Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 718))

Abstract

Analogue space-times are powerful models for probing the fundamental physical aspects of geometry - while one is most typically interested in ultimately reproducing the pseudo-Riemannian geometries of interest in general relativity and cosmology, analogue models can also provide useful physical probes of more general geometries such as pseudo-Finsler space-times.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Barceló, S. Liberati and M. Visser, “Analogue gravity”, Living Rev. Rel. 8 12 (2005), [arXiv:gr-qc/0505065]

    Google Scholar 

  2. C. Barceló, S. Liberati and M. Visser, “Analog gravity from field theory normal modes?”, Class. Quant. Grav. 18, 3595 (2001), [arXiv:gr-qc/0104001]

    Article  MATH  ADS  Google Scholar 

  3. C. Barceló, S. Liberati and M. Visser, “Refringence, field theory, and normal modes”, Class. Quant. Grav. 19, 2961 (2002), [arXiv:gr-qc/0111059]

    Article  MATH  ADS  Google Scholar 

  4. M. Visser, C. Barceló and S. Liberati, “Bi-refringence versus bi-metricity”, [arXiv:gr-qc/0204017]

    Google Scholar 

  5. M. Visser and S.Weinfurtner, “Massive phonon modes from a BEC-based analog model”, (2004), [arXiv:cond-mat/0409639]

    Google Scholar 

  6. M. Visser and S. Weinfurtner, “Massive Klein-Gordon equation from a BEC-based analogue spacetime”, Phys. Rev. D 72 044020 (2005), [arXiv:grqc/0506029]

    Article  ADS  MathSciNet  Google Scholar 

  7. S. Liberati, M. Visser and S. Weinfurtner 2006, “Analogue quantum gravity phenomenology from a two-component Bose-Einstein condensate” Class. Quant. Grav. 23 3129 (2006), [arXiv:gr-qc/0510125]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. S.Weinfurtner, S. Liberati and M. Visser, “Analogue model for quantum gravity phenomenology”, J. Phys. A 39 6807 (2006), [arXiv:gr-qc/0511105]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. S. Weinfurtner, S. Liberati and M. Visser, “Modelling Planck-scale Lorentz violation via analogue models”, J. Phys. Conf. Ser. 33 373 (2006), [arXiv:grqc/0512127]

    Article  Google Scholar 

  10. S. Liberati, M. Visser and S.Weinfurtner, “Naturalness in emergent spacetime”, Phys. Rev. Lett. 96 151301 (2006), [arXiv:gr-qc/0512139]

    Article  ADS  Google Scholar 

  11. R. Schutzhold, “Dynamical zero-temperature phase transitions and cosmic inflation / deflation”, Phys. Rev. Lett. 95 135703 (2005), [arXiv:quant-ph/0505196]

    Article  ADS  Google Scholar 

  12. U. R. Fischer and R. Schutzhold, “Quantum simulation of cosmic inflation in two-component Bose-Einstein” Phys. Rev. A 70 063615 (2004), [arXiv:condmat/0406470]

    Article  ADS  Google Scholar 

  13. S. Weinfurtner, “Analogue model for an expanding universe”, General Relativity and Gravitation 37 9 1549–1554 (2005), [arXiv:gr-qc/0404063]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. C. Barceló, S. Liberati and M. Visser, “Analogue models for FRW cosmologies”, Int. J. Mod. Phys. D 12 1641 (2003), [arXiv:gr-qc/0305061]

    Article  ADS  Google Scholar 

  15. S. D. Jenkins and T. A. B. Kennedy, “Dynamic stability of dressed condensate mixtures”, Phys. Rev. A 68, 053607 (2003)

    Article  ADS  Google Scholar 

  16. M. Trippenbach, K. Góral, K. Rzażewski, B. Malomed, and Y. B. Band, “Structure of binary Bose-Einstein condensates”, J. Phys. B 33 4017 (2000), [arXiv:cond-mat/0008255]

    Article  ADS  Google Scholar 

  17. Bloch I 2000, “Atomlaser und Phasenkohärenz atomarer Bose-Einstein-Kondensate”, (in German), [http://edoc.ub.uni-muenchen.de/archive/00000208/]

  18. Jenkins S D and Kennedy T A B “Spin squeezing in a driven Bose-Einstein condensate”, Phys. Rev. A 66 043621 (2002)

    Article  ADS  Google Scholar 

  19. C. Barceló, S. Liberati and M. Visser, “Analogue gravity from Bose-Einstein condensates”, Class. Quant. Grav. 18 1137 (2001), [arXiv:gr-qc/0011026]

    Article  MATH  ADS  Google Scholar 

  20. R. Courant and D. Hilbert, “Methods of Mathematical Physics”, Vol II, Wiley, John and Sons, (1990)

    Google Scholar 

  21. B. Riemann, “Ueber die Hypothesen, welche der Geometrie zu Grunde liegen”, 1854. “On the Hypotheses which lie at the Bases of Geometry”, translated by William Kingdon Clifford, Nature, 8, pp, 14–17, 36, 37

    Google Scholar 

  22. P. Finsler, “Uber Kurven und Flachen in allgemeinen Raumen”, [Curves and surfaces in general spaces], PhD thesis (1918)

    Google Scholar 

  23. U. R. Fischer and R. Schutzhold, “Quantum simulation of cosmic inflation in two-component Bose-Einstein condensates”, Phys. Rev. A 70 (2004) 063615 [arXiv:cond-mat/0406470]

    Article  ADS  Google Scholar 

  24. M. Visser, C. Barceló and S. Liberati, “Acoustics in Bose-Einstein condensates as an example of broken Lorentz symmetry”, [arXiv:hep-th/0109033]

    Google Scholar 

  25. D. Mattingly, “Modern tests of Lorentz invariance”, Living Rev. Rel. 8 5 (2005), [arXiv:gr-qc/0502097]

    Google Scholar 

  26. T. Jacobson, S. Liberati and D. Mattingly, “Lorentz violation at high energy: Concepts, phenomena and astrophysical constraints”, Annals Phys. 321 150 (2006), [arXiv:astro-ph/0505267]

    Article  MATH  ADS  Google Scholar 

  27. R. C. Myers and M. Pospelov, “Experimental challenges for quantum gravity”, Phys. Rev. Lett. 90 211601 (2003), [arXiv:hep-ph/0301124]

    Article  ADS  MathSciNet  Google Scholar 

  28. T. Jacobson, S. Liberati and D. Mattingly, “Threshold effects and Planck scale Lorentz violation: Combined constraints from high energy astrophysics”, Phys. Rev. D 67 124011 (2003), [arXiv:hep-ph/0209264] T. Jacobson, S. Liberati and D. Mattingly, “TeV astrophysics constraints on Planck scale Lorentz violation”, Phys. Rev. D 66 (2002) 081302 [arXiv:hepph/0112207]

    Article  ADS  Google Scholar 

  29. T. A. Jacobson, S. Liberati, D. Mattingly and F. W. Stecker, “New limits on Planck scale Lorentz violation in QED”, Phys. Rev. Lett. 93 (2004) 021101, [arXiv:astro-ph/0309681]

    Article  ADS  Google Scholar 

  30. T. Jacobson, S. Liberati and D. Mattingly, “A strong astrophysical constraint on the violation of special relativity by quantum gravity”, Nature 424 1019 (2003), [arXiv:astro-ph/0212190]

    Article  ADS  Google Scholar 

  31. J. Collins, A. Perez, D. Sudarsky, L. Urrutia and H. Vucetich, “Lorentz invariance: An additional fine-tuning problem”, Phys. Rev. Lett. 93 191301 (2004), [arXiv:gr-qc/0403053]

    Article  ADS  MathSciNet  Google Scholar 

  32. G. Amelino-Camelia and T. Piran, “Planck-scale deformation of Lorentz symmetry as a solution to the UHECR and the TeV-gamma paradoxes”, Phys. Rev. D 64 036005 (2001), [arXiv:astro-ph/0008107]

    Article  ADS  Google Scholar 

  33. H. S. Goh, M. A. Luty and S. P. Ng, “Supersymmetry without supersymmetry”, JHEP 0501 040 (2005), [arXiv:hep-th/0309103]

    Article  ADS  MathSciNet  Google Scholar 

  34. E. Cartan, “Les Espaces de Finsler”, Actualites Scientifiques et Industrielles no. 79, Paris, Hermann (1934) H. Rund, “The Differential geometry of Finsler spaces”, Springer (1959). D. Bao, S. S. Chern and Z. Shen (eds.), “Finsler geometry”, A.M.S. Contemporary Mathematics 196 (1996) D. Bao, S. S. Chern and Z. Shen, “An Introduction to Riemann-Finsler Geometry”, Spring-Verlag (2000) Z. Shen, “Lectures on Finsler Geometry”, World Scientific Publishers (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Weinfurtner, S., Liberati, S., Visser, M. (2007). Analogue Space-time Based on 2-Component Bose-Einstein Condensates. In: Unruh, W.G., Schützhold, R. (eds) Quantum Analogues: From Phase Transitions to Black Holes and Cosmology. Lecture Notes in Physics, vol 718. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-70859-6_6

Download citation

Publish with us

Policies and ethics