Skip to main content

Evolving and breeding robots

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1468))

Abstract

Our experiences with a range of evolutionary robotic experiments have resulted in major changes to our set-up of artificial life experiments and our interpretation of observed phenomena. Initially, we investigated simulation-reality relationships in order to transfer our artificial life simulation work with evolution of neural network agents to real robots. This is a difficult task, but can, in a lot of cases, be solved with a carefully built simulator. By being able to evolve control mechanisms for physical robots, we were able to study biological hypotheses about animal behaviours by using exactly the same experimental set-ups as were used in the animal behavioural experiments. Evolutionary robotic experiments with rats open field box experiments and chick detours show how evolutionary robotics can be a powerful biological tool, and they also suggest that incremental learning might be fruitful for achieving complex robot behaviour in an evolutionary context. However, it is not enough to evolve controllers alone, and we argue that robot body plans and controllers should co-evolve, which leads to an alternative form of evolvable hardware. By combining all these experiences, we reach breeding robotics. Here, children can, as breeders, evolve e.g. LEGO robots through an interactive genetic algorithm in order to achieve desired behaviours, and then download the evolved behaviours to the physical (LEGO) robots.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Cheng. A purely geometric module in the rat's spatial representation. Cognition, 23:149–178, 1986.

    Google Scholar 

  2. A Clark and C. Thornton. Trading Spaces: Computation, Representation, and Limits of Uniformed Learning. Behavioral and Brain Sciences, 20:57–90, 1997.

    Google Scholar 

  3. M. Dorigo and M. Colombetti. Robot Shaping: Developing Autonomous Agents through Learning. Artificial Intelligence, 71(2):321–370, 1994.

    Google Scholar 

  4. D. Floreano and F. Mondada. Automatic Creation of an Autonomous Agent: Genetic Evolution of a Neural Network Driven Robot. In D. Cliff, P. Husbands, J. Meyer, and S. W. Wilson, editors, From Animals to Animats 3: Proceedings of the Third International Conference on Simulation of Adaptive Behavior (SAB94), Cambridge, MA, 1994. MIT Press, Bradford Books.

    Google Scholar 

  5. C. R. Gallistel. The organization of learning. MIT Press, Cambridge, MA, 1990.

    Google Scholar 

  6. H. Hemmi, J. Mizoguchi, and K. Shimohara. Development and evolution of hardware behaviours. In R. Brooks and P. Maes, editors, Proceedings of ALIFE IV, Cambridge, MA, 1994. MIT Press.

    Google Scholar 

  7. T. Higuchi, H. Iba, and B. Manderick. Evolvable Hardware with Genetic Learning. In H. Kitano, editor, Massively Parallel Artificial Intelligence, MA, 1994. MIT Press.

    Google Scholar 

  8. T. Higuchi, M. Murakawa, M. Iwata, I. Kajitani, W. Liu, and M. Salami. Evolvable Hardware at Function Level. In Proceedings of IEEE Fourth International Conference on Evolutionary Computation, NJ, 1997. IEEE Press.

    Google Scholar 

  9. T. Higuchi, T. Niwa, T. Tanaka, H. Iba, H. de Garis, and T. Furuya. Evolving hardware with genetic learning: A first step towards building a Darwin machine. In J. Meyer, H. L. Roitblat, and S. W. Wilson, editors, From Animals to Animats II: Proceedings of the Second International Conference on Simulation of Adaptive Behavior (SAB92), Cambridge, MA, 1992. MIT Press-Bradford Books.

    Google Scholar 

  10. N. Jakobi, P. Husbands, and I. Harvey. Noise and The Reality Gap: The Use of Simulation in Evolutionary Robotics. In Proceedings of 3.rd European Conference on Artificial Life (ECAL'95). Springer-Verlag, 1995.

    Google Scholar 

  11. H. Kitano. Towards Evolvable Electro-Biochemical Systems. In C. Langton and T. Shimohara, editors, Proceedings of Artificial Life V, Cambridge, MA, 1997. MIT Press.

    Google Scholar 

  12. W. Koelher. The Mentality of Apes. Harcout Brace, New York, 1925.

    Google Scholar 

  13. W.-P. Lee, J. Hallam, and H. H. Lund. A Hybrid GP/GA Approach for Co-evolving Controllers and Robot Bodies to Achieve Fitness-Specified Tasks. In Proceedings of IEEE Third International Conference on Evolutionary Computation, NJ, 1996. IEEE Press.

    Google Scholar 

  14. H. H. Lund and J. Hallam. Sufficient Neurocontrollers can be Surprisingly Simple. Research Paper 824, Department of Artificial Intelligence, University of Edinburgh, 1996.

    Google Scholar 

  15. H. H. Lund, J. Hallam, and W.-P. Lee. Evolving Robot Morphology. In Proceedings of IEEE Fourth International Conference on Evolutionary Computation, NJ, 1997. IEEE Press. Invited paper.

    Google Scholar 

  16. H. H. Lund and O. Miglino. From Simulated to Real Robots. In Proceedings of IEEE Third International Conference on Evolutionary Computation, NJ, 1996. IEEE Press.

    Google Scholar 

  17. H. H. Lund, O. Miglino, L. Pagliarini, A. Billard, and A. Ijspeert. Evolutionary Robotics — A Children's Game. In Proceedings of IEEE Fifth International Conference on Evolutionary Computation, NJ, 1998. IEEE Press.

    Google Scholar 

  18. H. H. Lund and D. Parisi. Pre-adaptation in populations of neural networks evolving in a changing environment. Artificial Life, 2(2):179–197, 1996.

    Google Scholar 

  19. H. H. Lund, B. Webb, and J. Hallam. A Robot Attracted to the Cricket Species Gryllus bimaculatus. In P. Husbands and I. Harvey, editors, Proceedings of Fourth European Conference on Artificial Life, pages 246–255, Cambridge, MA, 1997. MIT Press, Bradford Books.

    Google Scholar 

  20. J. Margules and C. R. Gallistel. Heading in the rat: Determination by environmental shape. Animal Learning and Behavior, 16:404–410, 1988.

    Google Scholar 

  21. O. Miglino, D. Denaro, G. Tascini, and D. Parisi. Detour Behavior in Evolving Robots. 1998. In these proceedings.

    Google Scholar 

  22. O. Miglino, H. H. Lund, and S. Nolfi. Evolving Mobile Robots in Simulated and Real Environments. Artificial Life, 2(4):417–434, 1996.

    Google Scholar 

  23. O. Miglino, K. Nafasi, and C. Taylor. Selection for Wandering Behavior in a Small Robot. Artificial Life, 2(1), 1995.

    Google Scholar 

  24. O. Miglino, S. Nolfi, and D. Parisi. Discontinuity in evolution: how different levels of organization imply pre-adaptation. In R. K. Belew and M. Mitchell, editors, Adaptive Individuals in Evolving Populations: Models and Algorithms. Addison-Wesley, 1996.

    Google Scholar 

  25. S. Nolfi and D. Parisi. Evolving non-trivial behaviors on real robots: A garbage collecting robot. Robotics and Autonomous Systems, 1997. To appear.

    Google Scholar 

  26. L. Pagliarini, H. H. Lund, O. Miglino, and D. Parisi. Artificial Life: A New Way to Build Educational and Therapeutic Games. In C. Langton and K. Shimohara, editors, Proceedings of Artificial Life V, pages 152–156, Cambridge, MA, 1997. MIT Press.

    Google Scholar 

  27. S. Perkins and G. Hayes. Incremental acquisition of complex behaviour using structured evolution. In Proceedings of the International Conference on Artificial Neural Networks and Genetic Algorithms '97. Springer-Verlag, 1997. To appear.

    Google Scholar 

  28. L. Regolin, G. Vallortigara, and M. Zanforlin. Object and Spatial Representations in Detour Problems by Chicks. Animal Behavior, 48:1–5, 1994.

    Google Scholar 

  29. M. Resnick. MultiLogo: A Study of Children and Concurrent Programming. Master thesis, MIT, 1988.

    Google Scholar 

  30. M. Resnick. LEGO, Logo, and Life. In C. Langton, editor, Artificial Life, MA, 1989. Addison-Wesley.

    Google Scholar 

  31. M. Sipper, M. Goeke, D. Mange, A. Stauffer, E. Sanchez, and M. Tomassini. The Firefly Machine: Online Evolware. In Proceedings of IEEE Fourth International Conference on Evolutionary Computation, NJ, 1997. IEEE Press.

    Google Scholar 

  32. C. Thinus-Blanc. Animal Spatial Cognition. World Scientific, Singapore, 1996.

    Google Scholar 

  33. A. Thompson. Evolving electronic robot controllers that exploit hardware resources. In F. Moran, A. Moreno, J.J. Merelo, and P. Charon, editors, Advances in Artificial Life: Proceedings of 3rd European Conference on Artificial Life, Heidelberg, 1995. Springer-Verlag.

    Google Scholar 

  34. G. Vallortigara and M. Zanforlin. Position Learning in Chicks. Behavioral Proceedings, 12:23–32, 1986.

    Google Scholar 

  35. V. Vucic and H. H. Lund. Self-Evolving Arts — Organisms versus Fetishes. Muhely — Hungarian Journal of Modern Art, 104:69–79, 1997.

    Google Scholar 

  36. X. Yao and T. Higuchi. Promises and Challenges of Evolvable Hardware. In Proceedings of First International Conference on Evolvable Systems: from Biology to Hardware, Heidelberg, 1996. Springer-Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Philip Husbands Jean-Arcady Meyer

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lund, H.H., Miglino, O. (1998). Evolving and breeding robots. In: Husbands, P., Meyer, JA. (eds) Evolutionary Robotics. EvoRobots 1998. Lecture Notes in Computer Science, vol 1468. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-64957-3_73

Download citation

  • DOI: https://doi.org/10.1007/3-540-64957-3_73

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64957-1

  • Online ISBN: 978-3-540-49902-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics