Skip to main content

Retrograde Injury Signaling in Lesioned Axons

  • Chapter
  • First Online:
Cell Biology of the Axon

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 48))

Abstract

The cell body of a lesioned neuron must receive accurate and timely information on the site and extent of axonal damage, in order to mount an appropriate response. Specific mechanisms must therefore exist to transmit such information along the length of the axon from the lesion site to the cell body. Three distinct types of signals have been postulated to underlie this process, starting with injury-induced discharge of axon potentials, and continuing with two distinct types of retrogradely transported macromolecular signals. The latter includes, on the one hand, an interruption of the normal supply of retrogradely transported trophic factors from the target, and, on the other hand, activated proteins originating from the injury site. This chapter reviews the progress on understanding the different mechanistic aspects of the axonal response to injury, and how the information is conveyed from the injury site to the cell body to initiate regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abe N, Cavalli V (2008) Nerve injury signaling. Curr Opin Neurobiol 18:276–283

    Article  PubMed  CAS  Google Scholar 

  • Ahmed FA, Ingoglia NA, Sharma SC (2001) Axon resealing following transection takes longer in central axons than in peripheral axons: implications for axonal regeneration. Exp Neurol 167:451–455

    Article  PubMed  CAS  Google Scholar 

  • Al-Majed AA, Tam SL, Gordon T (2004) Electrical stimulation accelerates and enhances expression of regeneration-associated genes in regenerating rat femoral motoneurons. Cell Mol Neurobiol 24:379–402

    Article  PubMed  CAS  Google Scholar 

  • Ambron RT, Walters ET (1996) Priming events and retrograde injury signals. A new perspective on the cellular and molecular biology of nerve regeneration. Mol Neurobiol 13:61–79

    Article  PubMed  CAS  Google Scholar 

  • Ambron RT, Zhang XP, Gunstream JD, Povelones M, Walters ET (1996) Intrinsic injury signals enhance growth, survival, and excitability of Aplysia neurons. J Neurosci 16:7469–7477

    PubMed  CAS  Google Scholar 

  • Banner LR, Patterson PH (1994) Major changes in the expression of the mRNAs for cholinergic differentiation factor/leukemia inhibitory factor and its receptor after injury to adult peripheral nerves and ganglia. Proc Natl Acad Sci U S A 91:7109–7113

    Article  PubMed  CAS  Google Scholar 

  • Berdan RC, Easaw JC, Wang R (1993) Alterations in membrane potential after axotomy at different distances from the soma of an identified neuron and the effect of depolarization on neurite outgrowth and calcium channel expression. J Neurophysiol 69:151–164

    PubMed  CAS  Google Scholar 

  • Bolin LM, Verity AN, Silver JE, Shooter EM, Abrams JS (1995) Interleukin-6 production by Schwann cells and induction in sciatic nerve injury. J Neurochem 64:850–858

    Article  PubMed  CAS  Google Scholar 

  • Bronfman FC, Escudero CA, Weis J, Kruttgen A (2007) Endosomal transport of neurotrophins: roles in signaling and neurodegenerative diseases. Dev Neurobiol 67:1183–1203

    Article  PubMed  CAS  Google Scholar 

  • Campenot RB (2009) NGF uptake and retrograde signaling mechanisms in sympathetic neurons in compartmented cultures. Results Probl Cell Differ. doi: 10.1007/400_2009_7

    Google Scholar 

  • Cavalli V, Kujala P, Klumperman J, Goldstein LS (2005) Sunday Driver links axonal transport to damage signaling. J Cell Biol 168:775–787

    Article  PubMed  CAS  Google Scholar 

  • Chierzi S, Ratto GM, Verma P, Fawcett JW (2005) The ability of axons to regenerate their growth cones depends on axonal type and age, and is regulated by calcium, cAMP and ERK. Eur J Neurosci 21:2051–2062

    Article  PubMed  Google Scholar 

  • Coulpier M, Ibanez CF (2004) Retrograde propagation of GDNF-mediated signals in sympathetic neurons. Mol Cell Neurosci 27:132–139

    Article  PubMed  CAS  Google Scholar 

  • Cui Q (2006) Actions of neurotrophic factors and their signaling pathways in neuronal survival and axonal regeneration. Mol Neurobiol 33:155–179

    Article  PubMed  Google Scholar 

  • Gao Y, Deng K, Hou J, Bryson JB, Barco A, Nikulina E, Spencer T, Mellado W, Kandel ER, Filbin MT (2004) Activated CREB is sufficient to overcome inhibitors in myelin and promote spinal axon regeneration in vivo. Neuron 44:609–621

    Article  PubMed  CAS  Google Scholar 

  • Gervasi NM, Kwok JC, Fawcett JW (2008) Role of extracellular factors in axon regeneration in the CNS: implications for therapy. Regen Med 3:907–923

    Article  PubMed  Google Scholar 

  • Gold BG (1997) Axonal regeneration of sensory nerves is delayed by continuous intrathecal infusion of nerve growth factor. Neuroscience 76:1153–1158

    Article  PubMed  CAS  Google Scholar 

  • Grothe C, Nikkhah G (2001) The role of basic fibroblast growth factor in peripheral nerve regeneration. Anat Embryol 204:171–177

    Article  PubMed  CAS  Google Scholar 

  • Hannila SS, Filbin MT (2008) The role of cyclic AMP signaling in promoting axonal regeneration after spinal cord injury. Exp Neurol 209:321–332

    Article  PubMed  CAS  Google Scholar 

  • Hanz S, Fainzilber M (2004) Integration of retrograde axonal and nuclear transport mechanisms in neurons: implications for therapeutics. Neuroscientist 10:404–408

    Article  PubMed  CAS  Google Scholar 

  • Hanz S, Fainzilber M (2006) Retrograde signaling in injured nerve--the axon reaction revisited. J Neurochem 99:13–19

    Article  PubMed  CAS  Google Scholar 

  • Hanz S, Perlson E, Willis D, Zheng JQ, Massarwa R, Huerta JJ, Koltzenburg M, Kohler M, van-Minnen J, Twiss JL, Fainzilber M (2003) Axoplasmic importins enable retrograde injury signaling in lesioned nerve. Neuron 40:1095–1104

    Article  PubMed  CAS  Google Scholar 

  • Harvey PJ, Grochmal J, Tetzlaff W, Gordon T, Bennett DJ (2005) An investigation into the potential for activity-dependent regeneration of the rubrospinal tract after spinal cord injury. Eur J Neurosci 22:3025–3035

    Article  PubMed  Google Scholar 

  • Hirata A, Masaki T, Motoyoshi K, Kamakura K (2002) Intrathecal administration of nerve growth factor delays GAP 43 expression and early phase regeneration of adult rat peripheral nerve. Brain Res 944:146–156

    Article  PubMed  CAS  Google Scholar 

  • Hoke A, Cheng C, Zochodne DW (2000) Expression of glial cell line-derived neurotrophic factor family of growth factors in peripheral nerve injury in rats. Neuroreport 11:1651–1654

    Article  PubMed  CAS  Google Scholar 

  • Howard MJ, David G, Barrett JN (1999) Resealing of transected myelinated mammalian axons in vivo: evidence for involvement of calpain. Neuroscience 93:807–815

    Article  PubMed  CAS  Google Scholar 

  • Ibanez CF (2007) Message in a bottle: long-range retrograde signaling in the nervous system. Trends Cell Biol 17:519–528

    Article  PubMed  CAS  Google Scholar 

  • Iwata A, Stys, PK, Wolf JA, Chen XH, Taylor AG, Meaney DF, Smith DH (2004) Traumatic axonal injury induces proteolytic cleavage of the voltage-gated sodium channels modulated by tetrodotoxin and protease inhibitors. J Neurosci 24:4605–4613

    Article  PubMed  CAS  Google Scholar 

  • Jungnickel J, Haase K, Konitzer J, Timmer M, Grothe C (2006) Faster nerve regeneration after sciatic nerve injury in mice over-expressing basic fibroblast growth factor. J Neurobiol 66:940–948

    Article  PubMed  CAS  Google Scholar 

  • Kenney AM, Kocsis JD (1998) Peripheral axotomy induces long-term c-Jun amino-terminal kinase-1 activation and activator protein-1 binding activity by c-Jun and junD in adult rat dorsal root ganglia in vivo. J Neurosci 18:1318–1328

    PubMed  CAS  Google Scholar 

  • Kim WY, Snider WD (2008) Neuroscience. Overcoming inhibitions. Science 322:869–872

    Article  PubMed  CAS  Google Scholar 

  • Lee N, Neitzel KL, Devlin BK, MacLennan AJ (2004) STAT3 phosphorylation in injured axons before sensory and motor neuron nuclei: potential role for STAT3 as a retrograde signaling transcription factor. J Comp Neurol 474:535–545

    Article  PubMed  CAS  Google Scholar 

  • Lindwall C, Kanje M (2005) Retrograde axonal transport of JNK signaling molecules influence injury induced nuclear changes in p-c-Jun and ATF3 in adult rat sensory neurons. Mol Cell Neurosci 29:269–282

    Article  PubMed  CAS  Google Scholar 

  • Lindwall C, Dahlin L, Lundborg G, Kanje M (2004) Inhibition of c-Jun phosphorylation reduces axonal outgrowth of adult rat nodose ganglia and dorsal root ganglia sensory neurons. Mol Cell Neurosci 27:267–279

    Article  PubMed  CAS  Google Scholar 

  • Mandolesi G, Madeddu F, Bozzi Y, Maffei L, Ratto GM (2004) Acute physiological response of mammalian central neurons to axotomy: ionic regulation and electrical activity. FASEB J 18:1934–1936

    PubMed  CAS  Google Scholar 

  • Mills CD, Allchorne AJ, Griffin RS, Woolf CJ, Costigan M (2007) GDNF selectively promotes regeneration of injury-primed sensory neurons in the lesioned spinal cord. Mol Cell Neurosci 36:185–194

    Article  PubMed  CAS  Google Scholar 

  • Nadeau S, Hein P, Fernandes KJ, Peterson AC, Miller FD (2005) A transcriptional role for C/EBP beta in the neuronal response to axonal injury. Mol Cell Neurosci 29:525–535

    Article  PubMed  CAS  Google Scholar 

  • Neumann S, Woolf CJ (1999) Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron 23:83–91

    Article  PubMed  CAS  Google Scholar 

  • Neumann S, Bradke F, Tessier-Lavigne M, Basbaum AI (2002) Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation. Neuron 34:885–893

    Article  PubMed  CAS  Google Scholar 

  • Obata K, Yamanaka H, Dai Y, Mizushima T, Fukuoka T, Tokunaga A, Noguchi K (2004) Differential activation of MAPK in injured and uninjured DRG neurons following chronic constriction injury of the sciatic nerve in rats. Eur J Neurosci 20:2881–2895

    Article  PubMed  Google Scholar 

  • Park KK, Liu K, Hu Y, Smith PD, Wang C, Cai B, Xu B, Connolly L, Kramvis I, Sahin M, He Z (2008) Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 322:963–966

    Article  PubMed  CAS  Google Scholar 

  • Perlson E, Hanz S, Medzihradszky KF, Burlingame AL, Fainzilber M (2004) From snails to sciatic nerve: retrograde injury signaling from axon to soma in lesioned neurons. J Neurobiol 58:287–294

    Article  PubMed  Google Scholar 

  • Perlson E, Hanz S, Ben-Yaakov K, Segal-Ruder Y, Seger R, Fainzilber M (2005) Vimentin-dependent spatial translocation of an activated MAP kinase in injured nerve. Neuron 45:715–726

    Article  PubMed  CAS  Google Scholar 

  • Perlson E, Michaelevski I, Kowalsman N, Ben-Yaakov K, Shaked M, Seger R, Eisenstein M, Fainzilber M (2006) Vimentin binding to phosphorylated Erk sterically hinders enzymatic dephosphorylation of the kinase. J Mol Biol 364:938–944

    Article  PubMed  CAS  Google Scholar 

  • Pfister KK, Shah PR, Hummerich H, Russ A, Cotton J, Annuar AA, King SM, Fisher EM (2006) Genetic analysis of the cytoplasmic dynein subunit families. PLoS Genet 2:e1

    Article  PubMed  Google Scholar 

  • Povelones M, Tran K, Thanos D, Ambron RT (1997) An NF-kappaB-like transcription factor in axoplasm is rapidly inactivated after nerve injury in Aplysia. J Neurosci 17:4915–4920

    PubMed  CAS  Google Scholar 

  • Qiu J, Cai D, Dai H, McAtee M, Hoffman PN, Bregman BS, Filbin MT (2002) Spinal axon regeneration induced by elevation of cyclic AMP. Neuron 34:895–903

    Article  PubMed  CAS  Google Scholar 

  • Qiu J, Cafferty WB, McMahon SB, Thompson SW (2005) Conditioning injury-induced spinal axon regeneration requires signal transducer and activator of transcription 3 activation. J Neurosci 25:1645–1653

    Article  PubMed  CAS  Google Scholar 

  • Raivich G, Hellweg R, Kreutzberg GW (1991) NGF receptor-mediated reduction in axonal NGF uptake and retrograde transport following sciatic nerve injury and during regeneration. Neuron 7:151–164

    Article  PubMed  CAS  Google Scholar 

  • Rajan P, Stewart CL, Fink JS (1995) LIF-mediated activation of STAT proteins after neuronal injury in vivo. Neuroreport 6:2240–2244

    Article  PubMed  CAS  Google Scholar 

  • Reynolds AJ, Hendry IA, Bartlett SE (2001) Anterograde and retrograde transport of active extracellular signal-related kinase 1 (ERK1) in the ligated rat sciatic nerve. Neuroscience 105:761–771

    Article  PubMed  CAS  Google Scholar 

  • Richardson PM, Issa VM (1984) Peripheral injury enhances central regeneration of primary sensory neurones. Nature 309:791–793

    Article  PubMed  CAS  Google Scholar 

  • Rossi F, Gianola S, Corvetti L (2007) Regulation of intrinsic neuronal properties for axon growth and regeneration. Prog Neurobiol 81:1–28

    Article  PubMed  CAS  Google Scholar 

  • Schwaiger FW, Hager G, Schmitt AB, Horvat A, Streif R, Spitzer C, Gamal S, Breuer S, Brook GA, Nacimiento W, Kreutzberg GW (2000) Peripheral but not central axotomy induces changes in Janus kinases (JAK) and signal transducers and activators of transcription (STAT). Eur J Neurosci 12:1165–1176

    Article  PubMed  CAS  Google Scholar 

  • Seijffers R, Allchorne AJ, Woolf CJ (2006) The transcription factor ATF-3 promotes neurite outgrowth. Mol Cell Neurosci 32:143–154

    Article  PubMed  CAS  Google Scholar 

  • Sendtner M, Stockli KA, Thoenen H (1992) Synthesis and localization of ciliary neurotrophic factor in the sciatic nerve of the adult rat after lesion and during regeneration. J Cell Biol 118:139–148

    Article  PubMed  CAS  Google Scholar 

  • Shadiack AM, Sun Y, Zigmond RE (2001) Nerve growth factor antiserum induces axotomy-like changes in neuropeptide expression in intact sympathetic and sensory neurons. J Neurosci 21:363–371

    PubMed  CAS  Google Scholar 

  • Smith DS, Skene JH (1997) A transcription-dependent switch controls competence of adult neurons for distinct modes of axon growth. J Neurosci 17:646–658

    PubMed  CAS  Google Scholar 

  • Spira ME, Oren R, Dormann A, Gitler D (2003) Critical calpain dependent ultrastructural alterations underlie the transformation of an axonal segment into a growth cone after axotomy of cultured Aplysia neurons. J Comp Neurol 457:293–312

    Google Scholar 

  • Sung YJ, Povelones M, Ambron RT (2001) RISK-1: a novel MAPK homologue in axoplasm that is activated and retrogradely transported after nerve injury. J Neurobiol 47:67–79

    Article  PubMed  CAS  Google Scholar 

  • Sung YJ, Walters ET, Ambron, RT (2004) A neuronal isoform of protein kinase G couples mitogen-activated protein kinase nuclear import to axotomy-induced long-term hyperexcitability in Aplysia sensory neurons. J Neurosci 24:7583–7595

    Article  PubMed  CAS  Google Scholar 

  • Udina E, Furey M, Busch S, Silver J, Gordon T, Fouad K (2008) Electrical stimulation of intact peripheral sensory axons in rats promotes outgrowth of their central projections. Exp Neurol 210:238–247

    Article  PubMed  Google Scholar 

  • Vuppalanchi D, Willis DE, Twiss JL (2009) Regulation of mRNA transport and translation in axons. Results Probl Cell Differ. doi: 10.1007/400_2009_16

    Google Scholar 

  • Weis K (2003) Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell 112:441–451

    Article  PubMed  CAS  Google Scholar 

  • Wolf JA, Stys PK, Lusardi T, Meaney D, Smith DH (2001) Traumatic axonal injury induces calcium influx modulated by tetrodotoxin-sensitive sodium channels. J Neurosci 21;1923–1930

    PubMed  CAS  Google Scholar 

  • Yamashita T, Fujitani M, Yamagishi S, Hata K, Mimura F (2005) Multiple signals regulate axon regeneration through the Nogo receptor complex. Mol Neurobiol 32:105–111

    Article  PubMed  CAS  Google Scholar 

  • Yao GL, Kato H, Khalil M, Kiryu S, Kiyama H (1997) Selective upregulation of cytokine receptor subchain and their intracellular signalling molecules after peripheral nerve injury. Eur J Neurosci 9:1047–1054

    Article  PubMed  CAS  Google Scholar 

  • Yudin D, Fainzilber M (2009) Ran on tracks - cytoplasmic roles for a nuclear regulator. J Cell Sci 122:587–593

    Article  PubMed  CAS  Google Scholar 

  • Yudin D, Hanz S, Yoo S, Iavnilovitch E, Willis D, Gradus T, Vuppalanchi D, Segal-Ruder Y, Ben-Yaakov K, Hieda M, Yoneda Y, Twiss JL, Fainzilber M (2008) Localized regulation of axonal RanGTPase controls retrograde injury signaling in peripheral nerve. Neuron 59:241–252

    Article  PubMed  CAS  Google Scholar 

  • Zhang XP, Ambron RT (2000) Positive injury signals induce growth and prolong survival in Aplysia neurons. J Neurobiol 45:84–94

    Article  PubMed  CAS  Google Scholar 

  • Ziv NE, Spira ME (1993) Spatiotemporal distribution of Ca2 + following axotomy and throughout the recovery process of cultured Aplysia neurons. Eur J Neurosci 5:657–668

    Article  PubMed  CAS  Google Scholar 

  • Ziv NE, Spira ME (1995) Axotomy induces a transient and localized elevation of the free intracellular calcium concentration to the millimolar range. J Neurophysiol 74:2625–2637

    PubMed  CAS  Google Scholar 

  • Zrouri H, Le Goascogne C, Li WW, Pierre M, Courtin F (2004) The role of MAP kinases in rapid gene induction after lesioning of the rat sciatic nerve. Eur J Neurosci 20:1811–1818

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors’ research on these topics was supported by the Adelson Medical Research Foundation, the Christopher Reeve Foundation and the International Institute for Research in Paraplegia. M.F. is the incumbent of the Chaya Professorial Chair in Molecular Neuroscience at the Weizmann Institute of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike Fainzilber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ben-Yaakov, K., Fainzilber, M. (2009). Retrograde Injury Signaling in Lesioned Axons. In: Koenig, E. (eds) Cell Biology of the Axon. Results and Problems in Cell Differentiation, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/400_2009_14

Download citation

Publish with us

Policies and ethics