Skip to main content

Breathing in Parkinsonism in the Rat

  • Chapter
  • First Online:
Pathophysiology of Respiration

Abstract

Parkinsonism is underlain by dopamine (DA) deficiency in the mid-brain, a neurotransmitter innately involved with respiratory regulation. However, the state of respiration in parkinsonism is an unsettled issue. In this study we seek to determine ventilation and its responses to hypoxia in a reserpine – alpha-methyl-tyrosine model of parkinsonism in the rat. We also attempted to differentiate between the role of discrete brain and carotid body DA stores in the modulation of the hypoxic ventilatory response (HVR). To this end we used domperidone, a peripheral D2 receptor antagonist, and levodopa, a central D2 receptor agonist. The HVRs to acute 12 % and 8 % hypoxia were studied in a whole body plethysmograph in the same rats before and after the induction of parkinsonic symptoms in conscious rats. We found that resting ventilation and the HVR were distinctly reduced in parkinsonism. The reduction was particularly evident in the peak hypoxic hyperpneic augmentation. Domperidone, which enhanced ventilation in the control healthy condition, failed to reverse the reduced parkinsonic HVR. In contrast, levodopa, which did not appreciably affected ventilation in the healthy condition, caused the parkinsonic HVR to return to and above the baseline healthy level. The findings demonstrate the predominance of a lack of the central DA stimulatory element and minimize the role of carotid body DA in the ventilatory impediment of parkinsonism. In conclusion, the study provides the pathophysiological savvy concerning the respiratory insufficiency of parkinsonism, a sequela which carries a risk of chronically impaired blood oxygenation, which may drive the disease worsening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bascom DA, Clement ID, Dorrington KL, Robbins PA (1991) Effects of dopamine and domperidone on ventilation during isocapnic hypoxia in humans. Respir Physiol 85(3):319–328

    Article  CAS  PubMed  Google Scholar 

  • Betarbet R, Sherer TB, Greenamyre JT (2002) Animal models of Parkinson’s disease. Bioessays 24(4):308–318

    Article  CAS  PubMed  Google Scholar 

  • Bouquet CA, Gardette B, Gortan C, Abraini JH (1999) Psychomotor skills learning under chronic hypoxia. Neuroreport 10(14):3093–3099

    Article  CAS  PubMed  Google Scholar 

  • Chang CH, Grace AA (2015) Amygdala neuronal activity: Differential D1 and D2 receptor effects on thalamic and cortical afferent inputs. Int J Neuropsychopharmacol 18(8). pii: pyv015. doi:10.1093/ijnp/pyv015

  • Chiocchio SR, Biscardi AM, Tramezzani JH (1966) Catecholamines in the carotid body of the cat. Nature 212(5064):834–835

    Article  CAS  PubMed  Google Scholar 

  • Dearnaley DP, Fillenz M, Woods RI (1968) The identification of dopamine in the rabbit’s carotid body. Proc R Soc Lond B Biol Sci 170(1019):195–203

    Article  CAS  PubMed  Google Scholar 

  • Delpierre S, Fornaris M, Guillot C, Grimaud C (1987) Increased ventilatory chemosensitivity induced by domperidone, a dopamine antagonist, in healthy humans. Bull Eur Physiopathol Respir 23(1):31–35

    CAS  PubMed  Google Scholar 

  • Dumas S, Pequignot JM, Ghilini G, Mallet J, Denavit-Saubie M (1996) Plasticity of tyrosine hydroxylase gene expression in the rat nucleus tractus solitarius after ventilatory acclimatization to hypoxia. Mol Brain Res 40(2):188–194

    Article  CAS  PubMed  Google Scholar 

  • Fernandes VS, Santos JR, Leão AH, Medeiros AM, Melo TG, Izídio GS, Cabral A, Ribeiro RA, Abílio VC, Ribeiro AM, Silva RH (2012) Repeated treatment with a low dose of reserpine as a progressive model of Parkinson’s disease. Behav Brain Res 231(1):154–163

    Article  CAS  PubMed  Google Scholar 

  • Goiny M, Lagercrantz H, Srinivasan M, Ungerstedt U, Yamamoto Y (1991) Hypoxia-mediated in vivo release of dopamine in nucleus tractus solitarii of rabbits. J Appl Physiol 70(6):2395–2400

    CAS  PubMed  Google Scholar 

  • Gratwicke J, Jahanshahi M, Foltynie T (2015) Parkinson’s disease dementia: a neural networks perspective. Brain 138(Pt 6):1454–1476

    Article  PubMed Central  PubMed  Google Scholar 

  • Hirsch E, Graybiel AM, Agid YA (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 334(6180):345–348

    Article  CAS  PubMed  Google Scholar 

  • Hsiao C, Lahiri S, Mokashi A (1989) Peripheral and central dopamine receptors in respiratory control. Respir Physiol 76(3):327–336

    Article  CAS  PubMed  Google Scholar 

  • Huey KA, Powell FL (2000) Time-dependent changes in dopamine D2-receptor mRNA in the arterial chemoreflex pathway with chronic hypoxia. Brain Res Mol Brain Res 75(2):264–270

    Article  CAS  PubMed  Google Scholar 

  • Huey KA, Brown IP, Jordan MC, Powell FL (2000) Changes in dopamine D2-receptor modulation of the hypoxic ventilatory response with chronic hypoxia. Respir Physiol 123(3):177–187

    Article  CAS  PubMed  Google Scholar 

  • Kline DD, Takacs KN, Ficker E, Kunze DL (2002) Dopamine modulates synaptic transmission in the nucleus of the solitary tract. J Neurophysiol 88(5):2736–2744

    Article  CAS  PubMed  Google Scholar 

  • Lawrence AJ, Krstew E, Jarrott B (1995) Functional dopamine D2 receptors on rat vagal afferent neurones. Br J Pharmacol 114(7):1329–1334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Onodera H, Okabe S, Kikuchi Y, Tsuda T, Itoyama Y (2000) Impaired chemosensitivity and perception of dyspnoea in Parkinson’s disease. Lancet 356(9231):739–7340

    Article  CAS  PubMed  Google Scholar 

  • Osanai S, Akiba Y, Matsumoto H, Nakano H, Kikuchi K (1997) Effect of dopamine receptor on hypoxic ventilatory response. Nihon Kyobu Shikkan Gakkai Zasshi 35(12):1318–1323 (Article in Japanese)

    CAS  PubMed  Google Scholar 

  • Pascual O, Roux JC, Soulage C, Morin-Surun MP, Denavit-Saubie M, Pequignot JM (2004) Carotid chemodenervation approach to study oxygen sensing in brain stem catecholaminergic cells. Methods Enzymol 381:422–448

    Article  CAS  PubMed  Google Scholar 

  • Seccombe LM, Giddings HL, Rogers PG, Corbett AJ, Hayes MW, Peters MJ, Veitch EM (2011) Abnormal ventilatory control in Parkinson’s disease-further evidence for nonmotor dysfunction. Respir Physiol Neurobiol 179(2–3):300–304

    Article  PubMed  Google Scholar 

  • Seccombe LM, Rogers PG, Hayes MW, Farah CS, Veitch EM, Peters MJ (2013) Reduced hypoxic sympathetic response in mild Parkinson’s disease: further evidence of early autonomic dysfunction. Parkinsonism Relat Disord 19(11):1066–1068

    Article  PubMed  Google Scholar 

  • Serebrovskaya T, Karaban I, Mankovskaya I, Bernardi L, Passino C, Appenzeller O (1998) Hypoxic ventilatory responses and gas exchange in patients with Parkinson’s disease. Respiration 65(1):28–33

    Article  CAS  PubMed  Google Scholar 

  • Smatresk NJ, Pokorski M, Lahiri S (1983) Opposing effects of dopamine receptor blockade on ventilation and carotid chemoreceptor activity. J Appl Physiol Respir Environ Exerc Physiol 54(6):1567–1573

    CAS  PubMed  Google Scholar 

  • Stanford SC (2007) The Open Field Test: reinventing the wheel. J Psychopharmacol 21(2):134–135

    Article  PubMed  Google Scholar 

  • Steele RH, Hintergerge H (1972) Catecholamines and 5-hydroxytryptamine in the carotid body in vascular, respiratory, and other diseases. J Lab Clin Med 80(1):63–70

    CAS  PubMed  Google Scholar 

  • Stuss DT, Peterkin I, Guzman DA, Guzman C, Troyer AK (1997) Chronic obstructive pulmonary disease: effects of hypoxia on neurological and neuropsychological measures. J Clin Exp Neuropsychol 19(4):515–524

    Article  CAS  PubMed  Google Scholar 

  • Walsh TS, Foo IT, Drummond GB, Warren PM (1998) Influence of dose of domperidone on the acute ventilatory response to hypoxia in humans. Br J Anaesth 81(3):322–326

    Article  CAS  PubMed  Google Scholar 

  • Ward DS, Bellville JW (1982) Reduction of hypoxic ventilatory drive by dopamine. Anesth Analg 61(4):333–337

    Article  CAS  PubMed  Google Scholar 

  • Welsh MJ, Heistad DD, Abboud FM (1978) Depression of ventilation by dopamine in man. Evidence for an effect on the chemoreceptor reflex. J Clin Invest 61(3):708–713

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Conflicts of Interest

The authors declare no conflicts of interest with relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mieczyslaw Pokorski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bialkowska, M., Boguszewski, P., Pokorski, M. (2015). Breathing in Parkinsonism in the Rat. In: Pokorski, M. (eds) Pathophysiology of Respiration. Advances in Experimental Medicine and Biology(), vol 884. Springer, Cham. https://doi.org/10.1007/5584_2015_177

Download citation

Publish with us

Policies and ethics