type 1 diabetes in Sardinia. Genes Immun 10(1):15–17

    Article  CAS  PubMed  Google Scholar 

  • Zullo A, Sommese L, Nicoletti G, Donatelli F, Mancini FP, Napoli C (2017) Epigenetics and type 1 diabetes: mechanisms and translational applications. Transl Res 185:85–93

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. M. Nurun Nabi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sayed, S., Nabi, A.H.M.N. (2020). Diabetes and Genetics: A Relationship Between Genetic Risk Alleles, Clinical Phenotypes and Therapeutic Approaches. In: Islam, M.S. (eds) Diabetes: from Research to Clinical Practice. Advances in Experimental Medicine and Biology(), vol 1307. Springer, Cham. https://doi.org/10.1007/5584_2020_518

Download citation

  • DOI: https://doi.org/10.1007/5584_2020_518

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-51088-6

  • Online ISBN: 978-3-030-51089-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics