Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 718))

Abstract

The production of Hawking radiation by a single horizon is not dependent on the high-frequency dispersion relation of the radiated field. When there are two horizons, however, Corley and Jacobson have shown that superluminal dispersion leads to an amplification of the particle production in the case of bosons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Unruh W.G. (1995) Phys Rev D51:2827

    ADS  MathSciNet  Google Scholar 

  2. Brout R., Masser S., Parentani R., Spindel Ph. (1995) Phys Rev D52:4559

    ADS  Google Scholar 

  3. Unruh W.G., Schützhold R. (2005) Phys Rev D71:024028

    ADS  Google Scholar 

  4. Corley S., Jacobson T. (1999) Phys Rev D59:124011

    ADS  MathSciNet  Google Scholar 

  5. Hawking S.W. (1975) Commun Math Phys 43:199

    Article  MathSciNet  ADS  Google Scholar 

  6. 't Hooft G. (1995) Nucl Phys B256:727

    MathSciNet  Google Scholar 

  7. Jacobson T. (1991) Phys Rev D44:1731

    ADS  Google Scholar 

  8. Unruh W.G. (1981) Phys Rev Lett 46:1351

    Article  ADS  Google Scholar 

  9. Birrell N.D., Davies P.C.W. (1982) Quantum fields in curved space. Cambridge Univeristy Press, Cambridge

    MATH  Google Scholar 

  10. Brout R., Masser S., Parentani R., Spindel Ph. (1995) Phys Rep 260:329

    Article  ADS  MathSciNet  Google Scholar 

  11. Dalfovo F., Giorgini S., Pitaevskii L.P., Stringari S. (1999) Rev Mod Phys 71:463

    Article  ADS  Google Scholar 

  12. Pitaevskii L.P., Stringari S. (2003) Bose-Einstein condensation. Clarendon Press, Oxford

    MATH  Google Scholar 

  13. Shen Y.R. (1984) The principles of nonlinear optics. Wiley, New York

    Google Scholar 

  14. Leonhardt U. (2003) Rep Prog Phys 66:1207

    Article  ADS  Google Scholar 

  15. Cornwell J.F. (1984) Group theory in Physics. Volume 2. Academic Press, London

    Google Scholar 

  16. Volovik G.E. (2005) JETP Lett 82:624

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Leonhardt, U., Philbin, T. (2007). Black Hole Lasers Revisited. In: Unruh, W.G., Schützhold, R. (eds) Quantum Analogues: From Phase Transitions to Black Holes and Cosmology. Lecture Notes in Physics, vol 718. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-70859-6_9

Download citation

Publish with us

Policies and ethics