Skip to main content

Proteomics in the Diagnosis of Inborn Encephalopathies of Unknown Origin: A Myth or Reality

  • Chapter
  • First Online:
Clinical Research Involving Pulmonary Disorders

Part of the book series: Advances in Experimental Medicine and Biology ((NR,volume 1040))

Abstract

Synaptopathy underlies a great variety of neurological or neurodevelopmental disorders, including neurodegenerative diseases and the highly complex neuropsychiatric syndromes. Standard diagnostic assays in the majority of synaptopathies are insufficient to make an appropriate and fast diagnosis, which has spurred a search for more accurate diagnostic methods using recent technological advances. As synaptopathy phenotypes strictly depend on genetics and environmental factors, the best way to approach these diseases is the investigation of entire sets of protein characteristics. Thus, proteomics has emerged as a mainstay in the studies on synaptopathies, with mass spectrometry as a technology of choice. This review is an update on the proteomic methods and achievements in the understanding, diagnostics, and novel biomarkers of synaptopathies. The article also provides a critical point of view and future perspectives on the application of neuroproteomics in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alberio T, Bucci EM, Natale M, Bonino D, Di Giovanni M, Bottacchi E, Fasano M (2013) Parkinson’s disease plasma biomarkers: an automated literature analysis followed by experimental validation. J Proteome 90:107–114

    CAS  Google Scholar 

  • Anderson NL (2005) The roles of multiple proteomics platforms in a pipeline for new diagnostics. Mol Cell Proteomics 4:1441–1444

    CAS  PubMed  Google Scholar 

  • Anderson NL, Anderson NG (1998) Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis 19:1853–1861

    CAS  PubMed  Google Scholar 

  • Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, Jacob Filho W, Lent R, Herculano-Houzel S (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513:532–541

    PubMed  Google Scholar 

  • Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389(4):1017–1031

    CAS  PubMed  Google Scholar 

  • Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, Marcus DS, Cairns NJ, Xie X, Blazey TM, Holtzman DM, Santacruz A, Buckles V, Oliver A, Moulder K, Aisen PS, Ghetti B, Klunk WE, McDade E, Martins RN, Masters CL, Mayeux R, Ringman JM, Rossor MN, Schofield PR, Sperling RA, Salloway S, Morris JC (2012) Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 367(9):795–804

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bayés A, van de Lagemaat LN, Collins MO, Croning MD, Whittle IR, Choudhary JS, Grant SG (2011) Characterization of the proteome, diseases and evolution of the human postsynaptic density. Nat Neurosci 14:19–21

    PubMed  Google Scholar 

  • Bayés A, Collins MO, Croning MDR, Van De Lagemaat LN, Choudhary JS, Grant SG (2012) Comparative study of human and mouse postsynaptic proteomes finds high compositional conservation and abundance differences for key synaptic proteins. PLoS One 7(10):e46683

    PubMed  PubMed Central  Google Scholar 

  • Biomarker Definition Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69(3):89–95

    Google Scholar 

  • Blennow K, Bogdanovic N, Alafuzoff I, Ekman R, Davidsson P (1996) Synaptic pathology in Alzheimer’s disease: relation to severity of dementia, but not to senile plaques, neurofibrillary tangles, or the ApoE4 allele. J Neural Transm 103:603–618

    CAS  PubMed  Google Scholar 

  • Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s disease. Lancet 368(9533):387–403

    CAS  PubMed  Google Scholar 

  • Brinkmalm SA, Brinkmalm G, Honer WG, Moreno JA, Jakobsson J, Mallucci GR, Zetterberg H, Blennow K, O’Hrfelt A (2014) Targeting synaptic pathology with a novel affinity mass spectrometry approach. Mol Cell Proteomics 13(10):2584–2592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bros P, Vialaret J, Barthelemy N, Delatour V, Gabelle A, Lehmann S, Hirtz C (2015) Antibody-free quantification of seven tau peptides in human CSF using targeted mass spectrometry. Front Neurosci 9:302

    PubMed  PubMed Central  Google Scholar 

  • Brunnström H, Hansson O, Zetterberg H, Londos E, Englund E (2013) Correlations of CSF tau and amyloid levels with Alzheimer pathology in neuropathologically verified dementia with Lewy bodies. Int J Geriatr Psychiatry 28(7):738–744

    PubMed  Google Scholar 

  • Cham JA, Bianco L, Barton C, Bessant C (2010) MRMaid-DB: a repository of published SRM transitions. J Proteome Res 9(1):620–625

    CAS  PubMed  Google Scholar 

  • Coba MP, Pocklington AJ, Collins MO, Kopanitsa MV, Uren RT, Swamy S, Croning MD, Choudhary JS, Grant SG (2009) Neurotransmitters drive combinatorial multistate postsynaptic density networks. Sci Signal 2(68):ra19

    PubMed  PubMed Central  Google Scholar 

  • Colangelo CM, Chung L, Bruce C, Cheung KH (2013) Review of software tools for design and analysis of large scale MRM proteomics datasets. Methods 61(3):287–298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corbett BA, Kantor AB, Schulman H, Walker WL, Lit L, Ashwood P, Rocke DM, Sharp FR (2007) A proteomic study of serum from children with autism showing differential expression of apolipoproteins and complement proteins. Mol Psychiatry 12(3):292–306

    CAS  PubMed  Google Scholar 

  • Corthals GL, Wasinger VC, Hochstrasser DF, Sanchez JC (2000) The dynamic range of protein expression: a challenge for proteomic research. Electrophoresis 21(6):1104–1115

    CAS  PubMed  Google Scholar 

  • Craft GE, Chen A, Nairn AC (2013) Recent advances in quantitative neuroproteomics. Methods 61:186–218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davies CA, Mann DM, Sumpter PQ, Yates PO (1987) A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer’s disease. J Neurol Sci 78(2):151–164

    CAS  PubMed  Google Scholar 

  • de Hoffmann E, Stroobant V (2007) Mass spectrometry: principles and applications, 3rd edn. Wiley-Interscience, New York

    Google Scholar 

  • Diaz-Beltran L, Cano C, Wall DP, Esteban FJ (2013) Systems biology as a comparative approach to understand complex gene expression in neurological diseases. Behav Sci 3:253–272

    PubMed  PubMed Central  Google Scholar 

  • Distler U, Schmeisser MJ, Pelosi A, Reim D, Kuharev J, Weiczner R, Baumgart J, Boeckers TM, Nitsch R, Vogt J, Tenzer S (2014) In-depth protein profiling of the postsynaptic density from mouse hippocampus using data-independent acquisition proteomics. Proteomics 14(21–22):2607–2613

    CAS  PubMed  Google Scholar 

  • Ditzen C, Tang N, Jastorff AM, Teplytska L, Yassouridis A, Maccarrone G, Uhr M, Thomas Bronisch T, Miller CA, Holsboer F, Turck CW (2012) Cerebrospinal fluid biomarkers for major depression confirm relevance of associated pathophysiology. Neuropsychopharmacology 37:1013–1025

    CAS  PubMed  Google Scholar 

  • Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312(5771):212–217

    CAS  PubMed  Google Scholar 

  • Duarte ST, Ortez C, Pérez A, Artuch R, García-Cazorla A (2011) Analysis of synaptic proteins in the cerebrospinal fluid as a new tool in the study of inborn errors of neurotransmission. J Inherit Metab Dis 34(2):523–528

    CAS  PubMed  Google Scholar 

  • Etzioni R, Urban N, Ramsey S, NcIntish M, Schwartz S, Reid B, Radich J, Anderson G, Hartwell L (2003) The case for early detection. Nat Rev Cancer 3(4):243–252

    CAS  PubMed  Google Scholar 

  • Farr CD, Gafken PR, Norbeck AD, Doneanu CE, Stapels MD, Barofsky DF, Minami M, Saugstad JA (2004) Proteomics analysis of native metabotropic glutamate receptor 5 protein complexes reveals novel molecular constituents. J Neurochem 91(2):438–450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández E, Collins MO, Uren RT, Kopanitsa MV, Komiyama NH, Croning MD, Zografos L, Armstrong JD, Choudhary JS, Grant SG (2009) Targeted tandem affinity purification of PSD-95 recovers core postsynaptic complexes and schizophrenia susceptibility proteins. Mol Syst Biol 5:269

    PubMed  PubMed Central  Google Scholar 

  • Filiou MD, Turck CW, Martins-de-Souza D (2011) Quantitative proteomics for investigating psychiatric disorders. Proteomics Clin Appl 5(1–2):38–49

    CAS  PubMed  Google Scholar 

  • Flory MR, Griffin TJ, Martin D, Aebersold R (2002) Advances in quantitative proteomics using stable isotope tags. Trends Biotechnol 20(12 Suppl):S23–S29

    CAS  PubMed  Google Scholar 

  • Föcking M, Lopez LM, English JA, Dicker P, Wolff A, Brindley E, Wynne K, Cagney G, Cotter DR (2015) Proteomic and genomic evidence implicates the postsynaptic density in schizophrenia. Mol Psychiatry 20(4):424–432

    PubMed  Google Scholar 

  • Frantzi M, Bhat A, Latosinska A (2014) Clinical proteomic biomarkers: relevant issues on study design and technical considerations in biomarker development. Clin Transl Med 3(1):7

    PubMed  PubMed Central  Google Scholar 

  • Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci U S A 100(12):6940–6845

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gnanapavan S, Grant D, Illes-Toth E, Lakdawala N, Keir G, Giovannoni G (2010) Neural cell adhesion molecule–description of a CSF ELISA method and evidence of reduced levels in selected neurological disorders. J Neuroimmunol 225(1–2):118–122

    CAS  PubMed  Google Scholar 

  • Grabrucker AM, Schmeisser MJ, Schoen M, Boeckers TM (2011) Postsynaptic ProSAP/Shank scaffolds in the cross-hair of synaptopathies. Trends Cell Biol 21(10):594–603

    CAS  PubMed  Google Scholar 

  • Gramolini AO, Peterman SM, Kislinger T (2008) Mass spectrometry-based proteomics: a useful tool for biomarker discovery? Clin Pharmacol Ther 83(5):758–760

    CAS  PubMed  Google Scholar 

  • Grant SG (2012) Synaptopathies: diseases of the synaptome. Curr Opin Neurobiol 22(3):522–529

    CAS  PubMed  Google Scholar 

  • Grutzendler J, Kasthuri N, Gan WB (2002) Long-term dendritic spine stability in the adult cortex. Nature 420(6917):812–816

    CAS  PubMed  Google Scholar 

  • Harrington MG, Fonteh AN, Oborina E, Liao P, Cowan RP, McComb G, Chavez JN, Rush J, Biringer RG, Hühmer AF (2009) The morphology and biochemistry of nanostructures provide evidence for synthesis and signaling functions in human cerebrospinal fluid. Cerebrospinal Fluid Res 6:10

    PubMed  PubMed Central  Google Scholar 

  • Hayaishi O (1991) Molecular mechanisms of sleep-wake regulation: roles of prostaglandins D2 and E2. FASEB J 5(11):2575–2581

    CAS  PubMed  Google Scholar 

  • Hong Z, Shi M, Chung KA, Quinn JF, Peskind ER, Galasko D, Jankovic J, Zabetian CP, Leverenz JB, Baird G, Montine TJ, Hancock AM, Hwang H, Pan C, Bradner J, Kang UJ, Jensen PH, Zhang J (2010) DJ-1 and alpha-synuclein in human cerebrospinal fluid as biomarkers of Parkinson’s disease. Brain 133:713–726

    PubMed  PubMed Central  Google Scholar 

  • Huang TL, Sung ML, Chen TY (2014) 2D-DIGE proteome analysis on the platelet proteins of patients with major depression. Proteome Sci 12(1):1

    PubMed  PubMed Central  Google Scholar 

  • Hulstaert F, Blennow K, Ivanoiu A, Schoonderwaldt HC, Riemenschneider M, De Deyn PP, Bancher C, Cras P, Wiltfang J, Mehta PD, Iqbal K, Pottel H, Vanmechelen E, Vanderstichele H (1999) Improved discrimination of AD patients using beta-amyloid(1-42) and tau levels in CSF. Neurology 52(8):1555–1562

    CAS  PubMed  Google Scholar 

  • Ising M, Lucae S, Binder EB, Bettecken T, Uhr M, Ripke S, Kohli MA, Hennings JM, Horstmann S, Kloiber S, Menke A, Bondy B, Rupprecht R, Domschke K, Baune BT, Arolt V, Rush AJ, Holsboer F, Müller-Myhsok B (2009) A genomewide association study points to multiple loci that predict antidepressant drug treatment outcome in depression. Arch Gen Psychiatry 66(9):966–975

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ito S, Narumiya S, Hayaishi O (1989) Prostaglandin D2: a biochemical perspective. Prostaglandins Leukot Essent Fatty Acids 37(4):219–234

    CAS  PubMed  Google Scholar 

  • Kingsmore SF (2006) Multiplexed protein measurement: technologies and applications of protein and antibody arrays. Nat Rev Drug Discov 5(4):310–321

    CAS  PubMed  PubMed Central  Google Scholar 

  • Köhler K, Seitz H (2012) Validation processes of protein biomarkers in serum – a cross platform comparison. Sensors 12(9):12710–12728

    PubMed  PubMed Central  Google Scholar 

  • Lange V, Picotti P, Domon B, Aebersold R (2008) Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol 4:222

    PubMed  PubMed Central  Google Scholar 

  • Latterich M, Schnitzer JE (2011) Streamlining biomarker discovery. Nat Biotechnol 29(7):600–6002

    CAS  PubMed  Google Scholar 

  • Levin Y, Wang L, Schwarz E, Koethe D, Leweke FM, Bahn S (2010) Global proteomic profiling reveals altered proteomic signature in schizophrenia serum. Mol Psychiatry 15(11):1088–1100

    CAS  PubMed  Google Scholar 

  • Lottspeich F, Kellermann J, Keidel EM (2010) Molecular biology tools: proteomics techniques in biomarker discovery. Scand J Clin Lab Invest Suppl 242:19–22

    PubMed  Google Scholar 

  • Martins-de-Souza D (2011) Proteomics as a tool for understanding schizophrenia. Clin Psychopharmacol Neurosci 9(3):95–101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martins-de-Souza D (2012) Proteomics tackling schizophrenia as a pathway disorder. Schizophr Bull 38(6):1107–1108

    PubMed  PubMed Central  Google Scholar 

  • Martins-de-Souza D (2013) Biomarkers for psychiatric disorders: where are we standing? Dis Markers 35(1):1–2

    PubMed  PubMed Central  Google Scholar 

  • Martins-de-Souza D, Gattaz WF, Schmitt A, Rewerts C, Marangoni S, Novello JC, Maccarrone G, Turck CW, Dias-Neto EJ (2009) Alterations in oligodendrocyte proteins, calcium homeostasis and new potential markers in schizophrenia anterior temporal lobe are revealed by shotgun proteome analysis. Neural Transm (Vienna) 116(3):275–289

    CAS  Google Scholar 

  • Martins-de-Souza D, Harris LW, Guest PC, Bahn S (2011) The role of energy metabolism dysfunction and oxidative stress in schizophrenia revealed by proteomics. Antioxid Redox Signal 15(7):2067–2079

    CAS  PubMed  Google Scholar 

  • Masliah E, Mallory M, Alford M, DeTeresa R, Hansen LA, McKeel DW, Jr, Morris JC (2001) Altered expression of synaptic proteins occurs early during progression of Alzheimer’s disease. Neurology 56:127–129

    Google Scholar 

  • Michalski A, Cox J, Mann M (2011) More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data dependent LCMS/ MS. J Proteome Res 10(4):1785–1793

    CAS  PubMed  Google Scholar 

  • Mollenhauer B, Locascio JJ, Schulz-Schaeffer W, Sixel-Döring F, Trenkwalder C, Schlossmacher MG (2011) Alpha-synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: a cohort study. Lancet Neurol 10:230–240

    CAS  PubMed  Google Scholar 

  • Nascimento JM, Martins-de-Souza D (2015) The proteome of schizophrenia. NPJ Schizophr 1:14003

    PubMed  PubMed Central  Google Scholar 

  • Ngounou Wetie AG, Wormwood K, Thome J, Dudley E, Taurines R, Gerlach M, Woods AG, Darie CC (2014) A pilot proteomic study of protein markers in autism spectrum disorder. Electrophoresis 35(14):2046–2054

    CAS  PubMed  Google Scholar 

  • Old WM, Meyer-Arendt K, Aveline-Wolf L, Pierce KG, Mendoza A, Sevinsky JR, Resing KA, Ahn NG (2005) Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics 4(10):1487–1502

    CAS  PubMed  Google Scholar 

  • Ong SE, Mann M (2005) Mass spectrometry-based proteomics turns quantitative. Nat Chem Biol 1(5):252–262

    CAS  PubMed  Google Scholar 

  • Orton DJ, Doucette AA (2013) Proteomics workflows for biomarker identification using mass spectrometry – technical and statistical considerations during initial discovery. Proteomes 1:109–127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Overk CR, Masliah E (2014) Pathogenesis of synaptic degeneration in Alzheimer’s disease and Lewy body disease. Biochem Pharmacol 88(4):508–516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pan S, Aebersold R, Chen R, Rush J, Goodlett DR, McIntosh MW, Zhang J, Brentnall TA (2009) Mass spectrometry based targeted protein quantification: methods and applications. J Proteome Res 8(2):787–797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parnetti L, Lanari A, Silvestrelli G, Saggese E, Reboldi P (2006) Diagnosing prodromal Alzheimer’s disease: role of CSF biochemical markers. Mech Ageing Dev 127(2):129–132

    CAS  PubMed  Google Scholar 

  • Perret-Liaudet A, Pelpel M, Tholance Y, Dumont B, Vanderstichele H, Zorzi W, ElMoualij B, Schraen S, Moreaud O, Gabelle A, Thouvenot E, Thomas-Anterion C, Touchon J, Krolak-Salmon P, Kovacs GG, Coudreuse A, Quadrio I, Lehmann S (2012) Cerebrospinal fluid collection tubes: a critical issue for Alzheimer disease diagnosis. Clin Chem 58(4):787–789

    CAS  PubMed  Google Scholar 

  • Petzold A, Thompson EJ, Keir G, Quinn N, Holmberg B, Dizdar N, Wenning GK, Rascol O, Tolosa E, Rosengren L (2009) Longitudinal one-year study of levels and stoichiometry of neurofilament heavy and light chain concentrations in CSF in patients with multiple system atrophy. J Neurol Sci 279(1–2):767–769

    Google Scholar 

  • Picotti P, Aebersold R (2012) Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods 9(6):555–566

    CAS  PubMed  Google Scholar 

  • Pijnenburg YA, Janssen JC, Schoonenboom NS, Petzold A, Mulder C, Stigbrand T, Norgren N, Heijst H, Hack CE, Scheltens P, Teunissen CE (2007) CSF neurofilaments in frontotemporal dementia compared with early onset Alzheimer’s disease and controls. Dement Geriatr Cogn Disord 23(4):225–230

    PubMed  Google Scholar 

  • Portelius E, Bogdanovic N, Gustavsson MK, Volkmann I, Brinkmalm G, Zetterberg H, Winblad B, Blennow K (2010) Mass spectrometric characterization of brain amyloid beta isoform signatures in familial and sporadic Alzheimer’s disease. Acta Neuropathol 120(2):185–193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riedel BC, Thompson PM, Brinton RD (2016) Age, APOE and sex: triad of risk of Alzheimer’s disease. J Steroid Biochem Mol Biol 160:134–147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rifai N, Gillette MA, Carr SA (2006) Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 24(8):971–983

    CAS  PubMed  Google Scholar 

  • Robards K, Haddad PR, Jackson PE (2004) Principles and practice of modern chromatographic methods. Academic Press, London

    Google Scholar 

  • Rodriguez-Murillo L, Gogos JA, Karayiorgou M (2012) The genetic architecture of schizophrenia: new mutations and emerging paradigms. Annu Rev Med 63:63–68

    CAS  PubMed  Google Scholar 

  • Schulze WX, Usadel B (2010) Quantitation in mass spectrometry- based proteomics. Ann Rev Plant Biol 61:491–516

    CAS  Google Scholar 

  • Sheng M, Kim E (2011) The postsynaptic organization of synapses. Cold Spring Harb Perspect Biol 3(12). https://doi.org/10.1101/cshperspect.a005678

  • Shevell M, Ashwal S, Donley D, Flint J, Gingold M, Hirtz D, Majnemer A, Noetzel M, Sheth RD, Quality Standards Subcommittee of the American Academy of Neurology; Practice Committee of the Child Neurology Society (2003) Practice parameter: evaluation of the child with global developmental delay: report of the quality standards Subcommittee of the American Academy of neurology and the practice committee of the child neurology society. Neurology 60(3):367–380

    CAS  PubMed  Google Scholar 

  • Shi M, Movius J, Dator R, Aro P, Zhao Y, Pan C, Lin X, Bammler TK, Stewart T, Zabetian CP, Peskind ER, S-C H, Quinn JF, Galasko DR, Zhang J (2015) Cerebrospinal fluid peptides as potential Parkinson disease biomarkers: a staged pipeline for discovery and validation. Mol Cell Proteomics 14(3):544–555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sollner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P, Rothman JE (1993) SNAP receptors implicated in vesicle targeting and fusion. Nature 362:318–324

    CAS  PubMed  Google Scholar 

  • Sri Kantha S, Matsumura H, Kubo E, Kawase K, Takahata R, Serhan CN, Hayaishi O (1994) Effects of prostaglandin D2, lipoxins and leukotrienes on sleep and brain temperature of rats. Prostaglandins Leukot Essent Fatty Acids 51(2):87–93

    CAS  PubMed  Google Scholar 

  • Südhof TC (2013) Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron 80(3):675–690

    PubMed  Google Scholar 

  • Surinova S, Schiess R, Huttenhain R, Cerciello F, Wollscheid B, Aebersold R (2011) On the development of plasma protein biomarkers. J Proteome Res 10(1):5–16

    CAS  PubMed  Google Scholar 

  • Takeda M, Martínez R, Kudo T, Tanaka T, Okochi M, Tagami S, Morihara T, Hashimoto R, Cacabelos R (2010) Apolipoprotein E and central nervous system disorders: reviews of clinical findings. Psychiatry Clin Neurosci 64(6):592–607

    CAS  PubMed  Google Scholar 

  • Taurines R, Dudley E, Grassl J, Warnke A, Gerlach M, Coogan AN, Thome J (2011) Proteomic research in psychiatry. J Psychopharmacol 25:151–196

    CAS  PubMed  Google Scholar 

  • Terry RD, Masliah E, Salmon DP, Butters N, De Teresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580

    CAS  PubMed  Google Scholar 

  • Thomas B, Beal MF (2007) Parkinson’s disease. Hum Mol Genet 16(2):183–194

    Google Scholar 

  • Thouvenot E, Urbach S, Dantec C, Poncet J, Séveno M, Demettre E, Jouin P, Touchon J, Bockaert J, Marin P (2008) Enhanced detection of CNS cell secretome in plasma protein-depleted cerebrospinal fluid. J Proteome Res 7(10):4409–4421

    CAS  PubMed  Google Scholar 

  • Tolosa E, Wenning G, Poewe W (2006) The diagnosis of Parkinson’s disease. Lancet Neurol 5:75–86

    PubMed  Google Scholar 

  • Tombran-Tink J, Barnstable CJ (2003) PEDF: a multifaceted neurotrophic factor. Nat Rev Neurosci 4(8):628–636

    CAS  PubMed  Google Scholar 

  • Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, Welker E, Svoboda K (2002) Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420(6917):788–794

    CAS  PubMed  Google Scholar 

  • Urade Y, Hayaishi O, Matsumura H, Watanabe K (1996) Molecular mechanism of sleep regulation by prostaglandin D2. J Lipid Mediat Cell Signal 14(1–3):71–82

    CAS  PubMed  Google Scholar 

  • Vawter MP (2000) Dysregulation of the neural cell adhesion molecule and neuropsychiatric disorders. Eur J Pharmacol 405(1–3):385–395

    CAS  PubMed  Google Scholar 

  • Végvári Á, Marko-Varga G (2010) Clinical protein science and bioanalytical mass spectrometry with an emphasis on lung cancer. Chem Rev 110:3278–3298

    PubMed  Google Scholar 

  • Végvári Á, Rezeli M, Döme B, Fehniger TE, Marko-Varga G (2011) Translation science for targeted personalized medicine treatments. In: Selected presentations from the 2011 Sino-American symposium on clinical and translational medicine. Science/AAAS, Washington, DC

    Google Scholar 

  • Vila-Rodriguez F, Honer WG, Innis SM, Wellington CL, Beasley CL (2011) ApoE and cholesterol in schizophrenia and bipolar disorder: comparison of grey and white matter and relation with APOE genotype. J Psychiatry Neurosci 36(1):47-55

    PubMed  PubMed Central  Google Scholar 

  • Wang M, You J, Bemis KG, Tegeler TJ, Brown DP (2008) Label-free mass spectrometry-based protein quantification technologies in proteomics analysis. Brief Funct Genomic Proteomic 7(5):329–339

    CAS  PubMed  Google Scholar 

  • Wang-Dietrich L, Funke SA, Kühbach K, Wang K, Besmehn A, Willbold S, Cinar Y, Bannach O, Birkmann E, Willbold D (2013) The amyloid-β oligomer count in cerebrospinal fluid is a biomarker for Alzheimer’s disease. J Alzheimers Dis 34(4):985–994

    CAS  PubMed  Google Scholar 

  • Whiteaker JR, Lin C, Kennedy J, Hou L, Trute M, Sokal I, Yan P, Schoenherr RM, Zhao L, Voytovich UJ, Kelly-Spratt KS, Krasnoselsky A, Gafken PR, Hogan JM, Jones LA, Wang P, Amon L, Chodosh LA, Nelson PS, McIntosh MW, Kemp CJ, Paulovich AG (2011) A targeted proteomics-based pipeline for verification of biomarkers in plasma. Nat Biotechnol 29:625–634

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkins MR, Pasquali C, Appel RD, Ou K (1996) From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Biotechnology (NY) 14:61–65

    CAS  Google Scholar 

  • Woods AG, Sokolowska I, Taurines R, Gerlach M, Dudley E, Thome J, Darie CC (2012) Potential biomarkers in psychiatry: focus on the cholesterol system. J Cell Mol Med 16(6):1184–1195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yabe T, Kanemitsu K, Sanagi T, Schwartz JP, Yamada H (2005) Pigment epithelium-derived factor induces pro-survival genes through cyclic AMP-responsive element binding protein and nuclear factor kappa B activation in rat cultured cerebellar granule cells: implication for its neuroprotective effect. Neuroscience 133(3):691–700

    CAS  PubMed  Google Scholar 

  • Yabe T, Sanagi T, Yamada H (2010) The neuroprotective role of PEDF: implication for the therapy of neurological disorders. Curr Mol Med 10(3):259–266

    CAS  PubMed  Google Scholar 

  • Yates JR, Ruse CI, Nakorchevsky A (2009) Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 11:49–79

    CAS  PubMed  Google Scholar 

  • Yuan X, Russell T, Wood G, Desiderio DM (2002) Analysis of the human lumbar cerebrospinal fluid proteome. Electrophoresis 23(7–8):1185–1196

    CAS  PubMed  Google Scholar 

  • Zhang X, Yin X, Yu H, Liu X, Yang F, Yao J, Jin H, Yang P (2012) Quantitative proteomic analysis of serum proteins in patients with Parkinson’s disease using an isobaric tag for relative and absolute quantification labeling, two-dimensional liquid chromatography, and tandem mass spectrometry. Analyst 137(2):490–495

    CAS  PubMed  Google Scholar 

  • Zhu W, Smith JW, Huang CM (2010) Mass spectrometry based label-free quantitative proteomics. J Biomed Biotechnol 2010:840518

    PubMed  Google Scholar 

  • Zolg JW, Langen H (2004) How industry is approaching the search for new diagnostic markers and biomarkers. Mol Cell Proteomics 3:345–354

    CAS  PubMed  Google Scholar 

  • Zougman A, Pilch B, Podtelejnikov A, Kiehntof M, Schnabel C, Kumar C (2008) Integrated analysis of the cerebrospinal fluid peptidome and proteome. J Proteome Res 7:386–339

    CAS  PubMed  Google Scholar 

Download references

Conflicts of Interest

The authors report no conflicts of interest in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Kupniewska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kupniewska, A., Szymanska, K., Demkow, U. (2017). Proteomics in the Diagnosis of Inborn Encephalopathies of Unknown Origin: A Myth or Reality. In: Pokorski, M. (eds) Clinical Research Involving Pulmonary Disorders. Advances in Experimental Medicine and Biology(), vol 1040. Springer, Cham. https://doi.org/10.1007/5584_2017_104

Download citation

Publish with us

Policies and ethics